New approximation space configuration for the mixed finite element method for elliptic problems based on curved 3D meshes

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

*Universidade Estadual de Campinas, SP, Brazil **University of Illinois, Urbana-Champaign, USA

Advanced numerical methods: recent developments, analysis, and applications 3-7 October, 2016, IHP, Paris

• Poisson problem written in the form:

$$\nabla .\boldsymbol{\sigma} = \boldsymbol{f} \quad \text{in} \quad \Omega,$$
$$\boldsymbol{\sigma} = -\nabla \boldsymbol{u}$$
$$\boldsymbol{u} = \boldsymbol{u}_{D} \quad \text{in} \quad \partial \Omega_{D},$$
$$\boldsymbol{\sigma} \cdot \boldsymbol{\eta} = \mathbf{q}_{N} \quad \text{in} \quad \partial \Omega_{N}$$

- Required functional spaces
 - ullet For the variable σ

$$H(\mathit{div},\Omega) = \left\{ \mathbf{q} \in \left[L^2(\Omega)
ight]^d ;
abla . \mathbf{q} \in L^2(\Omega)
ight\}$$

• • = • • = •

• For the variable u: $L^2(\Omega)$

Discrete variational mixed formulation

- **(**) $\Gamma = \{K\}$ partition of the computational domain Ω
- Inite dimensional approximation subspaces
 - V^Γ ⊂ H(div, Ω) approximation space for σ continuous normal components over element interfaces
 U^Γ ⊂ L²(Ω) approximation space for u no continuity constraint

stability

 $\textbf{ o find } (\boldsymbol{\sigma}, \boldsymbol{u}) \in \left(\boldsymbol{\mathsf{V}}^{\mathsf{\Gamma}} \times \boldsymbol{\mathit{U}}^{\mathsf{\Gamma}} \right) \text{ such that } \boldsymbol{\sigma} \cdot \boldsymbol{\eta}|_{\partial \Omega_N} = \boldsymbol{\mathsf{q}}_N \text{ and }$

$$egin{aligned} m{a}(m{\sigma}, \ m{q}) - b(m{q}, u) &= -\int_{\partial\Omega} u_D m{q} \cdot m{\eta} \ \ orall m{q} \in m{V}_0^{\Gamma} \ b(m{\sigma}, arphi) &= \int_\Omega f \ arphi \ \ d\Omega \ \ orall arphi \in U^{\Gamma} \end{aligned}$$

- Since Raviart and Thomas 1977
 - a variety of $\mathbf{V}^{\Gamma} \times U^{\Gamma}$ stable configurations have been proposed in the literature (Brezzi,Fortin 1991)
- Most FE codes for real applications are based on H¹-conforming schemes
 - Implementations of mixed formulations are much more complex
- Complications increase for:
 - higher order finite element schemes
 - non-uniform order approximation on unstructured meshes
 - curved elements
 - variable topologies

何 ト イヨ ト イヨ ト

Motivation

- Recent efforts on the development and/or implementation of convenient sets of basis functions for higher order H(div)-conforming approximations in 3D
 - Arnold, Falk, Winther, Comput. Methods Appl. Mech. Engrg., 2009 (Berstein-Bézier, simplices)
 - Ainsworth, Andriamaro, Davydov, SIAM J. Sci. Comput. 2011 (Berstein-Bézier, simplices)
 - Fuentes, Keith, Demkowicz, Nagaraj, Mathematics and Computers in Simulation 2015 (hierarchic, all geometries)
 - Castro, Devloo, Farias, G, Siqueira, Durán, Comput. Meth. Appl. Mech. 2016 (hierachic, affine, all geometries excepting pyramides)
 - Castro, Devloo, Farias, G, Durán, Jr. Comp. Appl. Math 2016. (hierachic, curved 2D + surfaces)

