Recent progress in the development of parameter free continuous finite element methods for compressible fluids

R. Abgrall

I-MATH Universität Zürich

Institut Henri Poincaré, October 6th, 2016

1 Introduction and motivation

Warming up

8 Finite element without mass matrix

Ø Numerical applications

G Conclusion, perspectives

Overview

1 Introduction and motivation

O Warming up

8 Finite element without mass matrix

Ø Numerical applications

G Conclusion, perspectives

What is the problem ?

Integration of

$$\frac{\partial U}{\partial t} + \operatorname{div} \mathbf{F}(U) = 0$$

or

$$\frac{\partial U}{\partial t} + \operatorname{div} \mathbf{F}(U) = \operatorname{div} \mathbf{F}_{v}(U, \nabla U)$$

with initial and boundary condition on $\Omega \subset \mathbb{R}^d$.

Target and problems

- Target: Euler, Navier Stokes, accoustics, waves, etc
- Complex domains: use of unstructured (possibly hybrid) meshes
- look for high order in space (and time) methods: integration over long periods (i.e. many time steps). Need to minimize dissipation and dispersion.
- Issue of computational cost.

What is the problem ?

Integration of

$$\frac{\partial U}{\partial t} + \operatorname{div} \mathbf{F}(U) = 0$$

or

$$\frac{\partial U}{\partial t} + \operatorname{div} \mathbf{F}(U) = \operatorname{div} \mathbf{F}_{v}(U, \nabla U)$$

with initial and boundary condition on $\Omega \subset \mathbb{R}^d$.

Target and problems

- Target: Euler, Navier Stokes, accoustics, waves, etc
- Complex domains: use of unstructured (possibly hybrid) meshes
- look for high order in space (and time) methods: integration over long periods (i.e. many time steps). Need to minimize dissipation and dispersion.
- Issue of computational cost.

Set up

- Unstructured meshes:
- Numerical method : compactness of the numerical stencil for ease of implementation. Finite element like methods seem to be method of choice
- Lots of efforts in approximating div *F* terms: reuse this with as little as possible modifications.

How-to and problems

• Classical framework: one starts by a variational formulation, choose test and trial space, develop. This leads to form:

$$M\frac{dU}{dt} + F = 0 \longrightarrow \frac{dU}{dt} = -M^{-1}F$$

and use of ODE solvers

- Problems:
 - 1 invert the mass matrix (DG), write the mass matrix,
 - 2 is the mass matrix invertible ?

These questions are not as odd as expected

Set up

- Unstructured meshes:
- Numerical method : compactness of the numerical stencil for ease of implementation. Finite element like methods seem to be method of choice
- Lots of efforts in approximating div *F* terms: reuse this with as little as possible modifications.

How-to and problems

• Classical framework: one starts by a variational formulation, choose test and trial space, develop. This leads to form:

$$M rac{dU}{dt} + F = 0 \longrightarrow rac{dU}{dt} = -M^{-1}F$$

and use of ODE solvers

- Problems:
 - 1 invert the mass matrix (DG), write the mass matrix,
 - 2 is the mass matrix invertible ?

These questions are not as odd as expected

Set up

- Unstructured meshes:
- Numerical method : compactness of the numerical stencil for ease of implementation. Finite element like methods seem to be method of choice
- Lots of efforts in approximating div *F* terms: reuse this with as little as possible modifications.

How-to and problems

• Classical framework: one starts by a variational formulation, choose test and trial space, develop. This leads to form:

$$M rac{dU}{dt} + F = 0 \longrightarrow rac{dU}{dt} = -M^{-1}F$$

and use of ODE solvers

- Problems:
 - 1 invert the mass matrix (DG), write the mass matrix,
 - 2 is the mass matrix invertible ?

These questions are not as odd as expected

• Discontinuous Galerkin methods: OK from this point of view (invertible and block diagonal)

but DG methods have a large number of DOF, and the stabilization of discontinuities is not fully understood

• Continuous Finite Element: OK from this point of view, but the mass matrix is only sparse

smaller number of DOF, stabilization of discontinuities : artificial viscosity which is parameter dependent

• Residual distribution methods: same number of DOFs as continuous FEM, good stabilization of discontinuities

 Discontinuous Galerkin methods: OK from this point of view (invertible and block diagonal)

but DG methods have a large number of DOF, and the stabilization of discontinuities is not fully understood

 Continuous Finite Element: OK from this point of view, but the mass matrix is only sparse

smaller number of DOF, stabilization of discontinuities : artificial viscosity which is parameter dependent

• Residual distribution methods: same number of DOFs as continuous FEM, good stabilization of discontinuities

 Discontinuous Galerkin methods: OK from this point of view (invertible and block diagonal)

but DG methods have a large number of DOF, and the stabilization of discontinuities is not fully understood

 Continuous Finite Element: OK from this point of view, but the mass matrix is only sparse smaller number of DOF, stabilization of discontinuities : artificial viscosity which

is parameter dependent

• Residual distribution methods: same number of DOFs as continuous FEM, good stabilization of discontinuities

• Discontinuous Galerkin methods: OK from this point of view (invertible and block diagonal)

but DG methods have a large number of DOF, and the stabilization of discontinuities is not fully understood

 Continuous Finite Element: OK from this point of view, but the mass matrix is only sparse smaller number of DOF, stabilization of discontinuities : artificial viscosity which

is parameter dependent

• Residual distribution methods: same number of DOFs as continuous FEM, good stabilization of discontinuities

Residual distribution schemes

RAE2822 airfoil, turbulent, M=0.734, Re=6.5 10^6 , AoA=2.79°, third order accurate

Mach

References:

Abgrall, Ricchiuto, de Santis, SIAM J. Scientific Computing, 2014, vol 36(3), pp A955-A983

R. Abgrall and D. de Santis, Journal of Computationnal Physics, 2015, vol 283, pp 329-359.

R. Abgrall

An example, div $(\mathbf{a} \ u) = 0$, u given on inflow boundary of Ω

- conformal T_h triangulation of Ω. Take P¹ element, DOF (σ) are vertices of triangles.
- Scheme:

$$\begin{cases} \text{ for } \sigma \in \Omega \quad \sum_{K \ni \sigma} \Phi_{\sigma}^{K}(u^{h}) = 0 \\ u_{\sigma}^{h} \qquad \text{ given for } \sigma \text{ inflow boundary} \end{cases}$$

•
$$\Phi_{\sigma}^{K}(u^{h}) = \beta_{\sigma}^{K} \int_{K} \operatorname{div} (\mathbf{a}u^{h}) d\mathbf{x}, \{\beta_{\sigma}^{K}\}$$
 sum to unity

n the \mathbb{P}^1 case:

• SUPG:

$$\beta_{\sigma}^{K} = \frac{1}{3} + h_{K}\tau \mathbf{a} \cdot \nabla \varphi_{\sigma}$$
$$\beta^{K} = \beta^{K}(u^{h})$$

An example, div $(\mathbf{a} \ u) = 0$, u given on inflow boundary of Ω

- conformal T_h triangulation of Ω. Take P¹ element, DOF (σ) are vertices of triangles.
- Scheme:

$$\left\{ \begin{array}{ll} \text{for } \sigma\in\Omega & \sum_{K\ni\sigma}\Phi_{\sigma}^{K}(u^{h})=0\\ \\ u_{\sigma}^{h} & \text{given for }\sigma \text{ inflow boundary} \end{array} \right.$$

