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What is the problem 7

Integration of
au

5+ dvF(U) =0
or

%(: + div F(U) = div F, (U, VU)

with initial and boundary condition on Q C RY.
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What is the problem 7

Integration of
au

5+ dvF(U) =0
or

‘Z—ltj + div F(U) = div F, (U, VU)

with initial and boundary condition on Q C RY.

Target and problems

o Target: Euler, Navier Stokes, accoustics, waves, etc
e Complex domains: use of unstructured (possibly hybrid) meshes

e look for high order in space (and time) methods: integration over long periods
(i.e. many time steps). Need to minimize dissipation and dispersion.

o |ssue of computational cost.
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Set up

e Unstructured meshes:

e Numerical method : compactness of the numerical stencil for ease of
implementation. Finite element like methods seem to be method of choice

o Lots of efforts in approximating div F terms: reuse this with as little as possible
modifications.
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e Numerical method : compactness of the numerical stencil for ease of
implementation. Finite element like methods seem to be method of choice

o Lots of efforts in approximating div F terms: reuse this with as little as possible
modifications.

How-to and problems

o Classical framework: one starts by a variational formulation, choose test and trial
space, develop. This leads to form:
du du
M—+F=0— — =—-M'F
dt dt
and use of ODE solvers
e Problems:

@ invert the mass matrix (DG), write the mass matrix,
@ is the mass matrix invertible ?
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Set up

e Unstructured meshes:

e Numerical method : compactness of the numerical stencil for ease of
implementation. Finite element like methods seem to be method of choice

o Lots of efforts in approximating div F terms: reuse this with as little as possible
modifications.

How-to and problems

o Classical framework: one starts by a variational formulation, choose test and trial
space, develop. This leads to form:
du du
M— +F=0— — =—M"1F
dt dt
and use of ODE solvers
e Problems:
@ invert the mass matrix (DG), write the mass matrix,
@ is the mass matrix invertible ?

These questions are not as odd as expected
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About Mass matrix

e Discontinuous Galerkin methods: OK from this point of view (invertible and
block diagonal)

e Continuous Finite Element: OK from this point of view, but the mass matrix is
only sparse

o Residual distribution methods: same number of DOFs as continuous FEM, good
stabilization of discontinuities
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About Mass matrix

e Discontinuous Galerkin methods: OK from this point of view (invertible and
block diagonal)
but DG methods have a large number of DOF, and the stabilization of
discontinuities is not fully understood

e Continuous Finite Element: OK from this point of view, but the mass matrix is
only sparse
smaller number of DOF, stabilization of discontinuities : artificial viscosity which
is parameter dependent

o Residual distribution methods: same number of DOFs as continuous FEM, good
stabilization of discontinuities
Mass matrix:??? There is no clear variational form, and if one consider one, the
invertibility is not guaranteed, last the mass matrix will depend of the solution.
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Residual distribution schemes
RAE2822 airfoil, turbulent, M=0.734, Re=6.5 106. AoA=2.79° third order accurate

Mach
References:
Abgrall, Ricchiuto, de Santis, SIAM J. Scientific Computing, 2014, vol 36(3), pp
A955-A983
R. Abgrall and D. de Santis, Journal of Computationnal Physics, 2015, vol 283, pp
329-359.
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An example, div (a u) =0, u given on inflow boundary of Q

e conformal T}, triangulation of Q. Take P! element, DOF (o) are vertices of
triangles.

e Scheme:
foro€Q >y, oKW =0

uh given for o inflow boundary

o OK(uh) = /Béf/ div (au”)dx, {85} sum to unity
K
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An example, div (a u) =0, u given on inflow boundary of Q

e conformal T}, triangulation of Q. Take P! element, DOF (o) are vertices of
triangles.

e Scheme:
foro€Q >y, oKW =0

uh given for o inflow boundary

o OK(uh) = /Béf/ div (au”)dx, {85} sum to unity
K

In the P! case:
e SUPG:

k 1
By = 3 + hgTa - Vi,
e Non linear RD
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An example, div(a u) = 0, u given on inflow boundary of Q

