
Recent progress in the development of parameter free continuous
finite element methods for compressible fluids

R. Abgrall

I-MATH
Universität Zürich

Institut Henri Poincaré, October 6th, 2016

R. Abgrall 1/42



1 Introduction and motivation

2 Warming up

3 Finite element without mass matrix

4 Numerical applications

5 Conclusion, perspectives

R. Abgrall 2/42



Overview

1 Introduction and motivation

2 Warming up

3 Finite element without mass matrix

4 Numerical applications

5 Conclusion, perspectives

R. Abgrall 3/42



What is the problem ?

Integration of
∂U

∂t
+ div F(U) = 0

or
∂U

∂t
+ div F(U) = div Fv (U,∇U)

with initial and boundary condition on Ω ⊂ Rd .

Target and problems

• Target: Euler, Navier Stokes, accoustics, waves, etc

• Complex domains: use of unstructured (possibly hybrid) meshes

• look for high order in space (and time) methods: integration over long periods
(i.e. many time steps). Need to minimize dissipation and dispersion.

• Issue of computational cost.

R. Abgrall 4/42



What is the problem ?

Integration of
∂U

∂t
+ div F(U) = 0

or
∂U

∂t
+ div F(U) = div Fv (U,∇U)

with initial and boundary condition on Ω ⊂ Rd .

Target and problems

• Target: Euler, Navier Stokes, accoustics, waves, etc

• Complex domains: use of unstructured (possibly hybrid) meshes

• look for high order in space (and time) methods: integration over long periods
(i.e. many time steps). Need to minimize dissipation and dispersion.

• Issue of computational cost.

R. Abgrall 4/42



Set up

• Unstructured meshes:

• Numerical method : compactness of the numerical stencil for ease of
implementation. Finite element like methods seem to be method of choice

• Lots of efforts in approximating div F terms: reuse this with as little as possible
modifications.

How-to and problems

• Classical framework: one starts by a variational formulation, choose test and trial
space, develop. This leads to form:

M
dU

dt
+ F = 0 −→

dU

dt
= −M−1F

and use of ODE solvers

• Problems:
1 invert the mass matrix (DG), write the mass matrix,
2 is the mass matrix invertible ?

These questions are not as odd as expected

R. Abgrall 5/42



Set up

• Unstructured meshes:

• Numerical method : compactness of the numerical stencil for ease of
implementation. Finite element like methods seem to be method of choice

• Lots of efforts in approximating div F terms: reuse this with as little as possible
modifications.

How-to and problems

• Classical framework: one starts by a variational formulation, choose test and trial
space, develop. This leads to form:

M
dU

dt
+ F = 0 −→

dU

dt
= −M−1F

and use of ODE solvers

• Problems:
1 invert the mass matrix (DG), write the mass matrix,
2 is the mass matrix invertible ?

These questions are not as odd as expected

R. Abgrall 5/42



Set up

• Unstructured meshes:

• Numerical method : compactness of the numerical stencil for ease of
implementation. Finite element like methods seem to be method of choice

• Lots of efforts in approximating div F terms: reuse this with as little as possible
modifications.

How-to and problems

• Classical framework: one starts by a variational formulation, choose test and trial
space, develop. This leads to form:

M
dU

dt
+ F = 0 −→

dU

dt
= −M−1F

and use of ODE solvers

• Problems:
1 invert the mass matrix (DG), write the mass matrix,
2 is the mass matrix invertible ?

These questions are not as odd as expected

R. Abgrall 5/42



About Mass matrix

• Discontinuous Galerkin methods: OK from this point of view (invertible and
block diagonal)
but DG methods have a large number of DOF, and the stabilization of
discontinuities is not fully understood

• Continuous Finite Element: OK from this point of view, but the mass matrix is
only sparse
smaller number of DOF, stabilization of discontinuities : artificial viscosity which
is parameter dependent

• Residual distribution methods: same number of DOFs as continuous FEM, good
stabilization of discontinuities
Mass matrix:??? There is no clear variational form, and if one consider one, the
invertibility is not guaranteed, last the mass matrix will depend of the solution.

R. Abgrall 6/42



About Mass matrix

• Discontinuous Galerkin methods: OK from this point of view (invertible and
block diagonal)
but DG methods have a large number of DOF, and the stabilization of
discontinuities is not fully understood

• Continuous Finite Element: OK from this point of view, but the mass matrix is
only sparse
smaller number of DOF, stabilization of discontinuities : artificial viscosity which
is parameter dependent

• Residual distribution methods: same number of DOFs as continuous FEM, good
stabilization of discontinuities
Mass matrix:??? There is no clear variational form, and if one consider one, the
invertibility is not guaranteed, last the mass matrix will depend of the solution.