•
$$\Phi_{\sigma}^{K}(u^{h}) = \beta_{\sigma}^{K} \int_{K} \operatorname{div} (\mathbf{a}u^{h}) d\mathbf{x}, \{\beta_{\sigma}^{K}\}$$
 sum to unity

In the \mathbb{P}^1 case:

Non linear RD

SUPG:

$$eta^K_\sigma = rac{1}{3} + h_K au \mathbf{a} \cdot
abla arphi_\sigma$$
 $eta^K_\sigma = eta^K_\sigma(u^h)$

An example, div $(\mathbf{a} \ u) = 0$, u given on inflow boundary of Ω

Possible variational formulations

Write $\beta_{\sigma}^{K} = \frac{1}{3} + \gamma_{\sigma}^{K}$, $\sum_{\sigma \in K} \gamma_{\sigma}^{K} = 0$. $[\gamma_{\sigma}^{K} = 0 \text{ or } h_{K} \tau \mathbf{a} \cdot \nabla \varphi_{\sigma}, \text{ or...}]$ On can write:

$$\beta_{\sigma}^{K} \int_{K} \operatorname{div} (\mathbf{a}u) d\mathbf{x} = \int_{K} \left(\varphi_{\sigma} + \gamma_{\sigma}^{K} \right) \operatorname{div} (\mathbf{a} \ u) \qquad \int_{K} \varphi_{\sigma} d\mathbf{x} = \frac{|K|}{3}$$
$$= \int_{K} \left(\varphi_{\sigma} + \gamma_{\sigma}^{K} b_{K} \right) \operatorname{div} (\mathbf{a}u) d\mathbf{x}$$

with b_K a bubble function of mass unity.

So the scheme can be interpreted as find $u^h \in V^h$ such as for all

- Petrov Galerkin: $v_h \in \text{span} \{\varphi_\sigma + \gamma_\sigma^\kappa, \forall \sigma \text{ DOF}\}$
- With bubble functions: or $v_h \in \text{span} \{\varphi_\sigma + \gamma_\sigma^K b_K, \forall \sigma \text{ DOF and K}\}$

$$a(u,v) = \sum_{K} \int_{K}^{v} v(\operatorname{div}(au)d\mathbf{x}.$$

Note: β_{σ}^{K} may depend on u^{h} .

An example, div $(\mathbf{a} \ u) = 0$, u given on inflow boundary of Ω

Possible variational formulations

Write $\beta_{\sigma}^{K} = \frac{1}{3} + \gamma_{\sigma}^{K}$, $\sum_{\sigma \in K} \gamma_{\sigma}^{K} = 0$. $[\gamma_{\sigma}^{K} = 0 \text{ or } h_{K} \tau \mathbf{a} \cdot \nabla \varphi_{\sigma}, \text{ or...}]$ On can write:

$$\beta_{\sigma}^{K} \int_{K} \operatorname{div} (\mathbf{a}u) d\mathbf{x} = \int_{K} \left(\varphi_{\sigma} + \gamma_{\sigma}^{K} \right) \operatorname{div} (\mathbf{a} \ u) \\ = \int_{K} \left(\varphi_{\sigma} + \gamma_{\sigma}^{K} b_{K} \right) \operatorname{div} (\mathbf{a}u) d\mathbf{x} \qquad \int_{K} b_{K} d\mathbf{x} = 1$$

with b_K a bubble function of mass unity.

So the scheme can be interpreted as find $u^h \in V^h$ such as for all

- Petrov Galerkin: $v_h \in \text{span} \{\varphi_\sigma + \gamma_\sigma^\kappa, \forall \sigma \text{ DOF}\}$
- With bubble functions: or $v_h \in \text{span} \{\varphi_\sigma + \gamma_\sigma^K b_K, \forall \sigma \text{ DOF and K}\}$

$$a(u,v) = \sum_{K} \int_{K}^{v} v (\operatorname{div} (au) d\mathbf{x}.$$

Note: β_{σ}^{K} may depend on u^{h} .

An example, div $(\mathbf{a} \ u) = 0$, u given on inflow boundary of Ω

Possible variational formulations

Write $\beta_{\sigma}^{K} = \frac{1}{3} + \gamma_{\sigma}^{K}$, $\sum_{\sigma \in K} \gamma_{\sigma}^{K} = 0$. $[\gamma_{\sigma}^{K} = 0 \text{ or } h_{K} \tau \mathbf{a} \cdot \nabla \varphi_{\sigma}, \text{ or...}]$ On can write:

$$\begin{split} \beta_{\sigma}^{K} \int_{K} \operatorname{div} (\mathbf{a}u) d\mathbf{x} &= \int_{K} \left(\varphi_{\sigma} + \gamma_{\sigma}^{K} \right) \operatorname{div} (\mathbf{a} \ u) \\ &= \int_{K} \left(\varphi_{\sigma} + \gamma_{\sigma}^{K} b_{K} \right) \operatorname{div} (\mathbf{a}u) d\mathbf{x} \end{split}$$

with b_K a bubble function of mass unity. So the scheme can be interpreted as find $u^h \in V^h$ such as for all

- Petrov Galerkin: $v_h \in \text{ span } \{\varphi_\sigma + \gamma_\sigma^K, \forall \sigma \text{ DOF}\}$
- With bubble functions: or $v_h \in \text{span} \{\varphi_\sigma + \gamma_\sigma^K b_K, \forall \sigma \text{ DOF and } K\}$,

$$a(u,v) = \sum_{K} \int_{K} v (\operatorname{div} (au) dx.$$

Note: β_{σ}^{K} may depend on u^{h} ...

Partial conclusion

- There is a real need to develop finite element (like) methods for unsteady problem where there is no need of a mass matrix inversion.
- How to do this? this is the purpose of this talk.

Overview

Introduction and motivation

@ Warming up

8 Finite element without mass matrix

Ø Numerical applications

G Conclusion, perspectives

Warming up: the \mathbb{P}^1 case, second order in time

$$\frac{\partial u}{\partial t} + \mathbf{a} \nabla u = \mathbf{0} + \text{ initial and boundary conditions}$$

Take one's favorite FEM for the operator $\mathbf{a}\nabla u$:

$$\forall \sigma, \sum_{K} \int_{K} \psi_{\sigma} \, \mathbf{a} \nabla u^{h} = \mathbf{0}$$

where

$$\psi_{\sigma} = \varphi_{\sigma}, \text{ or } \varphi_{\sigma} + h_k \tau \mathbf{a} \cdot \nabla \varphi_{\sigma}, \text{ or } \varphi_{\sigma} + \gamma_{\sigma}^K, \text{or...}$$

In all cases:

•
$$\psi_{\sigma} = \varphi_{\sigma} + \theta_{\sigma}^{K}$$
 and

•
$$\sum_{\sigma \in K} \theta_{\sigma}^{K} = 0$$
 and

•
$$|\theta_{\sigma}^{K}| \leq C$$

Warming up: the \mathbb{P}^1 case, second order in time

$$\frac{\partial u}{\partial t} + \mathbf{a} \nabla u = 0 \qquad + \text{ initial and boundary conditions}$$

