Exponential time decay of a finite volume scheme for drift-diffusion systems

Claire Chainais-Hillairet IHP, 10/07/16 Joint work with M. Bessemoulin-Chatard (Nantes)

Inches

(日) (國) (필) (필) (필) 표

+ exponential convergence

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

+ exponential convergence

- Model : Linear or non-linear drift-diffusion systems
- Scheme : Backward Euler in time + Finite volume in space + (extended) Scharfetter-Gummel numerical fluxes

Illustration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline of the talk

2 Numerical scheme for the drift-diffusion systems

3 Exponential decay to the thermal equilibrium

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Drift-diffusion systems

Unknowns

- N, P : densities of charge carriers
- Ψ : electrical potential

Data

- Doping profile : C
- Initial and boundary conditions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The equations

$$\begin{cases} \partial_t N + \operatorname{div}(J_N) = -R(N, P), & J_N = -\nabla r(N) + N\nabla\Psi, \\ \partial_t P + \operatorname{div}(J_P) = -R(N, P), & J_P = -\nabla r(P) - P\nabla\Psi, \\ -\lambda^2 \Delta \Psi = P - N + C. \end{cases}$$

 λ : Debye length

Linear/non-linear diffusion

$$\begin{cases} \partial_t N + \operatorname{div}(J_N) = -R(N, P), & J_N = -\nabla r(N) + N\nabla\Psi, \\ \partial_t P + \operatorname{div}(J_P) = -R(N, P), & J_P = -\nabla r(P) - P\nabla\Psi, \\ -\lambda^2 \Delta \Psi = P - N + C. \end{cases}$$

Van Roosbroeck model (1950)

- Boltzmann statistics $\rightarrow r(s) = s$
- different choices for the recombination-generation terms R :

$$R(N, P) = R_0(N, P)(1 - NP).$$

Non-linear diffusion

other statistics than Boltzmann (Fermi-Dirac for instance)

$$\rightarrow r(s) = s^{\gamma}$$
, avec $\gamma > 1$ ($\gamma = 5/3$)

• recombination-generation?

Known results

Assumptions

•
$$N_0, P_0 \in L^{\infty}(\Omega)$$
, $C \in L^{\infty}(\Omega)$,

- $\bullet \ N^D, P^D \in L^\infty \cap H^1(\Omega) \text{, } \Psi^D \in H^1(\Omega) \text{,}$
- $\exists m \geq 0, M > 0$ such that

$$m \leq N_0, P_0, N^D, P^D \leq M \text{ a.e. in } \Omega.$$

 • $r(s) = s \text{ and } R(N,P) = R_0(NP-1)$

or
$$r(s) = s^{\gamma}$$
 and $R = 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Existence of a weak solution

- 🗖 Gajewski, 1985
- 🗖 Gajewski, Gröger, 1986
- 🗖 Jüngel, 1994

The thermal equilibrium

Definition

$$\begin{cases} -\nabla r(N) + N\nabla \Psi = 0 = -N \ \nabla (h(N) - \Psi) \\ -\nabla r(P) - P\nabla \Psi = 0 = -P \ \nabla (h(P) + \Psi) \\ -\lambda^2 \Delta \Psi = P - N + C \qquad (h'(s) = \frac{r'(s)}{s}) \end{cases}$$

+ Dirichlet/Neumann boundary conditions

Existence and uniqueness (under conditions)

MARKOWICH, UNTERREITER, 1993
 UNTERREITER, 1994

g : generalized inverse of h,

$$\begin{cases} N^e = g(\alpha_N + \Psi^e), \ P^e = g(\alpha_P - \Psi^e) \\ \lambda^2 \Delta \Psi^e = g(\alpha_N + \Psi^e) - g(\alpha_P - \Psi^e) - C + \text{b. c.} \\ \alpha_N = h(N^D) - \Psi^D, \ \alpha_P = h(P^D) + \Psi^D \end{cases}$$

Convergence in large time to the thermal equilibrium

- □ GAJEWSKI, GRÖGER, 1986, 1990
- 🗖 GAJEWSKI, GÄRTNER, 1996
- 🗖 Jüngel, 1995

Relative energy and energy dissipation

Keypoint : an energy/energy dissipation equality

$$\frac{d\mathbb{E}}{dt}(t) + \mathbb{I}(t) = 0$$

c11.