R. Abgrall 6/42



About Mass matrix

• Discontinuous Galerkin methods: OK from this point of view (invertible and
block diagonal)
but DG methods have a large number of DOF, and the stabilization of
discontinuities is not fully understood

• Continuous Finite Element: OK from this point of view, but the mass matrix is
only sparse
smaller number of DOF, stabilization of discontinuities : artificial viscosity which
is parameter dependent

• Residual distribution methods: same number of DOFs as continuous FEM, good
stabilization of discontinuities
Mass matrix:??? There is no clear variational form, and if one consider one, the
invertibility is not guaranteed, last the mass matrix will depend of the solution.

R. Abgrall 6/42



About Mass matrix

• Discontinuous Galerkin methods: OK from this point of view (invertible and
block diagonal)
but DG methods have a large number of DOF, and the stabilization of
discontinuities is not fully understood

• Continuous Finite Element: OK from this point of view, but the mass matrix is
only sparse
smaller number of DOF, stabilization of discontinuities : artificial viscosity which
is parameter dependent

• Residual distribution methods: same number of DOFs as continuous FEM, good
stabilization of discontinuities
Mass matrix:??? There is no clear variational form, and if one consider one, the
invertibility is not guaranteed, last the mass matrix will depend of the solution.

R. Abgrall 6/42



Residual distribution schemes
RAE2822 airfoil, turbulent, M=0.734, Re=6.5 106, AoA=2.79◦, third order accurate

Mach

References:
Abgrall, Ricchiuto, de Santis, SIAM J. Scientific Computing, 2014, vol 36(3), pp
A955-A983
R. Abgrall and D. de Santis, Journal of Computationnal Physics, 2015, vol 283, pp
329-359.

R. Abgrall 7/42



An example, div (a u) = 0, u given on inflow boundary of Ω

• conformal Th triangulation of Ω. Take P1 element, DOF (σ) are vertices of
triangles.

• Scheme:  for σ ∈ Ω
∑

K3σ ΦK
σ (uh) = 0

uh
σ given for σ inflow boundary

• ΦK
σ (uh) = βK

σ

∫
K

div (auh)dx, {βK
σ } sum to unity

In the P1 case:
• SUPG:

β
K
σ =

1

3
+ hKτa · ∇ϕσ

• Non linear RD
β

K
σ = β

K
σ (uh)

R. Abgrall 8/42



An example, div (a u) = 0, u given on inflow boundary of Ω

• conformal Th triangulation of Ω. Take P1 element, DOF (σ) are vertices of
triangles.

• Scheme:  for σ ∈ Ω
∑

K3σ ΦK
σ (uh) = 0

uh
σ given for σ inflow boundary

• ΦK
σ (uh) = βK

σ

∫
K

div (auh)dx, {βK
σ } sum to unity

In the P1 case:
• SUPG:

β
K
σ =

1

3
+ hKτa · ∇ϕσ

• Non linear RD
β

K
σ = β

K
σ (uh)

R. Abgrall 8/42



An example, div
(
a u
)

= 0, u given on inflow boundary of Ω

Possible variational formulations

Write βK
σ =

1

3
+ γK

σ ,
∑
σ∈K γ

K
σ = 0. [γK

σ = 0 or hK τa · ∇ϕσ , or. . . ]

On can write:

βK
σ

∫
K

div
(
au
)
dx =

∫
K

(
ϕσ + γK

σ

)
div (a u

) ∫
K
ϕσdx =

|K |
3

=

∫
K

(
ϕσ + γK

σ bK

)
div
(
au
)
dx

with bK a bubble function of mass unity.
So the scheme can be interpreted as find uh ∈ V h such as for all

• Petrov Galerkin: vh ∈ span {ϕσ + γK
σ , ∀σ DOF}

• With bubble functions: or vh ∈ span {ϕσ + γK
σ bK , ∀σ DOF and K},

a(u, v) =
∑

K

∫
K

v
(

div (au)dx.

Note: βK
σ may depend on uh. . .

R. Abgrall 9/42



An example, div
(
a u
)

= 0, u given on inflow boundary of Ω

Possible variational formulations

Write βK
σ =

1

3
+ γK

σ ,
∑
σ∈K γ

K
σ = 0. [γK

σ = 0 or hK τa · ∇ϕσ , or. . . ]

On can write:

βK
σ

∫
K

div
(
au
)
dx =

∫
K

(
ϕσ + γK

σ

)
div (a u

)
=

∫
K

(
ϕσ + γK

σ bK

)
div
(
au
)
dx

∫
K

bK dx = 1

with bK a bubble function of mass unity.
So the scheme can be interpreted as find uh ∈ V h such as for all

• Petrov Galerkin: vh ∈ span {ϕσ + γK
σ , ∀σ DOF}

• With bubble functions: or vh ∈ span {ϕσ + γK
σ bK , ∀σ DOF and K},

a(u, v) =
∑

K

∫
K

v
(

div (au)dx.