Take one's favorite FEM for the operator $\mathbf{a}\nabla u$:

$$\forall \sigma, \sum_{K} \int_{K} \psi_{\sigma} \, \mathbf{a} \nabla u^{h} = \mathbf{0}$$

where

$$\psi_{\sigma} = \varphi_{\sigma}, \text{ or } \varphi_{\sigma} + h_k \tau \mathbf{a} \cdot \nabla \varphi_{\sigma}, \text{ or } \varphi_{\sigma} + \gamma_{\sigma}^K, \text{or...}$$

In all cases:

•
$$\psi_{\sigma} = \varphi_{\sigma} + \theta_{\sigma}^{K}$$
 and

•
$$\sum_{\sigma \in K} \theta_{\sigma}^{K} = 0$$
 and

•
$$|\theta_{\sigma}^{K}| \leq C$$

Warming up:

Ricchiuto & Abgrall, Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case, JCP 2010, v 229, pp 5653-5691 Take RK2: $\frac{du}{dt} = L(u)$: $u^{(0)} = u^n$ $\frac{u^{(1)}-u^{(0)}}{\Delta t} = L(u^{(0)})$ $\frac{u^{(2)}-u^{(0)}}{\Delta t} = \frac{1}{2}(L(u^{(0)}) + L(u^{(1)}))$ $u^{n+1} = u^{(2)}$ Generic step:

$$\frac{u^{(k+1)} - u^{(0)}}{\Delta t} = \mathcal{L}(u^{(k)}, u^{(0)}).$$

Warming up:

Ricchiuto & Abgrall, Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case, JCP 2010, v 229, pp 5653-5691 Take RK2: $\frac{du}{dt} = L(u)$: $u^{(0)} = u^n$ $\frac{u^{(1)}-u^{(0)}}{\Delta t} = L(u^{(0)})$ $\frac{u^{(2)}-u^{(0)}}{\Delta t} = \frac{1}{2}(L(u^{(0)}) + L(u^{(1)}))$ $u^{n+1} = u^{(2)}$ Generic step:

$$\frac{u^{(k+1)}-u^{(0)}}{\Delta t}=\mathcal{L}(u^{(k)},u^{(0)}).$$

$$\frac{u^{(k+1)}-u^{(0)}}{\Delta t}=\mathcal{L}(u^{(k)},u^{(0)}).$$

apply the variational form:

$$\sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) dx$$

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme $[\psi_{\sigma} = \varphi_{\sigma} + \theta_{\sigma}]$ Goal: we want to keep the space approximation because we are happy with it. $\int_{K} \psi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) dx \int_{K} \varphi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) dx$ $+ \int_{K} \theta_{\sigma} \left(- \mathcal{L}(u^{(k)}, u^{(0)}) \right) dx$ Idea: Choose $\frac{u^{(k+1)} - u^{(0)}}{\Delta t}$ so that we do not spoil the accuracy.

$$\frac{u^{(k+1)}-u^{(0)}}{\Delta t}=\mathcal{L}(u^{(k)},u^{(0)}).$$

apply the variational form:

$$\sum_{K
i \sigma} \int_{K} \psi_{\sigma} \left(rac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)})
ight) d\mathbf{x}$$

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme $[\psi_{\sigma} = \varphi_{\sigma} + \theta_{\sigma}]$ Goal: we want to keep the space approximation because we are happy with it. $\int_{K} \psi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) dx \int_{K} \varphi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) dx$ $+ \int_{K} \theta_{\sigma} \left(- \mathcal{L}(u^{(k)}, u^{(0)}) \right) dx$ Idea: Choose $\frac{u^{(k+1)} - u^{(0)}}{\Delta t}$ so that we do not spoil the accuracy.

$$\frac{u^{(k+1)}-u^{(0)}}{\Delta t}=\mathcal{L}(u^{(k)},u^{(0)}).$$

apply the variational form:

$$\sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x}$$

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme
$$[\psi_{\sigma} = \varphi_{\sigma} + \theta_{\sigma}]$$

Goal: we want to keep the space approximation because we are happy with it.

$$\int_{K} \psi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) dx \int_{K} \varphi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) dx$$

$$+ \int_{K} \theta_{\sigma} \left(-\mathcal{L}(u^{(k)}, u^{(0)}) \right) dx$$
Idea: Choose $\frac{u^{(k+1)} - u^{(0)}}{\Delta t}$ so that we do not spoil the accuracy.

$$\frac{u^{(k+1)}-u^{(0)}}{\Delta t}=\mathcal{L}(u^{(k)},u^{(0)}).$$

apply the variational form:

$$\sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \bigg(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \bigg) d\mathbf{x}$$

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme $[\psi_{\sigma} = \varphi_{\sigma} + \theta_{\sigma}]$ Goal: we want to keep the space approximation because we are happy with it. $\int_{K} \psi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x} = \int_{K} \varphi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x}$ $+ \int_{K} \theta_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x}$ Idea: Choose $\frac{u^{(k+1)} - u^{(0)}}{\Delta t}$ so that we do not spoil the accuracy.

$$\frac{u^{(k+1)}-u^{(0)}}{\Delta t}=\mathcal{L}(u^{(k)},u^{(0)}).$$

apply the variational form:

$$\sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \bigg(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \bigg) d\mathbf{x}$$

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme $[\psi_{\sigma} = \varphi_{\sigma} + \theta_{\sigma}]$ Goal: we want to keep the space approximation because we are happy with it. $\int_{K} \psi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x} \approx \int_{K} \varphi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x}$ $+ \int_{K} \theta_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x}$ Idea: Choose $\frac{u^{(k+1)} - u^{(0)}}{\Delta t}$ so that we do not spoil the accuracy.

$$\frac{u^{(k+1)}-u^{(0)}}{\Delta t}=\mathcal{L}(u^{(k)},u^{(0)}).$$

apply the variational form:

$$\sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \bigg(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \bigg) d\mathbf{x}$$

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme $\begin{bmatrix} \psi_{\sigma} = \varphi_{\sigma} + \theta_{\sigma} \end{bmatrix}$ Goal: we want to keep the space approximation because we are happy with it. $\int_{K} \psi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x} \approx \int_{K} \varphi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x}$ $+ \int_{K} \theta_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x}$ Idea: Choose $\frac{u^{(k+1)} - u^{(0)}}{\Delta t}$ so that we do not spoil the accuracy.

Modified scheme

Take:

$$\int_{K} \varphi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x} + \int_{K} \theta_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x}$$

with:

• First step:
$$\frac{u^{(1)}-u^{(0)}}{\Delta t} = 0$$

• Second step: $\frac{u^{(2)}-u^{(0)}}{\Delta t} = \frac{u^{(1)}-u^{(0)}}{\Delta t}$

Proof: see *M. Ricchiuto, R. Abgrall, Explicit Runge Kutta schemes for time* dependent problems: second order case, J. Comput. Phys., 229(16), pp 5653-5691, 2010.