Outline of the talk

2 Numerical scheme for the drift-diffusion systems

3 Exponential decay to the thermal equilibrium

Schemes for the evolutive drift-diffusion equation

From the equation...

$$\begin{cases} \partial_t u + \operatorname{div} \mathbf{J} = 0, & \mathbf{J} = -\nabla u + u \nabla \Psi, \text{ in } \Omega\\ u(\cdot, 0) = u_0 \ge 0 & + \text{Neumann boundary conditions} \end{cases}$$

... to the scheme

Scharfetter-Gummel fluxes

□ Scharfetter, Gummel, 1969

Definition

$$\mathcal{F}_{K,\sigma} = \frac{\mathrm{m}(\sigma)}{\mathrm{d}_{\sigma}} \Big(B \big(-\Psi_L + \Psi_K \big) u_K - B \big(\Psi_L - \Psi_K \big) u_L \Big)$$

where B is the Bernoulli function : $B(x)=\frac{x}{e^x-1} \quad (B(0)=1).$

Properties

- Existence, uniqueness of the solution to the scheme
- Preservation of positivity, conservation of mass
- Preservation of the thermal equilibrium :

$$u_K = \exp(\Psi_K) \Longrightarrow \mathcal{F}_{K,\sigma} = 0.$$

Generalization to nonlinear diffusion

$$\mathbf{J} = -\nabla r(u) + u\nabla \Psi = -r'(u)\nabla u + u\nabla \Psi = -u\nabla(h(u) - \Psi).$$

Extended SG fluxes

$$D\Psi_{K,\sigma} = \Psi_L - \Psi_K \quad (\text{and } D_{\sigma}\Psi = |\Psi_L - \Psi_L|)$$
$$\mathcal{F}_{K,\sigma} = \frac{\mathrm{m}(\sigma)}{\mathrm{d}_{\sigma}} dr(u_K, u_L) \\ \left(B\left(\frac{-D\Psi_{K,\sigma}}{dr(u_K, u_L)}\right) u_K - B\left(\frac{D\Psi_{K,\sigma}}{dr(u_K, u_L)}\right) u_L \right)$$

Definition of $dr \quad \Psi_K = h(u_K) \Longrightarrow \mathcal{F}_{K,\sigma} = 0$

$$dr(a,b) = \begin{cases} \frac{h(b) - h(a)}{\log(b) - \log(a)} & \text{ if } a, b > 0, \ a \neq b \\ r'(\frac{a+b}{2}) & \text{ elsewhere } \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overview of the schemes for the drift-diffusion system

Scheme for the drift-diffusion system

$$\begin{cases} \mathbf{m}(K)\frac{N_K^{n+1} - N_K^n}{\Delta t} + \sum_{\sigma \in \mathcal{E}_K} \mathcal{F}_{K,\sigma}^{n+1} = 0, \\ \mathbf{m}(K)\frac{P_K^{n+1} - P_K^n}{\Delta t} + \sum_{\sigma \in \mathcal{E}_K} \mathcal{G}_{K,\sigma}^{n+1} = 0, \\ -\lambda^2 \sum_{\sigma \in \mathcal{E}_K} \tau_{\sigma} D\Psi_{K,\sigma}^{n+1} = \mathbf{m}(K)(P_K^{n+1} - N_K^{n+1} + C_K). \end{cases}$$

Scheme for the thermal equilibrium

$$\begin{cases} -\lambda^2 \sum_{\sigma \in \mathcal{E}_K} \tau_{\sigma} D\Psi_{K,\sigma}^e = \mathbf{m}(K) \Big(g(\alpha_P - \Psi_K^e) - g(\alpha_N + \Psi_K^e) + C_K \Big), \\ N_K^e = g(\alpha_N + \Psi_K^e), \quad P_K^e = g(\alpha_P - \Psi_K^e). \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Crucial property of the SG fluxes

At the continuous level

$$\mathbf{J} = -u\nabla(h(u) - \Psi)$$
$$\mathbb{I} = \int_{\Omega} -\mathbf{J} \cdot \nabla(h(u) - \Psi) = \int_{\Omega} u |\nabla(h(u) - \Psi)|^2$$

At the discrete level

$$-\mathcal{F}_{K,\sigma}D(h(u)-\Psi)_{K,\sigma} \ge \frac{\mathrm{m}(\sigma)}{\mathrm{d}_{\sigma}}\min(u_{K},u_{L})\left(D_{\sigma}(h(u)-\Psi)\right)^{2}$$

Definition of the discrete dissipation

$$\mathbb{I}^{n} = \sum_{\sigma \in \mathcal{E}} \frac{\mathrm{m}(\sigma)}{\mathrm{d}_{\sigma}} \left(\min(N_{K}^{n}, N_{L}^{n}) \left(D_{\sigma} \left(h(N^{n}) - \Psi^{n} \right) \right)^{2} + \min(P_{K}^{n}, P_{L}^{n}) \left(D_{\sigma} \left(h(P^{n}) + \Psi^{n} \right) \right)^{2} \right)$$

Discrete energy/dissipation inequality

Definition of the discrete energy

$$\mathbb{E}^{n} = \sum_{K \in \mathcal{T}} \mathbf{m}(K) (H(N_{K}^{n}) - H(N_{K}^{e}) - h(N_{K}^{e})(N_{K}^{n} - N_{K}^{e}) + \dots + \frac{\lambda^{2}}{2} \sum_{\sigma \in \mathcal{E}} \frac{\mathbf{m}(\sigma)}{\mathbf{d}_{\sigma}} \left(D_{\sigma}(\Psi^{n} - \Psi^{e}) \right)^{2}.$$