• Systematic construction of hierarchic high order shape functions for approximation spaces

$$\mathbf{V}^{\Gamma} \subset \textit{Hdiv}(\Omega)$$

based on curved tetrahedra, hexahedra and prisms

- Different stable space configurations $\mathbf{V}^\Gamma \times U^\Gamma$ with optimal h-convergence rates
 - configuration with enhanced accuracy in *u* without increasing DoF of the static condensed system
- Effect of condensation + parallelization on CPU time using an *hp*-adapted curved mesh

伺 ト イ ヨ ト イ ヨ ト

Construction of approximation spaces $\mathbf{V}^{\Gamma} \times U^{\Gamma}$: guidelines I

- \hat{K} : reference master element (tetrahedra, hexahedra or prism)
- $\mathbf{x}: \hat{K} \to K$: geometric mapping (diffeomorphism)
- F: φ̂ → φ, isomorphism mapping scalar functions φ̂ of H¹(κ̂) to scalar functions φ of H¹(κ) (induced by x)

$$arphi(\mathbf{p}) = \hat{arphi}(\mathbf{x}^{-1}(\mathbf{p}))$$

• \mathbb{F}^{div} : $\hat{\mathbf{q}} \to \mathbf{q}$ contravariant Piola transformation: isomorphism mapping vector-valued functions $\hat{\mathbf{q}} \in H(div, \hat{K})$ to vector-valued functions $\mathbf{q} \in H(div, K)$

$$\mathbf{q} = \mathbb{F}\left[rac{1}{det \mathbf{J}} \mathbf{J}(\hat{\mathbf{q}})
ight]$$

where $\mathbf{J} = \nabla \mathbf{x}$ is the Jacobean of the geometric mapping.

伺 ト イラ ト イ ラ ト 二 ラ

Construction of approximation spaces $\mathbf{V}^{\Gamma} \times U^{\Gamma}$: guidelines II

- Polynomial vector-valued approximation spaces
 - $\mathbf{M}(\hat{K}) \subset \mathbf{H}(div, \hat{K})$
 - internal functions: vanishing normal components on $\partial \hat{K}$
 - face functions: otherwise

•
$$D(\hat{K}) \subset L^2(\hat{K})$$

• Satability: De Rham property

$$abla \cdot \mathbf{M}(\hat{K}) = D(\hat{K})$$

• Global approximation spaces

$$\begin{split} \mathbf{V}^{\Gamma} &= \left\{ \mathbf{q} \in \mathbf{H}(div, \Omega); \ \mathbf{q}|_{\mathcal{K}} = \mathbb{F}^{div} \hat{\mathbf{q}}, \ \hat{\mathbf{q}} \in \mathbf{M}(\hat{K}) \right\} \\ U^{\Gamma} &= \left\{ \varphi \in L^{2}(\Omega); \ \varphi|_{\mathcal{K}} = \mathbb{F} \hat{\varphi}, \ \hat{\varphi} \in D(\hat{K}) \right\} \end{split}$$

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

New approximation space configuration for the mixed finite eleme

直 ト イヨ ト イヨ ト

Different types of space configurations

$M(\hat{K}) imes D(\hat{K})\subset \mathit{Hdiv}(\hat{K}) imes L^2(\hat{K})$				
$ abla. \mathbf{M}(\hat{\mathcal{K}}) = D(\hat{\mathcal{K}})$				
$\mathbf{P}_k P_{k-1}$	$D(\hat{K}) = \mathcal{P}_{k-1}$			
(BDM_k)	$M(\hat{K}) = [\mathcal{P}_k]^3$,			
only for tetrahedra				
$\mathbf{P}_k^* P_k$	$D(\hat{K}) = \mathcal{P}_k$			
$(BDMF_{k+1}, RT_k)$	$[\mathcal{P}_k]^3 \subsetneq M(\hat{\mathcal{K}}) \subsetneq [\mathcal{P}_{k+1}]^3$:			
	face functions in $[\mathcal{P}_k]^3$			
all geometries	internal functions in $[\mathcal{P}_{k+1}]^3$ with divergence in \mathcal{P}_k			
	$D(\hat{K}) = \mathcal{P}_{k+1}$			
$\mathbf{P}_{k}^{**} P_{k+1}$ (new)	$[\mathcal{P}_k]^3 \subsetneq M(\hat{K}) \subsetneq [\mathcal{P}_{k+2}]^3$:			
	face functions in $[\mathcal{P}_k]^3$			
all geometries	internal functions in $[\mathcal{P}_{k+2}]^3$ with divergence in \mathcal{P}_{k+1}			