Possible variational formulations

. 1
Write 50}.( = 5 -‘r"}’é.(, ZO’EK,}/UK =0, ['75 =0orhgTa - Vg, or..]
On can write:

,Bg/K div (au)dx = /K (cpg +'y!,<> div (a v) /Kgogdx = @
:/ (% +%’§bK) div (au)dx
K

with by a bubble function of mass unity.
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Possible variational formulations

. 1
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An example, div(a u) = 0, u given on inflow boundary of Q

Possible variational formulations

. 1
Write BGK = 5 -‘r"}’g, ZGEK’YL( =0, [75 =0orhgTa - Vg, or..]
On can write:

ﬂ:’(/K div (au)dx:/K (tpg +%’f) div (a u)
= /K (% +«/§bK) div (au)dx

with by a bubble function of mass unity.
So the scheme can be interpreted as find uf € V/ such as for all

e Petrov Galerkin: vj, € span {@o +vX,Vo DOF}
e With bubble functions: or vj, € span {®o + YK bk, Vo DOF and K},

a(u,v) = XK:/K v (div (au)dx.

Note: (X may depend on u”. ..
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Partial conclusion

e There is a real need to develop finite element (like) methods for unsteady
problem where there is no need of a mass matrix inversion.

e How to do this? this is the purpose of this talk.
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Overview

® Warming up
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Warming up: the P! case, second order in time

o
8—1: +aVu=0 + initial and boundary conditions

Take one’s favorite FEM for the operator aVu :
va,z/ Vo aVuh =0
< /K

where
Yo = pg, OF Yo + hyTa- Vs, or ps + fyff,or...
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Warming up: the P! case, second order in time

o
8—1: +aVu=0 + initial and boundary conditions

Take one’s favorite FEM for the operator aVu :
va,z/ Vo aVuh =0
< /K

where
Yo = pg, OF Yo + hyTa- Vs, or ps + fyff,or...

In all cases:
o Yo :<pa+9§ and
o> k0K =0and
o o5l <C
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Warming up:

Ricchiuto & Abgrall, Explicit Runge-Kutta residual distribution schemes for time
dependent problems: Second order case, JCP 2010, v 229, pp 5653-5691

Take RK2: du = L(u):
dt
u©) = yn

FORRO!

o = L(U(O))

u(Q)A_tu(O) _ %(L(U(O)) + L(u(l))

u’H’l = u(z)
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Warming up:

Ricchiuto & Abgrall, Explicit Runge-Kutta residual distribution schemes for time
dependent problems: Second order case, JCP 2010, v 229, pp 5653-5691

Take RK2: du = L(u):
dt

u® = yn

1) _,0
u At" =L(u(0))

u(Q)A_tu(O) _ %(L(U(O)) + L(u(l))

u’H’l = u(z)
Generic step:
y(k+1) _ (0

Az = £(u®), o),
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Generic step:
y(k+1) _ (0

= £(uR) 40,
Az L\ u™)
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Generic step:

apply the variational form:

(k+1) _ ,,(0)
Z /K Yo (% - 5(U(k)7 U(O))) dx
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Generic step:
y(k+1) _ (0

= £(u®) 40
At L\, u™).

apply the variational form:

(k+1) _ ,,(0)
> / Yo (7” L (), u“”)) dx
K30 K At

Leads to mass matrix problem and implicit scheme.
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Generic step:
y(k+1) _ (0

= £(uR) 40,
Az LV, )

apply the variational form:

(k+1) _ ,(0)
Z /K Yo (% - ﬁ(u(k)v U(O))) dx

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme

Goal: we want to keep the space approximation because we are happy with it.

(k+1) (0) (k+1) (0)
A 4© = e T OO
Joor (i = @) )ax [0 (i - () ) ex
k+1) 0
AF / (U( o a0 ,C(u(k), u(o))) dx
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Generic step:
u(k+1) _ ,(0)

A7 = £(u, u).

apply the variational form:

yk+1) _ (0
. A (k) ,(0)
Z V/}(zl&,( Ar L\ u ))dx

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme [Vo = 0o + 65]

Goal: we want to keep the space approximation because we are happy with it.