Note: βK
σ may depend on uh. . .

R. Abgrall 9/42



An example, div
(
a u
)

= 0, u given on inflow boundary of Ω

Possible variational formulations

Write βK
σ =

1

3
+ γK

σ ,
∑
σ∈K γ

K
σ = 0. [γK

σ = 0 or hK τa · ∇ϕσ , or. . . ]

On can write:

βK
σ

∫
K

div
(
au
)
dx =

∫
K

(
ϕσ + γK

σ

)
div (a u

)
=

∫
K

(
ϕσ + γK

σ bK

)
div
(
au
)
dx

with bK a bubble function of mass unity.
So the scheme can be interpreted as find uh ∈ V h such as for all

• Petrov Galerkin: vh ∈ span {ϕσ + γK
σ , ∀σ DOF}

• With bubble functions: or vh ∈ span {ϕσ + γK
σ bK , ∀σ DOF and K},

a(u, v) =
∑

K

∫
K

v
(

div (au)dx.

Note: βK
σ may depend on uh. . .

R. Abgrall 9/42



Partial conclusion

• There is a real need to develop finite element (like) methods for unsteady
problem where there is no need of a mass matrix inversion.

• How to do this? this is the purpose of this talk.

R. Abgrall 10/42



Overview

1 Introduction and motivation

2 Warming up

3 Finite element without mass matrix

4 Numerical applications

5 Conclusion, perspectives

R. Abgrall 11/42



Warming up: the P1 case, second order in time

∂u

∂t
+ a∇u = 0 + initial and boundary conditions

Take one’s favorite FEM for the operator a∇u :

∀σ,
∑

K

∫
K
ψσ a∇uh = 0

where
ψσ = ϕσ , or ϕσ + hkτa · ∇ϕσ , or ϕσ + γK

σ , or...

In all cases:

• ψσ = ϕσ + θK
σ and

•
∑
σ∈K θ

K
σ = 0 and

• |θK
σ | ≤ C

R. Abgrall 12/42



Warming up: the P1 case, second order in time

∂u

∂t
+ a∇u = 0 + initial and boundary conditions

Take one’s favorite FEM for the operator a∇u :

∀σ,
∑

K

∫
K
ψσ a∇uh = 0

where
ψσ = ϕσ , or ϕσ + hkτa · ∇ϕσ , or ϕσ + γK

σ , or...

In all cases:

• ψσ = ϕσ + θK
σ and

•
∑
σ∈K θ

K
σ = 0 and

• |θK
σ | ≤ C

R. Abgrall 12/42



Warming up:

Ricchiuto & Abgrall, Explicit Runge-Kutta residual distribution schemes for time
dependent problems: Second order case, JCP 2010, v 229, pp 5653-5691

Take RK2:
du

dt
= L(u):

u(0) = un

u(1)−u(0)

∆t
= L(u(0))

u(2)−u(0)

∆t
= 1

2

(
L(u(0)) + L(u(1))

un+1 = u(2)

Generic step:
u(k+1) − u(0)

∆t
= L(u(k), u(0)).

R. Abgrall 13/42



Warming up:

Ricchiuto & Abgrall, Explicit Runge-Kutta residual distribution schemes for time
dependent problems: Second order case, JCP 2010, v 229, pp 5653-5691

Take RK2:
du

dt
= L(u):

u(0) = un

u(1)−u(0)

∆t
= L(u(0))

u(2)−u(0)

∆t
= 1

2

(
L(u(0)) + L(u(1))

un+1 = u(2)

Generic step:
u(k+1) − u(0)

∆t
= L(u(k), u(0)).

R. Abgrall 13/42



Generic step:
u(k+1) − u(0)

∆t
= L(u(k), u(0)).

apply the variational form:

∑
K3σ

∫
K
ψσ

(
u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme [ψσ = ϕσ + θσ]

Goal: we want to keep the space approximation because we are happy with it.∫
K

ψσ

(
u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx

∫
K

ϕσ

(
u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx

+

∫
K

θσ

(
− L(u(k)

, u(0))

)
dx

Idea: Choose
˜u(k+1) − u(0)

∆t
so that we do not spoil the accuracy.

R. Abgrall 14/42



Generic step:
u(k+1) − u(0)

∆t
= L(u(k), u(0)).

apply the variational form:

∑
K3σ

∫
K
ψσ

(
u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme [ψσ = ϕσ + θσ]

Goal: we want to keep the space approximation because we are happy with it.∫
K

ψσ

(
u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx

∫
K

ϕσ

(
u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx

+

∫
K

θσ

(
− L(u(k)

, u(0))

)
dx

Idea: Choose
˜u(k+1) − u(0)

∆t
so that we do not spoil the accuracy.