Idea: Analysis of the truncation error, see *R. Abgrall, Toward the ultimate conservative scheme: Following the quest. J. Comput. Phys., 167(2):277-315, 2001*

Modified scheme

Take:

$$\int_{\mathcal{K}} \varphi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x} + \int_{\mathcal{K}} \theta_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x}$$

with:

• First step:
$$\frac{u^{(1)}-u^{(0)}}{\Delta t} = 0 = \frac{u^{(1)}-u^{(0)}}{\Delta t} + O(\Delta t)$$

• Second step:
$$\frac{u^{(2)}-u^{(0)}}{\Delta t} = \frac{u^{(1)}-u^{(0)}}{\Delta t} = \frac{u^{(2)}-u^{(0)}}{\Delta t} + O(\Delta t)$$

Proof: see *M. Ricchiuto, R. Abgrall, Explicit Runge Kutta schemes for time dependent problems: second order case, J. Comput. Phys., 229(16), pp 5653-5691, 2010.*

Idea: Analysis of the truncation error, see *R. Abgrall, Toward the ultimate conservative scheme: Following the quest. J. Comput. Phys., 167(2):277-315, 2001*

Modified scheme

Take:

$$\int_{\mathcal{K}} \varphi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x} + \int_{\mathcal{K}} \theta_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x}$$

with:

• First step:
$$\frac{u^{(1)}-u^{(0)}}{\Delta t} = 0 = \frac{u^{(1)}-u^{(0)}}{\Delta t} + O(\Delta t)$$

• Second step: $\frac{u^{(2)}-u^{(0)}}{\Delta t} = \frac{u^{(1)}-u^{(0)}}{\Delta t} = \frac{u^{(2)}-u^{(0)}}{\Delta t} + O(\Delta t)$

Proof: see *M. Ricchiuto, R. Abgrall, Explicit Runge Kutta schemes for time dependent problems: second order case, J. Comput. Phys., 229(16), pp 5653-5691, 2010.*

Idea: Analysis of the truncation error, see R. Abgrall, Toward the ultimate conservative scheme: Following the quest. J. Comput. Phys., 167(2):277-315, 2001

After some simple algebra:

$$\int_{\mathcal{K}} \varphi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x} + \int_{\mathcal{K}} \theta_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x}$$

becomes:

$$\int_{\mathcal{K}} \varphi_{\sigma} \frac{u^{(k+1)} - u^{(k)}}{\Delta t} + \int_{\mathcal{K}} \psi_{\sigma} \left(\frac{u^{(k)} - u^{(0)}}{\Delta t} + \mathcal{L}(u^{(k)}, u^{(0)}) \right)$$

and thus:

$$\int_{\Omega} \varphi_{\sigma} \frac{u^{(k+1)} - u^{(k)}}{\Delta t} + \sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \left(\frac{u^{(k)} - u^{(0)}}{\Delta t} + \mathcal{L}(u^{(k)}, u^{(0)}) \right) = 0$$

So one can apply mass-lumping without spoiling the accuracy (for regular enough meshes)

One gets a second order scheme, oscillation free if we start from an oscillation free scheme, explicit, no mass matrix to invert

After some simple algebra:

$$\int_{\mathcal{K}} \varphi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x} + \int_{\mathcal{K}} \theta_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x}$$

becomes:

$$\int_{\mathcal{K}} \varphi_{\sigma} \frac{u^{(k+1)} - u^{(k)}}{\Delta t} + \int_{\mathcal{K}} \psi_{\sigma} \left(\frac{u^{(k)} - u^{(0)}}{\Delta t} + \mathcal{L}(u^{(k)}, u^{(0)}) \right)$$

and thus:

$$\int_{\Omega} \varphi_{\sigma} \frac{u^{(k+1)} - u^{(k)}}{\Delta t} + \sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \left(\frac{u^{(k)} - u^{(0)}}{\Delta t} + \mathcal{L}(u^{(k)}, u^{(0)}) \right) = 0$$

So one can apply mass-lumping without spoiling the accuracy (for regular enough meshes)

One gets a second order scheme, oscillation free if we start from an oscillation free scheme, explicit, no mass matrix to invert

After some simple algebra:

$$\int_{\mathcal{K}} \varphi_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x} + \int_{\mathcal{K}} \theta_{\sigma} \left(\frac{u^{(k+1)} - u^{(0)}}{\Delta t} - \mathcal{L}(u^{(k)}, u^{(0)}) \right) d\mathbf{x}$$

becomes:

$$\int_{\mathcal{K}} \varphi_{\sigma} \frac{u^{(k+1)} - u^{(k)}}{\Delta t} + \int_{\mathcal{K}} \psi_{\sigma} \left(\frac{u^{(k)} - u^{(0)}}{\Delta t} + \mathcal{L}(u^{(k)}, u^{(0)}) \right)$$

and thus:

$$\int_{\Omega} \varphi_{\sigma} \frac{u^{(k+1)} - u^{(k)}}{\Delta t} + \sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \left(\frac{u^{(k)} - u^{(0)}}{\Delta t} + \mathcal{L}(u^{(k)}, u^{(0)}) \right) = 0$$

So one can apply mass-lumping without spoiling the accuracy (for regular enough meshes)

One gets a second order scheme, oscillation free if we start from an oscillation free scheme, explicit, no mass matrix to invert

Two illustrations

Figure 1: Vortex advection : grid convergence for the LDA scheme with F1. : convergence history.

R. Abgrall

Two illustrations

Overview

Introduction and motivation

O Warming up

8 Finite element without mass matrix

Ø Numerical applications

G Conclusion, perspectives

We have two pieces in our toolkit:

• A first order (in time scheme): From U^n , compute V such that $L^1(V, U^n) = 0$ where

$$L^{1}(V, U^{n})_{\sigma} = |C_{\sigma}| \frac{V_{\sigma} - U_{\sigma}^{n}}{\Delta t} + \sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \mathcal{L}(U^{(n)}, U^{(n)})$$

Easily to solve

• A (formaly) second order scheme: From U^n , compute W such that $L^2(W, U^n) = 0$ where

$$L^{2}(W, U^{n})_{\sigma} = \sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \left(\frac{W - U^{n}}{\Delta t} + \mathcal{L}(W^{(n)}, U^{(n)}) \right)$$

• What we do is: starting from $U^{(0)} = U^n$, compute $U^{(1)}$ such that $L^1(U^{(1)}, U^n) = L^1(U^{(0)}, U^n) - L^2(U^{(0)}, U^n)$

then $\ U^{(2)}$: such that $L^1(U^{(2)}, U^n) = L^1(U^{(1)}, U^n) - L^2(U^{(1)}, U^n)$

We have two pieces in our toolkit:

• A first order (in time scheme): From U^n , compute V such that $L^1(V, U^n) = 0$ where

$$L^{1}(V, U^{n})_{\sigma} = |C_{\sigma}| \frac{V_{\sigma} - U_{\sigma}^{n}}{\Delta t} + \sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \mathcal{L}(U^{(n)}, U^{(n)})$$

Easily to solve

• A (formaly) second order scheme: From U^n , compute W such that $L^2(W, U^n) = 0$ where

$$L^{2}(W, U^{n})_{\sigma} = \sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \left(\frac{W - U^{n}}{\Delta t} + \mathcal{L}(W^{(n)}, U^{(n)}) \right)$$