(k+1) _ ,,(0) (k+1) _ ,,(0)
/Kwa(% — l:(u , )))dxz/ 990'(% — ,C(u(k),u(o)))dx
u(kT1) — 4
+/ ( — £(u®, u<°>)> dx
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Generic step:

yk+1) _ (0
. A (k) ,(0)
Z V/}(Il&,( Ar L\ u ))dx

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme [Vo = 0o + 65]

Goal: we want to keep the space approximation because we are happy with it.

(k+1) _ ,,(0) (k+1) _ ,,(0)
/‘(wa(% — l:(u , )))dxz/ 990'(% — ,C(u(k),u(o)))dx

+/ ( k+1 1u(0) - £(u(k), u(o))> dx
S _ 40

Idea: Choose YN so that we do not spoil the accuracy.
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Modified scheme

Take:

(k+1) _ ,(0) (k+1) _ 00
/ @o(% £(w®,u )dx-{-/ <u = ﬂ(u(k),u(o))) dx
K

with:
) (D) (0
e First step: ul )At”( )
@0 _ B,
e Second step: = — = 1t
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Modified scheme

Take:
(k+1) _ 14(0) (k1) _ (0)
/ 4,00(% £(u®, u )dx+/ (” “ L(u(k),u(o)))dx
K At
with:
o First step: “(I)A_t“(o) =0= ”(I)A*t”(o) + O(At)
e Second step: “(Z)Et”(o) = ”(I)A*t“(o)_ (2)7”([)) + O(At)

Proof: see M. Ricchiuto, R. Abgrall, Exp/lClt Runge Kutta schemes for time
dependent problems: second order case, J. Comput. Phys., 229(16), pp 5653-5691,
2010.
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Modified scheme

Take:
(k+1) _ 14(0) (k1) _ (0)
/%7 (% L(u®) u )dx+/ (u il L(u(k),u(O)))dx
K At
with:
o First step: “(I)A_t“(o) =0= ”(I)A*t”(o) + O(At)
e Second step: “(Z)Et”(o) = ”(I)A*t“(o)_ (2)7”([)) + O(At)

Proof: see M. Ricchiuto, R. Abgrall, Exp/lClt Runge Kutta schemes for time
dependent problems: second order case, J. Comput. Phys., 229(16), pp 5653-5691,
2010.

Idea: Analysis of the truncation error, see R. Abgrall, Toward the ultimate
conservative scheme: Following the quest. J. Comput. Phys., 167(2):277-315, 2001
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After some simple algebra:

(k+1) _ ,(0) (k1) _ 4(0)
/ o (% ) u(o>)) dx+/ 9, (; o, L,(O))) dx
K K

At At

becomes:

ulk+1) (k) u(k) — 4(0)
- - - - (k) 40
/Ktpg At +/K1/)a'( At +£(U s u ))
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After some simple algebra:

ylk+1) _ 40 u(k+1) — 4(0)

i ~ 2™, 0y ¢ / N Ay O IO
/Kgo ( Ar (', u™) Jdx + KO Az LV, u'®)) ) dx
becomes:

ulk+1) — (k) u(k) — 4(0)
v e e k) 4,
/K% AL +/Kwa( Ay AW ))
and thus:

ulk+1) (k) (0)

KSU

So one can apply mass-lumping without spoiling the accuracy (for regular enough
meshes)
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After some simple algebra:

(k+1) _ ,(0) (k1) — 4(0)
/K o (% ) u(o>)) dx 4+ /K 9, (% o, L,(O))) dx
becomes:
ulk+1) _ (k) u(k) — 4(0)
- 77 - - (k) ,,(0)
/Ksoo Y +/Kz/1a( A LW ))
and thus:

ulk+1) (k) (0)

KSU

So one can apply mass-lumping without spoiling the accuracy (for regular enough
meshes)

One gets a second order scheme, oscillation free if we start from an oscillation free
scheme, explicit, no mass matrix to invert
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Two illustrations

Togyo(llepll2)

- - -

- GL-RK3

SL-RK2
GL-RK2

SL-RK3

logyg(h)

Figure 1: Vortex advection : grid convergence for the LDA scheme with F1. :
convergence history.
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Two illustrations
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Overview

© Finite element without mass matrix
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What is the essence of these manipulations ?

