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Model Problem

Poisson problem written in the form:

∇.σ = f in Ω,

σ = −∇u

u = uD in ∂ΩD ,

σ · η = qN in ∂ΩN

Required functional spaces

For the variable σ

H(div ,Ω) =
{

q ∈
[
L2(Ω)

]d
;∇.q ∈ L2(Ω)

}
For the variable u: L2(Ω)
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Discrete variational mixed formulation

1 Γ = {K} partition of the computational domain Ω

2 Finite dimensional approximation subspaces

VΓ ⊂ H(div ,Ω) approximation space for σ

continuous normal components over element interfaces
UΓ ⊂ L2(Ω) approximation space for u
no continuity constraint
stability

3 To find (σ, u) ∈
(
VΓ × UΓ

)
such that σ · η|∂ΩN

= qN and

a(σ, q)− b(q, u) = −
∫
∂Ω

uDq · η ∀q ∈ VΓ
0

b(σ, ϕ) =

∫
Ω

f ϕ dΩ ∀ϕ ∈ UΓ
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Motivation

Since Raviart and Thomas 1977

a variety of VΓ × UΓ stable configurations have been proposed
in the literature (Brezzi,Fortin 1991)

Most FE codes for real applications are based on
H1-conforming schemes

Implementations of mixed formulations are much more complex

Complications increase for:

higher order finite element schemes
non-uniform order approximation on unstructured meshes
curved elements
variable topologies
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Motivation

Recent efforts on the development and/or implementation of
convenient sets of basis functions for higher order
H(div)-conforming approximations in 3D

Arnold, Falk, Winther, Comput. Methods Appl. Mech.
Engrg., 2009 (Berstein-Bézier,simplices)
Ainsworth, Andriamaro, Davydov, SIAM J. Sci. Comput.
2011 (Berstein-Bézier,simplices)
Fuentes, Keith, Demkowicz, Nagaraj, Mathematics and
Computers in Simulation 2015 (hierarchic, all geometries)
Castro, Devloo, Farias, G, Siqueira, Durán, Comput.
Meth. Appl. Mech. 2016 (hierachic, affine, all geometries
excepting pyramides)
Castro, Devloo, Farias, G, Durán, Jr. Comp. Appl. Math
2016. (hierachic, curved 2D + surfaces)
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Goals

Systematic construction of hierarchic high order shape
functions for approximation spaces

VΓ ⊂ Hdiv(Ω)

based on curved tetrahedra, hexahedra and prisms

Different stable space configurations VΓ × UΓ with optimal
h-convergence rates

configuration with enhanced accuracy in u without increasing
DoF of the static condensed system

Effect of condensation + parallelization on CPU time using an
hp-adapted curved mesh
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Construction of approximation spaces VΓ×UΓ: guidelines I

K̂ : reference master element (tetrahedra, hexahedra or prism)

x : K̂ → K : geometric mapping (diffeomorphism)

F : ϕ̂→ ϕ, isomorphism mapping scalar functions ϕ̂ of H1(K̂ ) to

scalar functions ϕ of H1(K ) (induced by x)

ϕ(p) = ϕ̂(x−1(p))

Fdiv : q̂→ q contravariant Piola transformation: isomorphism

mapping vector-valued functions q̂ ∈ H(div , K̂ ) to vector-valued

functions q ∈ H(div ,K )

q = F
[

1

detJ
J(q̂)

]
where J = ∇x is the Jacobean of the geometric mapping.
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Construction of approximation spaces VΓ × UΓ: guidelines
II

Polynomial vector-valued approximation spaces

M(K̂ ) ⊂ H(div , K̂ )

internal functions: vanishing normal components on ∂K̂
face functions: otherwise

D(K̂ ) ⊂ L2(K̂ )

Satability: De Rham property

∇ ·M(K̂) = D(K̂)

Global approximation spaces

VΓ =
{

q ∈ H(div ,Ω); q|K = Fdiv q̂, q̂ ∈M(K̂ )
}

UΓ =
{
ϕ ∈ L2(Ω); ϕ|K = Fϕ̂, ϕ̂ ∈ D(K̂ )

}
P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**, New approximation space configuration for the mixed finite element method for elliptic problems based on curved 3D meshes



Different types of space configurations

M(K̂ )× D(K̂ ) ⊂ Hdiv(K̂ )× L2(K̂ )

∇.M(K̂ ) = D(K̂ )

Pk Pk−1 D(K̂ ) = Pk−1

(BDMk) M(K̂ ) = [Pk ]3,
only for tetrahedra

P∗
k Pk D(K̂ ) = Pk

(BDMFk+1, RTk ) [Pk ]3 ( M(K̂ ) ( [Pk+1]3:

face functions in [Pk ]3

all geometries internal functions in [Pk+1]3 with divergence in Pk

D(K̂ ) = Pk+1

P∗∗
k Pk+1 (new) [Pk ]3 ( M(K̂ ) ( [Pk+2]3:

face functions in [Pk ]3

all geometries internal functions in [Pk+2]3with divergence in Pk+1

Castro; Devloo;Farias; Gomes;de Siqueira; Durán. Three dimensional hierarchical mixed finite element
approximations with enhanced primal variable accuracy. Computer Methods in Applied Mechanics and
Engineering, 306: 479-502, 2016. (3D affine uniform meshes)

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**, New approximation space configuration for the mixed finite element method for elliptic problems based on curved 3D meshes



Accuracy

L2 - Error estimations
PkPk−1 P∗kPk P∗∗k Pk+1

tetrahedra all

||σ − σh|| k + 1 k + 1 k + 1

||u − uh|| k k + 1 k + 2
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NeoPZ (object oriented platform for FE)

http://github.com/labmec/neopz
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Hierarchic scalar shape functions in NeoPZ