• What we do is: starting from $U^{(0)} = U^n$, compute $U^{(1)}$ such that $L^1(U^{(1)}, U^n) = L^1(U^{(0)}, U^n) - L^2(U^{(0)}, U^n)$

then $\ U^{(2)}$: such that $L^1(U^{(2)}, U^n) = L^1(U^{(1)}, U^n) - L^2(U^{(1)}, U^n)$

We have two pieces in our toolkit:

• A first order (in time scheme): From U^n , compute V such that $L^1(V, U^n) = 0$ where

$$L^{1}(V, U^{n})_{\sigma} = |C_{\sigma}| \frac{V_{\sigma} - U_{\sigma}^{n}}{\Delta t} + \sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \mathcal{L}(U^{(n)}, U^{(n)})$$

Easily to solve

• A (formaly) second order scheme: From U^n , compute W such that $L^2(W, U^n) = 0$ where

$$L^{2}(W, U^{n})_{\sigma} = \sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \left(\frac{W - U^{n}}{\Delta t} + \mathcal{L}(W^{(n)}, U^{(n)}) \right)$$

• What we do is: starting from $U^{(0)} = U^n$, compute $U^{(1)}$ such that $L^1(U^{(1)}, U^n) = L^1(U^{(0)}, U^n) - L^2(U^{(0)}, U^n)$

hen
$$U^{(2)}$$
 : such that $L^1(U^{(2)}, U^n) = L^1(U^{(1)}, U^n) - L^2(U^{(1)}, U^n)$

We have two pieces in our toolkit:

• A first order (in time scheme): From U^n , compute V such that $L^1(V, U^n) = 0$ where

$$L^{1}(V, U^{n})_{\sigma} = |C_{\sigma}| \frac{V_{\sigma} - U_{\sigma}^{n}}{\Delta t} + \sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \mathcal{L}(U^{(n)}, U^{(n)})$$

Easily to solve

• A (formaly) second order scheme: From U^n , compute W such that $L^2(W, U^n) = 0$ where

$$L^{2}(W, U^{n})_{\sigma} = \sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \left(\frac{W - U^{n}}{\Delta t} + \mathcal{L}(W^{(n)}, U^{(n)}) \right)$$

 What we do is: starting from U⁽⁰⁾ = Uⁿ, compute U⁽¹⁾ such that L¹(U⁽¹⁾, Uⁿ) = L¹(U⁽⁰⁾, Uⁿ) - L²(U⁽⁰⁾, Uⁿ)

then
$$U^{(2)}$$
 : such that $L^1(U^{(2)}, U^n) = L^1(U^{(1)}, U^n) - L^2(U^{(1)}, U^n)$

We have two pieces in our toolkit:

• A first order (in time scheme): From U^n , compute V such that $L^1(V, U^n) = 0$ where

$$L^{1}(V, U^{n})_{\sigma} = |C_{\sigma}| \frac{V_{\sigma} - U_{\sigma}^{n}}{\Delta t} + \sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \mathcal{L}(U^{(n)}, U^{(n)})$$

Easily to solve

• A (formaly) second order scheme: From U^n , compute W such that $L^2(W, U^n) = 0$ where

$$L^{2}(W, U^{n})_{\sigma} = \sum_{K \ni \sigma} \int_{K} \psi_{\sigma} \left(\frac{W - U^{n}}{\Delta t} + \mathcal{L}(W^{(n)}, U^{(n)}) \right)$$

 What we do is: starting from U⁽⁰⁾ = Uⁿ, compute U⁽¹⁾ such that L¹(U⁽¹⁾, Uⁿ) = L¹(U⁽⁰⁾, Uⁿ) - L²(U⁽⁰⁾, Uⁿ)
 (2) L¹(U⁽¹⁾, Uⁿ) = L¹(U⁽¹⁾, U⁽

then
$$U^{(2)}$$
 : such that $L^1(U^{(2)}, U^n) = L^1(U^{(1)}, U^n) - L^2(U^{(1)}, U^n)$

Defect correction for ODEs $\frac{du}{dt} = L(u), u(t = 0) = u_0$

[Dutt, Greegard, Rokhlin, BIT, vol 40(2), 2000]

Idea: mimic Picard iteration. in $[t_n, t_{n+1}]$, Intermediate times: $t_{n,0} = t_n < t_{n,1} < \ldots < t_{n,m} \ldots < t_{n,m} = t_{n+1}$

• Picard: $u^{n+1} = u^n + \int_{t_n}^{t_{n+1}} f(u(s)) ds \approx u^n + \int_{t_n}^{t_{n+1}} I_{\ell}(f(u,s) ds)$

• Define
$$L^1$$
 as the Euler forward method:
 $L^1(U, u^n) = \left(U^m - u^n + \Delta t \int_{t_{n,0}}^{t_{n,m}} l_0(s) ds, \dots \right)$

$$U^{p} - u^{n} + \Delta t \int_{t_{n,0}}^{t_{n,p}} l_{0}(s) ds, \dots, U^{0} - u^{n} + \Delta t \int_{t_{n,0}}^{t_{n,0}} l_{0}(s) ds \bigg)$$

Define L² as the high order method

$$L^{2}(U, u^{n}) = \left(U^{m} - u^{n} + \Delta \int_{t_{n,0}}^{t_{n,m}} l_{m}(s) ds, \dots \right.$$
$$U^{p} - u^{n} + \Delta t \int_{t_{n,0}}^{t_{n,p}} l_{m}(s) ds, \dots, U^{0} - u^{n} + \Delta t \int_{t_{n,0}}^{t_{n,0}} l_{m}(s) ds \right)^{T}$$

- Clearly $L^{1}(U, u^{n}) L^{2}(U, u^{n}) = O(\Delta t)$
- U^{m+1} defined by $L^1(U^{k+1}, u^n) = L^1(U^k, u^n) L^2(U^k, u^n)$, make at most m iterations. Get m + 1-th order of accuracy.

Defect correction for ODEs $\frac{du}{dt} = L(u), u(t = 0) = u_0$

[Dutt, Greegard, Rokhlin, BIT, vol 40(2), 2000]

Idea: mimic Picard iteration. in $[t_n, t_{n+1}]$, Intermediate times: $t_{n,0} = t_n < t_{n,1} < \ldots < t_{n,m} \ldots < t_{n,m} = t_{n+1}$

• Picard: $u^{n+1} = u^n + \int_{t_n}^{t_{n+1}} f(u(s)) ds \approx u^n + \int_{t_n}^{t_{n+1}} I_\ell(f(u,s) ds)$

• Define
$$L^1$$
 as the Euler forward method:

$$L^1(U, u^n) = \left(U^m - u^n + \Delta t \int_{t_{n,0}}^{t_{n,m}} l_0(s)ds, \dots \right)$$

$$U^p - u^n + \Delta t \int_{t_{n,0}}^{t_{n,p}} l_0(s)ds, \dots, U^0 - u^n + \Delta t \int_{t_{n,0}}^{t_{n,0}} l_0(s)ds \right)^T$$

• Define L^2 as the high order method

$$L^{2}(U, u^{n}) = \left(U^{m} - u^{n} + \Delta \int_{t_{n,0}}^{t_{n,m}} I_{m}(s) ds, \dots \right.$$
$$U^{p} - u^{n} + \Delta t \int_{t_{n,0}}^{t_{n,p}} I_{m}(s) ds, \dots, U^{0} - u^{n} + \Delta t \int_{t_{n,0}}^{t_{n,0}} I_{m}(s) ds \right)^{T}$$

- Clearly $L^1(U, u^n) L^2(U, u^n) = O(\Delta t)$
- U^{m+1} defined by L¹(U^{k+1}, uⁿ) = L¹(U^k, uⁿ) L²(U^k, uⁿ), make at most m iterations. Get m + 1-th order of accuracy.