We have two pieces in our toolkit:

e A first order (in time scheme): From U", compute V such that L}(V,U") =0
where

V _ n
L0, = (6o YT Z/waﬁ(tﬂ"’,u("’)
t K30 7K

Easily to solve
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What is the essence of these manipulations ?

We have two pieces in our toolkit:

e A first order (in time scheme): From U", compute V such that L}(V,U") =0

where
V, U = - L(UM |y
LYV, U =|Cs | ; + § /¢ )

K>o
Easily to solve

e A (formaly) second order scheme: From U", compute W such that
L2(W, U") = 0 where

L2(W,U"), Z/%(i—kﬁ(wn) U(")))
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What is the essence of these manipulations ?

We have two pieces in our toolkit:

e A first order (in time scheme): From U", compute V such that L}(V,U") =0
where

V, — Un
LV, U = (G222 4 3 [ (U, u)
At K K
S0
Easily to solve

e A (formaly) second order scheme: From U", compute W such that
L2(W, U") = 0 where

2 n w-ur ()
L(W,U)J:Z szo T+£(W vU )
K30

e What we do is: starting from U(©) = U”,
compute UM such that LY(UD, U") = YU, U™y — [2(UO, U™
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What is the essence of these manipulations ?

We have two pieces in our toolkit:

e A first order (in time scheme): From U", compute V such that L}(V,U") =0
where

V, — Un
LV, U = (G222 4 3 [ (U, u)
At K K
S0
Easily to solve

e A (formaly) second order scheme: From U", compute W such that
L2(W, U") = 0 where

2 n w-ur ()
L(W,U)J:Z szo T+£(W vU )
K30

e What we do is: starting from U(©) = U”,
compute UM such that LY(UD, U") = YU, U™y — [2(UO, U™
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What is the essence of these manipulations ?

We have two pieces in our toolkit:

e A first order (in time scheme): From U", compute V such that L}(V,U") =0
where

V, —Uun
UWJMUZKA——i£+§:/¢AmN2MM
At Koo K

Easily to solve

e A (formaly) second order scheme: From U", compute W such that
L2(W, U") = 0 where

2 oo w—un (n) m)
L(W,U)J—Z/bio( A H LW, U™

K3o

e What we do is: starting from U(©) = U”,
compute UM such that LY(UD, U") = YU, U™y — [2(UO, U™

then U@ : such that L}(UP, U") = LY(UD, U") — L2(UD), U™)

e This is Defect correction !
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d
Defect correction for ODEs d—: = L(u), u(t =0) = up

[Dutt, Greegard, Rokhlin, BIT, vol 40(2), 2000]

Idea: mimic Picard iteration. in [t,, ty11], Intermediate

timesitho =t < th1 < ...<thm--- <thm= thi1

e Picard: u™1 = u" + f;”“ f(u(s))ds ~ u" + fti"“ Io(f(u,s) ds
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d
Defect correction for ODEs d—: = L(u), u(t =0) = up

[Dutt, Greegard, Rokhlin, BIT, vol 40(2), 2000]

Idea: mimic Picard iteration. in [t,, ty11], Intermediate

timesitho =t < th1 < ...<thm--- <thm= thi1

e Picard: u™1 = u" + f;”“ f(u(s))ds ~ u" + fti”“ Io(f(u,s) ds

e Define L! as the Euler forward method:
LU, u") = (U’” —u" +At/ " Io(s)ds, .. .

th,0
3 th,p 0 n th,0 T
UP —u" + At/ h(s)ds,..., U —u" + At/ lo(s)ds
th 0 n,0

o Define L2 as the high order method
LU, u") = (Um —u"+A /tn,m Im(s)ds, . ..
th,0

tn, ty,
Up—u"+At/ pl,,,(s)ds,...,Uo—u"+At/
th0 th,0
Clearly LY(U, u") — L2(U, u™) = O(At)
o UMt defined by L1(UKTL u") = L1(U, u") — L2(UX, u"), make at most m
iterations. Get m + 1-th order of accuracy.