Castro; Devloo; Farias; Gomes; de Siqueira; Durán. Three dimensional hierarchical mixed finite element approximations with enhanced primal variable accuracy. Computer Methods in Applied Mechanics and Engineering, 306: 479-502, 2016. (3D affine uniform meshes)

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

Accuracy

L ² - Error estimations				
	$\mathbf{P}_k P_{k-1}$	$\mathbf{P}_k^* P_k$	$\mathbf{P}_k^{**}P_{k+1}$	
	tetrahedra		all	
$ \sigma - \sigma_h $	k+1	k+1	k+1	
$ u - u_h $	k	k+1	<i>k</i> + 2	

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

New approximation space configuration for the mixed finite eleme

NeoPZ (object oriented platform for FE)

http://github.com/labmec/neopz

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

I □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ○ < ○</p>
New approximation space configuration for the mixed finite elements

Hierarchic scalar shape functions in NeoPZ

• Polynomial space \mathcal{P}_k restricted to \hat{K} :

Tetrahedron: total degree k Cube: maximum degree k in each coordinate Prism: total degree k in (ξ_0, ξ_1) , and maximum degree k in ξ_2

• Hierarchic scalar bases $\mathcal{B}_k^{\hat{K}}$ for \mathcal{P}_k :

vertex	edge	face	volume
$arphi^{\hat{a}}$	$\varphi^{\ell,\mathbf{n}}$	$\varphi^{\hat{F},n_1,n_2}$	$\varphi^{\hat{K},n_1,n_2,n_3}$

P. Devloo, C. Bravo, and E. Rylo. Systematic and generic construction of shape functions for p-adaptive meshes of multidimensional finite elements. Comput. Methods Appl. Mech. Engrg., 198:1716 – 1725, 2009.

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

Hierarchic vector-valued bases \mathbf{B}_{k}^{K} for $\mathbf{P}_{k} = [\mathcal{P}_{k}]^{3}$

• Shape functions of type

$$\hat{\mathbf{\Phi}} = \hat{\varphi} \hat{\mathbf{v}}$$

- $\mathbf{\hat{v}} \rightarrow \text{constant vector fields}$ (connected to faces or volume of \hat{K})
- $\hat{\varphi} \rightarrow \text{scalar shape functions in } \mathcal{B}_k^{\hat{K}}$
- internal shape functions:
 - vanishing normal components over all the faces of \hat{K} .
- face shape functions: otherwise

$$\begin{split} \mathbf{B}_{k}^{\hat{K}} &= \underbrace{\left\{ \Phi^{\hat{F},\hat{a}}, \ \Phi^{\hat{F},\hat{l},n}, \ \Phi^{\hat{F},n_{1},n_{2}} \right\}}_{\text{face functions}} \\ &\cup \underbrace{\left\{ \Phi^{\hat{K},\hat{l},n}, \Phi^{\hat{K},\hat{F},n_{1},n_{2}}, \ \Phi^{\hat{K},\hat{F},n_{1},n_{2}}, \ \Phi^{\hat{K},n_{1},n_{2},n_{3}}, \ \Phi^{\hat{K},n_{1},n_{2},n_$$