Defect correction: principle

Application to finite elements

$$\frac{\partial u}{\partial t} + \operatorname{div} f(u) = 0 \quad t \in [0, T],$$
$$u(0) = u_0$$

Operators

• L² operatior defined from:

$$\int_{\Omega} \psi_{\sigma} \frac{u^{n+1,m} - u^n}{\Delta t} + \int_{t_n}^{t_{n,k}} \psi_{\sigma} \operatorname{div} I_m(f(u_l^n); s) ds = 0$$

• L¹ operator defined from:

$$|C_{\sigma}|\frac{u_{\sigma}^{n+1,m}-u_{\sigma}^{n}}{\Delta t}+\int_{t_{n}}^{t_{n,k}}\psi_{\sigma}\operatorname{div} I_{0}(f(u_{I}^{n});s)ds=0$$

Questions:

- What is $|C_{\sigma}|$?
- Can we have a condition like L¹ − L² = O(Δt) + O(h) ? If so, under which condition(s) ?

Application to finite elements

$$\frac{\partial u}{\partial t} + \operatorname{div} f(u) = 0 \quad t \in [0, T],$$
$$u(0) = u_0$$

Operators

• L² operatior defined from:

$$\int_{\Omega} \psi_{\sigma} \frac{u^{n+1,m} - u^n}{\Delta t} + \int_{t_n}^{t_{n,k}} \psi_{\sigma} \operatorname{div} I_m(f(u_l^n); s) ds = 0$$

• L¹ operator defined from:

$$|C_{\sigma}|\frac{u_{\sigma}^{n+1,m}-u_{\sigma}^{n}}{\Delta t}+\int_{t_{n}}^{t_{n,k}}\psi_{\sigma}\operatorname{div} I_{0}(f(u_{l}^{n});s)ds=0$$

Questions:

- What is $|C_{\sigma}|$?
- Can we have a condition like $L^1 L^2 = O(\Delta t) + O(h)$? If so, under which condition(s) ?

Construction of the L^1 operator

From

$$|C_{\sigma}|\frac{u_{\sigma}^{n+1,m}-u_{\sigma}^{n}}{\Delta t}+\int_{t_{n}}^{t_{n,k}}\psi_{\sigma}\operatorname{div} I_{0}(f(u_{I}^{n});s)ds=0$$

• $|C_{\sigma}| > 0$

• Under which conditions under $||L^1 - L^2|| = O(\Delta t) + O(h)$? We write, for any σ , $L_{\sigma}^{\ell} = (L_{\sigma,0}^{\ell}, L_{\sigma,1}^{\ell}, \dots, L_{\sigma,m}^{\ell})^{T}$ and look for:

$$\max_{k=0,m} ||L_k^1 - L_k^2||_2$$

We have

$$||L_k^1 - L_k^2||_2 = \sup_{v_\sigma} \frac{\sum_{\sigma} v_\sigma(L_{\sigma}^1 - L_{\sigma}^2)}{||v_h||_2}.$$

$$\sum_{\sigma} v_{\sigma} (L_{\sigma}^{1} - L_{\sigma}^{2}) = \sum_{K} \sum_{\sigma \in K} v_{\sigma} (L_{\sigma}^{1} - L_{\sigma}^{2})$$

so we look at $\sum_{\sigma \in K} v_{\sigma} (L_{\sigma}^1 - L_{\sigma}^2).$

Construction of the L^1 operator

From

$$|C_{\sigma}|\frac{u_{\sigma}^{n+1,m}-u_{\sigma}^{n}}{\Delta t}+\int_{t_{n}}^{t_{n,k}}\psi_{\sigma}\operatorname{div} I_{0}(f(u_{l}^{n});s)ds=0$$

- $|C_{\sigma}| > 0$
- Under which conditions under $||L^1 L^2|| = O(\Delta t) + O(h)$? We write, for any σ , $L^{\ell}_{\sigma} = (L^{\ell}_{\sigma,0}, L^{\ell}_{\sigma,1}, \dots, L^{\ell}_{\sigma,m})^T$ and look for:

$$\max_{k=0,m} ||L_k^1 - L_k^2||_2$$

We have

$$||L_{k}^{1} - L_{k}^{2}||_{2} = \sup_{v_{\sigma}} \frac{\sum_{\sigma} v_{\sigma}(L_{\sigma}^{1} - L_{\sigma}^{2})}{||v_{h}||_{2}}$$

$$\sum_{\sigma} v_{\sigma} (L_{\sigma}^{1} - L_{\sigma}^{2}) = \sum_{K} \sum_{\sigma \in K} v_{\sigma} (L_{\sigma}^{1} - L_{\sigma}^{2})$$

so we look at $\sum_{\sigma \in K} v_{\sigma} (L_{\sigma}^1 - L_{\sigma}^2)$.

We can write

$$L^{1}_{\sigma,p} = |C_{\sigma} \cap \mathcal{K}|(U^{m}_{\sigma} - u^{n}_{\sigma}) + \int_{t_{n}}^{t_{n+1}} \int_{\mathcal{K}} \psi_{\sigma} \operatorname{div} I_{0}(f(u^{n,l};s)ds,$$
$$L^{2}_{\sigma,p} = \int_{\mathcal{K}} \psi_{\sigma}(U^{m} - u^{n}) + \int_{t_{n}}^{t_{n+1}} \psi_{\sigma} \operatorname{div} I_{m}(f(u^{n,l};s)ds)$$

so that

$$\begin{split} \mathcal{L}_{\sigma,\rho}^{1} - \mathcal{L}_{\sigma,\rho}^{2} &= |\mathcal{C}_{\sigma} \cap \mathcal{K}| (\mathcal{U}_{\sigma}^{m} - u_{\sigma}^{n}) - \int_{\mathcal{K}} \psi_{\sigma} (\mathcal{U}^{m} - u^{n}) \\ &+ \int_{t_{n}}^{t_{n+1}} \operatorname{div} \left(I_{0}(f(u^{n,l};s) - I_{m}(f(u^{n,l};s)) \psi_{\sigma} \right) \end{split}$$

 I_0 piecewise constant, I_m Lagrange interpolation of degree m

Structural conditions

If
$$\sum_{\sigma \in K} |C_{\sigma} \cap K| (U_{\sigma}^{m} - u_{\sigma}^{n}) = \int_{K} (U^{m} - u^{n}) d\mathbf{x}$$

i.e.
 $\sum_{\sigma \in K} |C_{\sigma} \cap K| (U_{\sigma}^{m} - u_{\sigma}^{n}) = \sum_{\sigma \in K} \int_{K} \psi_{\sigma} (U^{m} - u^{n})$
because $\sum \psi_{\sigma} = 1 = \sum_{\sigma \in K} \varphi_{\sigma}$ Then: one can show that the condition
 $L^{1} - L^{2} = O(\Delta t) + O(h)$ is met

Proof:

Same technique as in R. Abgrall, Toward the ultimate conservative scheme: Following the quest. J. Comput. Phys., 167(2):277-315, 2001

i.e. analysis of the truncation error on a general mesh, use of conservation relation.