0 Im(s)ds> !
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Defect correction: principle

tnt1 = tn,

Euler

f+1

AN

C

m+1

Iteration
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Application to finite elements

%Jr div f(u)=0 tel0,T],

u(0) = wp

o 2 operatior defined from:
n+1 m __
/1/;0 +/ Yodiv Im(f(uf'); s)ds =0

o |1 operator defined from:

n+l,m _ un

tn,k
|C(,|”" A & +/ Yodiv Io(f(ul'); s)ds = 0
t th
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Application to finite elements

du

8t+ div f(u)=0 tel0,T],

u(0) = wp

o 2 operatior defined from:

yntim _ o yn th k
/ g —— + Yodiv Im(f(uf'); s)ds =0
Q At tn
o |1 operator defined from:
n+1l,m n

— th,k
Yo ZU 4 [ podiv lp(F(ul);s)ds = 0
At .

e What is |C,| ?

e Can we have a condition like L! — L? = O(At) + O(h) ? If so, under which
condition(s) ?

|Col
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1))
. zZurich R. Abgrall 22/42




Construction of the L' operator

From i o
|CU|$ + Yediv Io(f(uf'); s)ds = 0
th
o [Cs|>0
University of
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Construction of the L' operator

From
ntlm _  p

tn,k
|G|l — Yo | Podiv Io(F(ul'); s)ds = 0
At .
o [Cs|>0
e Under which conditions under HL1 — [?|| = O(At) + O(h)?
We write, for any o, L% (L(r 0 U Treees Lf; )T and look for:

kmax ||Lk -2 ill2-

We have
o vo(ly — L3)

lILk = LRl2 = sup
Vo [1vall2

Z\/(,(L1 —L2)=>"> v(Lh - L3)

K oek

so we look at Yk vo (LL — L2).
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We can write

thyl
L, =1C NK|(UT — ul) +/ / Yo div lp(F(u™'; s)ds,
tn K

th1
L2,= /war(um —u") + Yo div In(F(u™'; s)ds
th
so that
Ly =12, = |Co NKI(UT - u) - /szo(um — ")
tht1
+/ div (l(f(u™";s) — Im(f )Y
t,

n

Iy piecewise constant, I, Lagrange interpolation of degree m
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Structural conditions

IF Y, ek |G NKI(UM — up) = /(Um_ ") dx
JK

ST NKI(UF — ul) = Z/K%(um_un)

oek oekK
because Y o = 1= cx Po
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Structural conditions

If ZUEK |C’7 n K‘(Ur,rn - ug) — /(Um — Un)dX
J K

G AKIUE =) = 3 [ vo(um—u)

ogeK gekK
because > 9o =1 = EoeK o Then: one can show that the condition
L' — [? = O(At) + O(h) is met

Same technique as in R. Abgrall, Toward the ultimate conservative scheme: Following
the quest. J. Comput. Phys., 167(2):277-315, 2001

i.e. analysis of the truncation error on a general mesh, use of conservation relation.
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Consequence

3G N KIUR — un) = /K(U’" — u")dx

geK
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Consequence

3G N KIUR — un) = /K(U’" — u")dx

geK

Not all finite element work.

e Main constraint on |Cy: |Co N K| > 07777
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Consequence

3G N KIUR — un) = /K(U’" — u")dx

geK

Not all finite element work.