Polynomial space Pk restricted to K̂ :
Tetrahedron: total degree k

Cube: maximum degree k in each coordinate
Prism: total degree k in (ξ0, ξ1), and maximum degree k in ξ2

Hierarchic scalar bases BK̂
k for Pk :

vertex edge face volume

ϕâ ϕ`,n ϕF̂ ,n1,n2 ϕK̂ ,n1,n2,n3

P. Devloo, C. Bravo, and E. Rylo. Systematic and generic construction of shape functions for
p-adaptive meshes of multidimensional finite elements. Comput. Methods Appl. Mech. Engrg.,
198:1716 – 1725, 2009.
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Hierarchic vector-valued bases BK̂
k for Pk = [Pk ]3

Shape functions of type

Φ̂ = ϕ̂v̂,

v̂→ constant vector fields (connected to faces or volume of K̂)

ϕ̂→ scalar shape functions in BK̂
k

internal shape functions:

vanishing normal components over all the faces of K̂ .

face shape functions: otherwise
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Hierarchic shape functions in BK̂
k : main properties

Face functions Normal components

ΦF̂ ,â = ϕâvF̂ ,â = ϕâ in F̂ , vanish in faces 6= F̂

ΦF̂ ,ˆ̀,n = ϕ
ˆ̀,nvF̂ ,̂l = ϕ

ˆ̀,n in F̂ , vanish in faces 6= F̂

ΦF̂ ,n1,n2 = ϕF̂ ,n1,n2vF̂ ,⊥ = ϕF̂ ,n1,n2 in F̂ , vanish in faces 6= F̂

Internal functions Normal components

ΦK̂ ,ˆ̀,n = ϕ
ˆ̀,nvF̂ ,> vanish in all faces

ΦK̂ ,F̂ ,n1,n2

(i) = ϕF̂ ,n1,n2vF̂ ,>
(i) vanish in all faces

ΦF̂ ,n1,n2,n3

(j) = ϕF̂ ,n1,n2,n3vK̂
(j) vanish in all faces
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Assembly of conforming spaces VΓ ⊂ H(div ,Ω)

BK
k hierarchic basis in H(div ,K ) mapped from BK̂

k

Φ = Fdiv Φ̂ = F[
1

det J
JΦ̂] = F[ϕ̂

1

det J
Jv] = ϕb

b = F
[

1

det J
Jv

]
= Fdiv v

VΓ space of piecewise functions: q|K := qK ∈ span BK
k

Normal components on interfaces: only contributions of face functions

qK · nK |F =

 ∑
a∈VF

αF,aϕ
abF,a · nK +

∑
`∈EF

∑
n

βF,`,nϕ
`,nbF,`,n · nK

+
∑

n1,n2

γF,n1,n2
ϕ

F,n1,n2 bF,n1,n2 · nK

∣∣∣∣∣∣
F

.

Goal: continuity of normal components: is a consequence of

continuity of scalar shape functions
continuity of normal components of b
multiplying coefficients on each side of F sum zero
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Application to the mixed formulation: static condensation

Primary variables

σe → face bases;
u0 → one scalar value for u in each element;

Secondary variables

σi → internal bases;
ui → the remaining DoF of u


Aii BT

ii BT
ie Aie

Bii 0 0 Bie

Bie 0 0 Bee

Aei BT
ie BT

ee Aee




σi

ui

u0

σe

 =


0
−fih

−f0h

0


Secondary DoF ( σi and ui ) are condensed, to get a
condensed system in terms of primary DoF (σe and u0)

For a given geometry, condensed systems have the same dimension
for all space configurations
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Test problem: using uniform 3D curved elements

Computational domain: Ω = {x ∈ R3; 1
4 ≤ ||x|| ≤ 1}

Exact solution:

u =
π

2
− tan−1

(
5

(√
(x − 5

4
)2 + (y +

1

4
)2 + (z +

1

4
)2 − π

3

))

Initial hexahedral mesh

The faces of a cube are projected onto the internal and
external spherical boundaries.
These curved quadrilaterals are blended by transfinite
interpolation (Coons, 1967) to form 6 hexahedra

Initial tetrahedral mesh

Prismatic elements with triangular faces over the internal and
external spherical boundaries (by quadratic interpolation).
Each curved prism is subdivided into 3 curved tetrahedra.

Direct frontal linear solver.
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Curved hexahedral elements)
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Error versus h (hexahedral elements)
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Error versus h (tetrahedral elements)
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Effect of static condensation
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Application: flow around a horizontal well

BC: u = 1 on the outer elliptical belt, u = 0 on the well, no flow on the
top and bottom flat faces

P∗kPk space configuration

MacBook: 4 processors and 8GB of memory.

Matrix computation and assembly: Pthreads + direct skyline linear solver.
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Initial mesh (thanks to Simworx)

19 curved elements: 11 hexahedra + 8 prisms.

Trasfinite hexahedra matching the cilindrical well.
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Refinement procedure l

Directional mesh refinement towards the well, and transversal
refinement along the well.

A basic kmin is applied all over the mesh.

Fix kmax > k for the elements touching the toe and heel circular
ring; for the neighboring elements assign one degree lower.

Repeat the procedure until reaching kmin.
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Amount of flux per unit well length

‘
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Effects of static condensation and parallelization
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Current research on related topics

Mixed finite element-finite volume method for two-phase flows
in heterogeneous media (O. Durán PhD Thesis)

Approximation spaces in H(div ,Ω) for pyramids

Multi scale hybrid dual methods combined with high order
H(div)-conforming approximations on the macro-elements for
preconditioning.
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