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

Face functions	Normal components
$\mathbf{\Phi}^{\hat{F},\hat{a}}=arphi^{\hat{a}}\mathbf{v}^{\hat{F},\hat{a}}$	$= arphi^{\hat{a}}$ in \hat{F} , vanish in faces $ eq \hat{F}$
$\mathbf{\Phi}^{\hat{F},\hat{\ell},n}=\varphi^{\hat{\ell},n}\mathbf{v}^{\hat{F},\hat{l}}$	$\hat{\varphi}^{\hat{\ell},n}$ in \hat{F} , vanish in faces $ eq \hat{F}$
$\mathbf{\Phi}^{\hat{F},n_1,n_2} = \varphi^{\hat{F},n_1,n_2} \mathbf{v}^{\hat{F},\perp}$	$\hat{F} = \varphi^{\hat{F}, n_1, n_2}$ in \hat{F} , vanish in faces $\neq \hat{F}$
Internal functions	Normal components
$\mathbf{\Phi}^{\hat{K},\hat{\ell},n}=\varphi^{\hat{\ell},n}\mathbf{v}^{\hat{F},\top}$	vanish in all faces
$\mathbf{\Phi}_{(i)}^{\hat{K},\hat{F},n_1,n_2} = \varphi^{\hat{F},n_1,n_2} \mathbf{v}_{(i)}^{\hat{F},\top}$	vanish in all faces
$\mathbf{\Phi}_{(j)}^{\hat{F},n_1,n_2,n_3} = \varphi^{\hat{F},n_1,n_2,n_3} \mathbf{v}_{(j)}^{\hat{K}}$	vanish in all faces

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**, New approximation space configuration for the mixed finite elements

★ 3 → < 3</p>

Assembly of conforming spaces $\mathbf{V}^{\Gamma} \subset \mathbf{H}(div, \Omega)$

• \mathbf{B}_{k}^{K} hierarchic basis in H(div, K) mapped from $\mathbf{B}_{k}^{\hat{K}}$

$$\begin{split} \mathbf{\Phi} &= \mathbb{F}^{div} \mathbf{\hat{\Phi}} = \mathbb{F}[\frac{1}{det} \operatorname{\mathsf{J}} \operatorname{\mathsf{J}} \mathbf{\hat{\Phi}}] = \mathbb{F}[\hat{\varphi} \frac{1}{det} \operatorname{\mathsf{J}} \operatorname{\mathsf{J}} \mathbf{v}] = \varphi \mathbf{b} \\ \mathbf{b} &= \mathbb{F}\left[\frac{1}{det} \operatorname{\mathsf{J}} \operatorname{\mathsf{J}} \mathbf{v}\right] = \mathbb{F}^{div} \mathbf{v} \end{split}$$

- \mathbf{V}^{Γ} space of piecewise functions: $\mathbf{q}|_{\mathcal{K}} := \mathbf{q}^{\mathcal{K}} \in span \mathbf{B}_{k}^{\mathcal{K}}$
- Normal components on interfaces: only contributions of face functions

$$\mathbf{q}^{K} \cdot \mathbf{n}^{K}|_{F} = \left[\sum_{a \in \mathcal{V}_{F}} \alpha_{F,a} \varphi^{a} \mathbf{b}^{F,a} \cdot \mathbf{n}^{K} + \sum_{\ell \in \mathcal{E}_{F}} \sum_{n} \beta_{F,\ell,n} \varphi^{\ell,n} \mathbf{b}^{F,\ell,n} \cdot \mathbf{n}^{K} \right] + \sum_{n_{1},n_{2}} \gamma_{F,n_{1},n_{2}} \varphi^{F,n_{1},n_{2}} \cdot \mathbf{n}^{K} \right]_{F}.$$

- Goal: continuity of normal components: is a consequence of
 - continuity of scalar shape functions
 - $\bullet\,$ continuity of normal components of $b\,$
 - multiplying coefficients on each side of F sum_zero

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

Application to the mixed formulation: static condensation

Primary variables

- $\sigma_e
 ightarrow$ face bases;
- $u_0 \rightarrow$ one scalar value for u in each element;

Secondary variables

- $\sigma_i
 ightarrow$ internal bases;
- $u_i \rightarrow$ the remaining DoF of u

$$\begin{pmatrix} A_{ii} & B_{ii}^T & B_{ie}^T & A_{ie} \\ B_{ii} & 0 & 0 & B_{ie} \\ \hline B_{ie} & 0 & 0 & B_{ee} \\ A_{ei} & B_{ie}^T & B_{ee}^T & A_{ee} \end{pmatrix} \begin{pmatrix} \sigma_i \\ u_i \\ u_0 \\ \sigma_e \end{pmatrix} = \begin{pmatrix} 0 \\ -f_{ih} \\ -f_{0h} \\ 0 \end{pmatrix}$$