e Main constraint on |Cy: |Co N K| > 07777

K
o PL: OK. |c(,m<|:d|7+‘1

e Q" OK if one takes Gaussian integration points as Lagrange interpolation points.
e P’ r > 1: not OK in general. Think of P? for example

e On simplices: Bezier polynomials, Nurbs:
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Consequence

3G N KIUR — un) = /K(U’" — u")dx

geK

Not all finite element work.

e Main constraint on |Cy: |Co N K| > 07777
K]
d+1
e Q" OK if one takes Gaussian integration points as Lagrange interpolation points.
e P’ r > 1: not OK in general. Think of P? for example

o PL: OK. |G, NK| =

e On simplices: Bezier polynomials, Nurbs:

e All OK because/ podx >0
K

Hence one has to forget somewhat pure nodal interpolation.
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Some properties

o If the scheme defined by L! is stable (L? say) for CFL, the resulting scheme will
be stable for CFL/(degree + 1)

"Proof” One can see the scheme as a perturbation of the original scheme:
ACl(un+17 un) — O(h)

Result from [Richtmyer-Morton] ends the proof.
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o If the scheme defined by L! is stable (L2 say) for CFL, the resulting scheme will
be stable for CFL/(degree + 1)

"Proof” One can see the scheme as a perturbation of the original scheme:
ACl(un+17 un) — O(h)

Result from [Richtmyer-Morton] ends the proof.

o If the L operator is maximum principle preserving, and if the L2 can be writen as
a barycentric expansion of the data at previous sub-time steps, then the method
is maximum preserving preserving.

"Proof” Hint: Bézier are positive, so the mass matrix of the accurate scheme has
positive coefficients
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Some properties

o If the scheme defined by L! is stable (L2 say) for CFL, the resulting scheme will
be stable for CFL/(degree + 1)

"Proof” One can see the scheme as a perturbation of the original scheme:
ACl(un+17 un) — O(h)

Result from [Richtmyer-Morton] ends the proof.

o If the L operator is maximum principle preserving, and if the L2 can be writen as
a barycentric expansion of the data at previous sub-time steps, then the method
is maximum preserving preserving.

"Proof” Hint: Bézier are positive, so the mass matrix of the accurate scheme has
positive coefficients

e Example of such scheme: RDS
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Overview

© Numerical applications
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Linear case

% + div f(u,x) =0
u(x,0) = up(x)
with

f(u,x) = (—27y,27x) u, up(x) = e
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Schemes

e SUPG:
K¢ h Au i
e2(u") = Yo+ heVuf - Voo | 7| — + div f(x,x) ) dx,
K At
o Galerkin with jump stabilization (Burman et al)

o :/ %(EJF div f(x,x))dx+ 3 rhg/(vU,’;va’;ﬁ) V(o).
K e

At edges of K
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1D case, up(x

) = e—80(x—0.4)

[ logjoh logyerror;i  slope [[ logygerror;s  slope [[ loggerrorioc  slope
By approximation
-0.8239 -2.2530 - - -2.131 -
-1.1250 -3.2430 3.287 -3.2670 3.214 -3.088 3.178
-1.4260 -4.1820 3.119 -4.1920 3.073 -4.003 3.039
-1.7270 -5.0970 3.039 -5.1000 3.016 -4.932 3.086
-2.0280 -5.9860 2.953 -6.0010 2.993 -5.825 2.966
-2.3290 -6.9010 3.039 -6.9070 3.009 -6.746 3.059
B3 approximation
-1.0000 -2.8890 - -2.310 -1.6170 -
-1.301 -4.0040 3.704 -3.4980 3.946 -2.8430 4.073
-1.602 -5.2370 4.096 -4.6810 3.930 -3.9430 3.654
-1.903 -6.4250 3.946 -5.8790 3.980 -5.1050 3.860
-2.204 -7.6320 4.009 -7.0820 3.996 -6.2990 3.966
-2.505 -8.8350 3.996 -8.2860 4.000 -7.4990 3.986
By approximation
-1.000 -3.5230 - -3.0500 - -2.3970 -
-1.3010 -5.0080 4.933 -4.4400 4.617 -3.6410 4.132
-1.6020 -6.4360 4.744 -5.9260 4.936 -5.1260 4.933
-1.9030 -7.9440 5.009 -7.4270 4.986 -6.6220 4.970
-2.2040 -9.4440 4.983 -8.9290 4.990 -8.1180 4.970
-2.5050 -10.610 3.873 -10.1900 4.189 -9.5060 4.611
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Test case: 8 rotations