Structural conditions

If
$$\sum_{\sigma \in K} |C_{\sigma} \cap K| (U_{\sigma}^m - u_{\sigma}^n) = \int_{K} (U^m - u^n) d\mathbf{x}$$

i.e.

$$\sum_{\sigma\in K}|\mathcal{C}_{\sigma}\cap K|(U_{\sigma}^m-u_{\sigma}^n)=\sum_{\sigma\in K}\int_{K}\psi_{\sigma}(U^m-u^n)$$

because $\sum \psi_{\sigma} = 1 = \sum_{\sigma \in K} \varphi_{\sigma}$ Then: one can show that the condition $L^1 - L^2 = O(\Delta t) + O(h)$ is met

Proof:

Same technique as in R. Abgrall, Toward the ultimate conservative scheme: Following the quest. J. Comput. Phys., 167(2):277-315, 2001

i.e. analysis of the truncation error on a general mesh, use of conservation relation.

Condition:

$$\sum_{\sigma\in K} |\mathcal{C}_{\sigma}\cap \mathcal{K}|(\mathcal{U}_{\sigma}^m-u_{\sigma}^n)=\int_{\mathcal{K}} (\mathcal{U}^m-u^n)d\mathbf{x}$$

Not all finite element work.

• Main constraint on $|C_{\sigma}: |C_{\sigma} \cap K| > 0$????

•
$$\mathbb{P}^1$$
: OK. $|C_{\sigma} \cap K| = \frac{|K|}{d+1}$

- \mathbb{Q}^r OK if one takes Gaussian integration points as Lagrange interpolation points.
- \mathbb{P}^r , r > 1: not OK in general. Think of \mathbb{P}^2 for example
- On simplices: Bezier polynomials, Nurbs:

• All OK because
$$\int_{K} \varphi_{\sigma} d\mathbf{x} > 0$$

Condition:

$$\sum_{\sigma\in K} |\mathcal{C}_{\sigma}\cap \mathcal{K}|(U^m_{\sigma}-u^n_{\sigma}) = \int_{\mathcal{K}} (U^m-u^n)d\mathbf{x}$$

Not all finite element work.

• Main constraint on $|C_{\sigma}: |C_{\sigma} \cap K| > 0$????

•
$$\mathbb{P}^1$$
: OK. $|C_{\sigma} \cap K| = \frac{|K|}{d+1}$

- \mathbb{Q}^r OK if one takes Gaussian integration points as Lagrange interpolation points.
- \mathbb{P}^r , r>1: not OK in general. Think of \mathbb{P}^2 for example
- On simplices: Bezier polynomials, Nurbs:

• All OK because
$$\int_{K} \varphi_{\sigma} d\mathbf{x} > 0$$

Consequence

Condition:

$$\sum_{\sigma\in K} |\mathcal{C}_{\sigma}\cap \mathcal{K}|(U^m_{\sigma}-u^n_{\sigma}) = \int_{\mathcal{K}} (U^m-u^n)d\mathbf{x}$$

Not all finite element work.

Main constraint on |C_σ: |C_σ ∩ K| > 0????

•
$$\mathbb{P}^1$$
: OK. $|C_{\sigma} \cap K| = \frac{|K|}{d+1}$

- \mathbb{Q}^r OK if one takes Gaussian integration points as Lagrange interpolation points.
- \mathbb{P}^r , r > 1: not OK in general. Think of \mathbb{P}^2 for example
- On simplices: Bezier polynomials, Nurbs:

• All OK because
$$\int \varphi_{\sigma} d\mathbf{x} > 0$$

Condition:

$$\sum_{\sigma\in K} |\mathcal{C}_{\sigma}\cap \mathcal{K}|(U^m_{\sigma}-u^n_{\sigma}) = \int_{\mathcal{K}} (U^m-u^n) d\mathbf{x}$$

Not all finite element work.

Main constraint on |C_σ: |C_σ ∩ K| > 0????

•
$$\mathbb{P}^1$$
: OK. $|C_{\sigma} \cap K| = \frac{|K|}{d+1}$

- \mathbb{Q}^r OK if one takes Gaussian integration points as Lagrange interpolation points.
- \mathbb{P}^r , r > 1: not OK in general. Think of \mathbb{P}^2 for example
- On simplices: Bezier polynomials, Nurbs:

• All OK because
$$\int_{K} \varphi_{\sigma} d\mathbf{x} > 0$$

Some properties

• If the scheme defined by L^1 is stable (L^2 say) for CFL, the resulting scheme will be stable for CFL/(degree + 1)

"Proof" One can see the scheme as a perturbation of the original scheme:

$$\mathcal{L}^1(u^{n+1}, u^n) = O(h)$$

Result from [Richtmyer-Morton] ends the proof.

• If the *L*¹ operator is maximum principle preserving, and if the *L*² can be writen as a barycentric expansion of the data at previous sub-time steps, then the method is maximum preserving preserving.

"Proof" Hint: Bézier are positive, so the mass matrix of the accurate scheme has positive coefficients

• Example of such scheme: RDS

Some properties

• If the scheme defined by L^1 is stable (L^2 say) for CFL, the resulting scheme will be stable for CFL/(degree + 1)

"Proof" One can see the scheme as a perturbation of the original scheme:

$$\mathcal{L}^1(u^{n+1}, u^n) = O(h)$$

Result from [Richtmyer-Morton] ends the proof.

• If the *L*¹ operator is maximum principle preserving, and if the *L*² can be writen as a barycentric expansion of the data at previous sub-time steps, then the method is maximum preserving preserving.

"Proof" Hint: Bézier are positive, so the mass matrix of the accurate scheme has positive coefficients

• Example of such scheme: RDS

Some properties

• If the scheme defined by L^1 is stable (L^2 say) for CFL, the resulting scheme will be stable for CFL/(degree + 1)

"Proof" One can see the scheme as a perturbation of the original scheme:

$$\mathcal{L}^1(u^{n+1}, u^n) = O(h)$$

Result from [Richtmyer-Morton] ends the proof.

• If the *L*¹ operator is maximum principle preserving, and if the *L*² can be writen as a barycentric expansion of the data at previous sub-time steps, then the method is maximum preserving preserving.