Secondary DoF (σ_i and u_i) are condensed, to get a condensed system in terms of primary DoF (σ_e and u₀)

For a given geometry, condensed systems have the same dimension for all space configurations

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

Test problem: using uniform 3D curved elements

- Computational domain: $\Omega = \{ \mathbf{x} \in \mathbb{R}^3; \frac{1}{4} \le ||\mathbf{x}|| \le 1 \}$
- Exact solution:

$$u = \frac{\pi}{2} - \tan^{-1}\left(5\left(\sqrt{(x - \frac{5}{4})^2 + (y + \frac{1}{4})^2 + (z + \frac{1}{4})^2} - \frac{\pi}{3}\right)\right)$$

- Initial hexahedral mesh
 - The faces of a cube are projected onto the internal and external spherical boundaries.
 - These curved quadrilaterals are *blended* by *transfinite interpolation* (Coons, 1967) to form 6 hexahedra
- Initial tetrahedral mesh
 - Prismatic elements with triangular faces over the internal and external spherical boundaries (by quadratic interpolation).

伺 ト イ ヨ ト イ ヨ ト

- Each curved prism is subdivided into 3 curved tetrahedra.
- Direct frontal linear solver.

Curved hexahedral elements)

Error versus *h* (hexahedral elements)

 $MF^* = \mathbf{P}_k^* P_k$ (continuous) $MF^{**} = \mathbf{P}_k^{**} P_{k+1}$ (dashed)

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

Error versus h (tetrahedral elements)

$$MF^* = \mathbf{P}_k^* P_k$$
 (continuous) $MF^{**} = \mathbf{P}_k^{**} P_{k+1}$ (dashed)

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

Effect of static condensation

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

Application: flow around a horizontal well

- **BC**: *u* = 1 on the outer elliptical belt, *u* = 0 on the well, no flow on the top and bottom flat faces
- $\mathbf{P}_k^* P_k$ space configuration
- MacBook: 4 processors and 8GB of memory.
- Matrix computation and assembly: Pthreads + direct skyline linear solver.

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

Initial mesh (thanks to Simworx)

- 19 curved elements: 11 hexahedra + 8 prisms.
- Trasfinite hexahedra matching the cilindrical well.

Figure 3: Problem 2: initial mesh (left side) and its details (right side).

Figure 4: Problem 2: transfinite hexahedron matching the circular well.

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

Refinement procedure

- Directional mesh refinement towards the well, and transversal refinement along the well.
- A basic k_{min} is applied all over the mesh.
- Fix $k_{max} > k$ for the elements touching the toe and heel circular ring; for the neighboring elements assign one degree lower.
- Repeat the procedure until reaching k_{min} .

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

New approximation space configuration for the mixed finite eleme

4 3 6 4 3 6

Amount of flux per unit well length

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

Effects of static condensation and parallelization

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

Current research on related topics

- Mixed finite element-finite volume method for two-phase flows in heterogeneous media (O. Durán PhD Thesis)
- Approximation spaces in $\mathbf{H}(div, \Omega)$ for pyramids
- Multi scale hybrid dual methods combined with high order H(*div*)-conforming approximations on the macro-elements for preconditioning.

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**,

New approximation space configuration for the mixed finite eleme

伺下 イヨト イヨト

Is this of your interest?

Minisymposium RECENTS RESULTS ON HYBRID DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS Congress on Numerical Methods in Engineering, CMN 2017 July 3-5, 2017 Valencia, Spain

DEADLINES

Abstract submission (250 words): November 30th, 2017 Acceptance notification: January 15th, 2017 Full paper submission (optional): March 31th, 2017 http://congress.cimne.com/cmn2017/eng/default.asp

P.R.B. Devloo*, S.M Gomes*, O Triana*, and N. Shauer**, New approximation space configuration for the mixed finite elements

.