Proposition

If the scheme has a solution which satisfies

$$0 \le N_K^n, P_K^n \le M, \quad \forall K \in \mathcal{T}, \forall n \ge 0,$$

then,

$$0 \leq \mathbb{E}^{n+1} + \Delta t \mathbb{I}^{n+1} \leq \mathbb{E}^n, \quad \forall n \geq 0.$$

Outline of the talk

About the drift-diffusion systems

2 Numerical scheme for the drift-diffusion systems

Exponential decay to the thermal equilibrium

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

How to get the exponential decay?

$$0 \le \mathbb{E}^{n+1} + \Delta t \mathbb{I}^{n+1} \le \mathbb{E}^n, \quad \forall n \ge 0.$$

If we prove

$$\mathbb{E}^n \le C_{EI} \mathbb{I}^n$$

then

$$\mathbb{E}^{n+1} - \mathbb{E}^n \le -\frac{\Delta t}{C_{EI}} \mathbb{E}^{n+1},$$

 and

$$\Rightarrow \mathbb{E}^{n} \leq (1 - \frac{\Delta t}{C_{EI}})^{n} \mathbb{E}^{0} \quad \forall n \geq 0,$$

$$\Rightarrow \mathbb{E}^{n} \leq e^{-\alpha n \Delta t} \mathbb{E}^{0} \quad \forall n \geq 0, \text{ with } \alpha = \frac{e^{-\Delta t_{max}}}{C_{EI}}.$$

Relation between energy and dissipation

Proposition

Let assume some hypotheses on the data, including :

• boundary conditions at thermal equilibrium.

If moreover the scheme has a solution which satisfies

$$0 < m \le N_K^n, P_K^n \le M, \quad \forall K \in \mathcal{T}, \forall n \ge 0.$$

Then,

$$\mathbb{E}^n \le C_{EF} \mathbb{F}^n \le C_{EI} \mathbb{I}^n,$$

where,

$$\mathbb{F}^{n} = \|N_{\mathcal{T}}^{n} - N_{\mathcal{T}}^{e}\|_{0}^{2} + \|P_{\mathcal{T}}^{n} - P_{\mathcal{T}}^{e}\|_{0}^{2} + \frac{\lambda^{2}}{2}|\Psi_{T}^{n} - \Psi_{\mathcal{T}}^{e}|_{1,\mathcal{T}}^{2}.$$

→ exponential decay of \mathbb{F}^n as a by-product.

About the existence and the uniform bounds

- The scheme leads to a nonlinear system of equations at each time step.
- Existence is obtained via a fixed point theorem :
 - \rightarrow linearization of the scheme :

$$T^n_{\mu}: (N_{\mathcal{T}}, P_{\mathcal{T}}) \to (\Psi_{\mathcal{T}} \to) \ (\hat{N}_{\mathcal{T}}, \hat{P}_{\mathcal{T}}),$$

 T^n_μ based on the resolution of 3 linear systems of eq.

→ proof of L^{∞} -estimates :

 T^n_μ preserves the set $\mathcal{C}^{n+1} = \left\{ m^{n+1} \leq N_K, P_K \leq M^{n+1} \right\},$

 \rightarrow application of Brouwer's fixed point theorem.

Existence and L^{∞} -estimates

Proposition

Under some hypotheses on the data, including :

•
$$0 < m \le N_0, P_0, N^D, P^D \le M.$$

If the time step verifies

$$\Delta t \le \frac{\lambda^2}{\|C\|}_{\infty}$$

Then, the scheme has a solution, which satisfies the following $L^\infty\text{-}$ estimates on the approximate densities :

$$m^n \le N_K^n, P_K^n \le M^n,$$

where

$$m^{n} = m(1 + \frac{\Delta t}{\lambda^{2}} \|C\|_{\infty})^{-n}, \quad M^{n} = M(1 - \frac{\Delta t}{\lambda^{2}} \|C\|_{\infty})^{-n}$$

・ロト・西ト・山田・山田・山市・山口・

Comments

- If the doping profile vanishes (C = 0)
 - \twoheadrightarrow uniform L^∞ estimates on the discrete densities,
 - → without any assumption on the time step,
 - \rightarrow exponential decay is established.
- What happens when the doping profile does not vanish?

Conclusion and perspectives

For the drift-diffusion systems

- At the discrete level, the exponential decay towards the thermal equilibrium is established,...
- ...provided that uniform bounds on the densities are satisfied.
- OK when C = 0.
- Uniform estimates when $C \neq 0$
 - 🗖 GAJEWSKI, GRÖGER, 1986
 - Moser iterations process...
 - ... to be adapted at the discrete level
 - Ongoing work with M. Bessemoulin-Chatard and A. Jüngel

Finite Volumes for Complex Applications

Lille - France June 12-16, 2017

Invited speakers

- A. R. Brodtkorb
- A. Chertock
- I. Faille
- E. Fernandez-Nieto

- T. Gallouët
- B. Haasdonk
- S. Mishra
- C. W. Shu
- \checkmark Peer-reviewed proceedings (submission before 2017/1/6)
- ➤ Special benchmark session on incompressible flows

https://indico.math.cnrs.fr/event/1299/overview