"**Proof**" Hint: Bézier are positive, so the mass matrix of the accurate scheme has positive coefficients

• Example of such scheme: RDS

Overview

Introduction and motivation

@ Warming up

3 Finite element without mass matrix

4 Numerical applications

G Conclusion, perspectives

Linear case

Problem

$$\frac{\partial u}{\partial t} + \operatorname{div} \mathbf{f}(u, \mathbf{x}) = 0$$
$$u(\mathbf{x}, 0) = u_0(\mathbf{x})$$

with

$$\mathbf{f}(u, \mathbf{x}) = (-2\pi y, 2\pi x) u, \qquad u_0(\mathbf{x}) = e^{-\frac{||\mathbf{x} - \mathbf{x}_0||^2}{40}}$$

Schemes

• SUPG:

$$\Phi_{\sigma}^{K}(u^{h}) = \int_{K} \left(\varphi_{\sigma} + h_{K} \nabla_{u} \mathbf{f} \cdot \nabla \varphi_{\sigma}\right) \tau \left(\frac{\Delta u}{\Delta t} + \operatorname{div} \mathbf{f}(x, \mathbf{x})\right) dx,$$

• Galerkin with jump stabilization (Burman et al)

$$\Phi_{\sigma}^{K} = \int_{K} \varphi_{\sigma} \left(\frac{\Delta u}{\Delta t} + \operatorname{div} \mathbf{f}(x, \mathbf{x}) \right) dx + \sum_{\operatorname{edges of } K} \Gamma h_{e}^{2} \int_{e} \left(\nabla u_{K}^{h} - \nabla u_{K^{+}}^{h} \right) \cdot \nabla (\varphi_{\sigma})_{K}.$$

1D case, $u_0(x) = e^{-80(x-0.4)^2}$

log ₁₀ h	$\log_{10} \operatorname{error}_{L^1}$	slope	log ₁₀ error _{L²}	slope	$\log_{10} \operatorname{error}_{L^{\infty}}$	slope			
B ₂ approximation									
-0.8239	-2.2530	-		-	-2.131	-			
-1.1250	-3.2430	3.287	-3.2670	3.214	-3.088	3.178			
-1.4260	-4.1820	3.119	-4.1920	3.073	-4.003	3.039			
-1.7270	-5.0970	3.039	-5.1000	3.016	-4.932	3.086			
-2.0280	-5.9860	2.953	-6.0010	2.993	-5.825	2.966			
-2.3290	-6.9010	3.039	-6.9070	3.009	-6.746	3.059			
B ₃ approximation									
-1.0000	-2.8890	-	-2.310		-1.6170	-			
-1.301	-4.0040	3.704	-3.4980	3.946	-2.8430	4.073			
-1.602	-5.2370	4.096	-4.6810	3.930	-3.9430	3.654			
-1.903	-6.4250	3.946	-5.8790	3.980	-5.1050	3.860			
-2.204	-7.6320	4.009	-7.0820	3.996	-6.2990	3.966			
-2.505	-8.8350	3.996	-8.2860	4.000	-7.4990	3.986			
B ₄ approximation									
-1.000	-3.5230	-	-3.0500	-	-2.3970	-			
-1.3010	-5.0080	4.933	-4.4400	4.617	-3.6410	4.132			
-1.6020	-6.4360	4.744	-5.9260	4.936	-5.1260	4.933			
-1.9030	-7.9440	5.009	-7.4270	4.986	-6.6220	4.970			
-2.2040	-9.4440	4.983	-8.9290	4.990	-8.1180	4.970			
-2.5050	-10.610	3.873	-10.1900	4.189	-9.5060	4.611			

Test case: 8 rotations

user: abgrall Sat Jun 6 21:36:37 2015

R. Abgrall

Test case: 8 rotations

SUPG, 2 iters

Test case: 8 rotations

SUPG, 6 iters

Galerkin+jump stabilization, 2 iters

Error analysis Rotation, T = 1

1	() =	$\frac{ x-x_0 ^2}{ x-x_0 ^2}$	
Initial condition:	$u_0(\mathbf{x}) = e$	40,	$n \approx \sqrt{N_{dofs}}$

N _{dofs}	L^1	slope	L^2	slope	L^{∞}	slope			
1236	$1.351 \ 10^{-1}$	—	$1.335 \ 10^{-1}$	—	$5.217 \ 10^{-1}$	—			
4821	$2.997 \ 10^{-2}$	2.21	$4.207 \ 10^{-2}$	1.69	$1.967 \ 10^{-1}$	1.43			
19041	$3.976 \ 10^{-3}$	2.94	$7.133 \ 10^{-3}$	2.58	$4.149 \ 10^{-2}$	2.26			
75681	$6.710 \ 10^{-4}$	2.57	$1.217 \ 10^{-3}$	2.56	$7.063 \ 10^{-3}$	2.56			
Second order									
N _{dofs}	L^1	slope	L^2	slope	L^{∞}	slope			
4825	$2.508 \ 10^{-2}$	-	$3.056 \ 10^{-2}$	-	$1.161 \ 10^{-1}$	-			
19041	$1.354 \ 10^{-3}$	4.24	$2.592 \ 10^{-3}$	3.54	$1.347 \ 10^{-2}$	3.13			
75297	$1.094 \ 10^{-4}$	3.24	$2.003 \ 10^{-4}$	3.72	$1.137 \ 10^{-3}$	3.59			
300993	$1.547 \ 10^{-5}$	2.82	$2.653 \ 10^{-5}$	2.91	$1.742 \ 10^{-4}$	2.70			

Third order

$$\frac{\partial u}{\partial t} + \operatorname{div} \mathbf{f}(u) = 0$$
$$u(\mathbf{x}, 0) = u_0(\mathbf{x})$$

 $\mathbf{f} = (\cos u, \sin u)$ and

$$u_0(\mathbf{x}) = \left\{ egin{array}{cc} rac{7}{2}\pi & ext{if } ||\mathbf{x}|| < 1 \ rac{\pi}{4} & ext{else.} \end{array}
ight.$$

Difficulties:

- Composite waves (shock attached to fans)
- Existence of sonic points on ||x|| = 1.

Schemes with jump filtering

Residuals

$$\begin{split} \Phi_{\sigma}(u^{h}) &= \beta_{\sigma}(u^{h}) \Phi_{tot} \\ &+ \sum_{\text{edges of } \partial K} h_{e}^{2} ||\overline{\nabla_{u} f}|| \int_{\partial K} [\nabla u^{h}] \cdot [\nabla \varphi_{\sigma}] d\ell \end{split}$$

Choice of $\beta_{\sigma}(u^h)$

• Choice 1:

$$\beta_{\sigma}^{PSI}(u^{h}) = \frac{\left(\frac{\Phi_{\sigma}^{L\times F}}{\Phi_{tot}}\right)^{+}}{\sum_{\sigma' \in K} \left(\frac{\Phi_{\sigma'}^{L\times F}}{\Phi_{tot}}\right)^{+}},$$

• Choice 2:

$$\beta_{\sigma}(u^{h})\Phi_{tot} = (1-\theta)\beta_{\sigma}^{PSI}(u^{h})\Phi_{tot} + \theta\Phi_{\sigma}^{LxF}$$
$$\theta = \frac{|\Phi_{tot}|}{\sum_{\sigma' \in K} |\Phi_{LxF}^{\sigma}|}$$

O2, residual with choice 1

Meshes O2 and O3: same number of DOFs

O3, residual with choice 1

R. Abgrall

Overview

Introduction and motivation

@ Warming up

8 Finite element without mass matrix

Ø Numerical applications

G Conclusion, perspectives

Conclusions

- High order schemes for finite element methods without mass matrix: possible
- Seems to work
- Still some issues to be understood: this are preliminary results
- Go to systems and implicit (Viscous problems)

Conclusions

- High order schemes for finite element methods without mass matrix: possible
- Seems to work
- · Still some issues to be understood: this are preliminary results
- Go to systems and implicit (Viscous problems)