DB: R13_10.plt
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Test case: 8 rotations

SUPG, 2 iters
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movie_rotation_2iter.mpg
Media File (video/mpeg)


Test case: 8 rotations

SUPG, 6 iters
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movie_rotation.mpg
Media File (video/mpeg)


Test case: 8 rotations

Galerkin+jump stabilization, 2 iters
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rotation_burman_2.mpg
Media File (video/mpeg)


Error analysis

Rotation, T =1

x—xg ]2
Initial condition: wp(x) = e_H4400L, h = /Naots
Nots LT slope L2 slope L slope
1236 1.351 107 — 1.335 1071 — 5.217 10~ T —
4821 29971072 | 221 | 42071072 | 1.69 | 1.967 10" | 1.43
19041 3.976 1073 | 2,94 | 7.133107% | 2.58 | 4.1401072 | 2.26
75681 6.710107* | 2,57 | 1.217107% | 2.56 | 7.06310°3 | 2.56
Second order
Noofs ! slope 12 slope L slope
4825 2.508 102 — 3.056 102 — 1.161 1077 —
19041 13541073 | 4.24 | 2592107% | 3.54 | 1.3471072 | 3.13
75297 1.09410~* | 3.24 | 2.003107* | 3.72 | 1.137107° | 3.50
300993 1.547107° | 2.82 | 2.653107° | 291 | 1.742107* | 2.70
Third order
s6/42
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Non linear case

Non convex case: KPP case

% + divf(u) =0
U(X, 0) = UO(X)
f = (cos u,sin u) and

7 .
o (x) = { I if x| <1

™
T else.

Difficulties:
e Composite waves (shock attached to fans)

o Existence of sonic points on ||x|| = 1.
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Schemes with jump filtering

®q (u") = Bo (uP)Pror

+ Y RV /8 94 [Vlat

edges of OK
Choice of 3, (u")

e Choice 1:

( d)é_XF ) +

[0}
B! = —
(7/
otk ( Dot )

e Choice 2:

Bo (UMD ror = (1 — 0)BE5 (UMD ror + OO
|¢mt|

0= — - —
ZG’EK |¢LZXF|
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Results, t =1, CFL = 0.4 for O3 and 0.8 for O2

Meshes O2 and O3: same number of DOFs

K I NN NS N WS SRR SRR R S
2'5'2 =B =t -0.5 0 .5 d 15
X

02, residual with choice 1
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Results, t =1, CFL = 0.4 for O3 and 0.8 for O2

Meshes O2 and O3: same number of DOFs

K I NN NS N WS SRR SRR R S
2'5'2 =B =t -0.5 0 .5 d 15
X

03, residual with choice 1
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Results, t =1, CFL = 0.3 for O3 and 0.6 for O2

Meshes O2 and O3: same number of DOFs

02, Choice2
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Results, t =1, CFL = 0.3 for O3 and 0.6 for O2

Meshes O2 and O3: same number of DOFs

-0.5 0
X

02, Choice2
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Results, t =1, CFL =

0.3 for O3 and 0.6 for O2

Meshes O2 and O3: same number of DOFs

0.5

-0.5 0
X

03, Choice2
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Overview

@ Conclusion, perspectives
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Conclusions

e High order schemes for finite element methods without mass matrix: possible

e Seems to work
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Conclusions

e High order schemes for finite element methods without mass matrix: possible
e Seems to work
o Still some issues to be understood: this are preliminary results

e Go to systems and implicit (Viscous problems)
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