R. Abgrall 14/42



Generic step:
u(k+1) − u(0)

∆t
= L(u(k), u(0)).

apply the variational form:

∑
K3σ

∫
K
ψσ

(
u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme [ψσ = ϕσ + θσ]

Goal: we want to keep the space approximation because we are happy with it.∫
K

ψσ

(
u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx

∫
K

ϕσ

(
u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx

+

∫
K

θσ

(
− L(u(k)

, u(0))

)
dx

Idea: Choose
˜u(k+1) − u(0)

∆t
so that we do not spoil the accuracy.

R. Abgrall 14/42



Generic step:
u(k+1) − u(0)

∆t
= L(u(k), u(0)).

apply the variational form:

∑
K3σ

∫
K
ψσ

(
u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme [ψσ = ϕσ + θσ]

Goal: we want to keep the space approximation because we are happy with it.∫
K

ψσ

(
u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx=

∫
K

ϕσ

(
u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx

+

∫
K

θσ

(
u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx

Idea: Choose
˜u(k+1) − u(0)

∆t
so that we do not spoil the accuracy.

R. Abgrall 14/42



Generic step:
u(k+1) − u(0)

∆t
= L(u(k), u(0)).

apply the variational form:

∑
K3σ

∫
K
ψσ

(
u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme [ψσ = ϕσ + θσ]

Goal: we want to keep the space approximation because we are happy with it.∫
K

ψσ

(
u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx≈

∫
K

ϕσ

(
u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx

+

∫
K

θσ

( ˜u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx

Idea: Choose
˜u(k+1) − u(0)

∆t
so that we do not spoil the accuracy.

R. Abgrall 14/42



Generic step:
u(k+1) − u(0)

∆t
= L(u(k), u(0)).

apply the variational form:

∑
K3σ

∫
K
ψσ

(
u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx

Leads to mass matrix problem and implicit scheme.

Trick: slightly modify the scheme [ψσ = ϕσ + θσ]

Goal: we want to keep the space approximation because we are happy with it.∫
K

ψσ

(
u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx≈

∫
K

ϕσ

(
u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx

+

∫
K

θσ

( ˜u(k+1) − u(0)

∆t
− L(u(k)

, u(0))

)
dx

Idea: Choose
˜u(k+1) − u(0)

∆t
so that we do not spoil the accuracy.

R. Abgrall 14/42



Modified scheme

Take:∫
K
ϕσ

(
u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx +

∫
K
θσ

( ˜u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx

with:

• First step:
˜u(1)−u(0)

∆t
= 0

• Second step:
˜u(2)−u(0)

∆t
= u(1)−u(0)

∆t

Proof: see M. Ricchiuto, R. Abgrall, Explicit Runge Kutta schemes for time
dependent problems: second order case, J. Comput. Phys., 229(16), pp 5653-5691,
2010.
Idea: Analysis of the truncation error, see R. Abgrall, Toward the ultimate
conservative scheme: Following the quest. J. Comput. Phys., 167(2):277-315, 2001

R. Abgrall 15/42



Modified scheme

Take:∫
K
ϕσ

(
u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx +

∫
K
θσ

( ˜u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx

with:

• First step:
˜u(1)−u(0)

∆t
= 0= u(1)−u(0)

∆t
+ O(∆t)

• Second step:
˜u(2)−u(0)

∆t
= u(1)−u(0)

∆t
= u(2)−u(0)

∆t
+ O(∆t)

Proof: see M. Ricchiuto, R. Abgrall, Explicit Runge Kutta schemes for time
dependent problems: second order case, J. Comput. Phys., 229(16), pp 5653-5691,
2010.
Idea: Analysis of the truncation error, see R. Abgrall, Toward the ultimate
conservative scheme: Following the quest. J. Comput. Phys., 167(2):277-315, 2001

R. Abgrall 15/42



Modified scheme

Take:∫
K
ϕσ

(
u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx +

∫
K
θσ

( ˜u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx

with:

• First step:
˜u(1)−u(0)

∆t
= 0= u(1)−u(0)

∆t
+ O(∆t)

• Second step:
˜u(2)−u(0)

∆t
= u(1)−u(0)

∆t
= u(2)−u(0)

∆t
+ O(∆t)

Proof: see M. Ricchiuto, R. Abgrall, Explicit Runge Kutta schemes for time
dependent problems: second order case, J. Comput. Phys., 229(16), pp 5653-5691,
2010.
Idea: Analysis of the truncation error, see R. Abgrall, Toward the ultimate
conservative scheme: Following the quest. J. Comput. Phys., 167(2):277-315, 2001

R. Abgrall 15/42



After some simple algebra:

∫
K
ϕσ

(
u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx +

∫
K
θσ

( ˜u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx

becomes: ∫
K
ϕσ

u(k+1) − u(k)

∆t
+

∫
K
ψσ

(
u(k) − u(0)

∆t
+ L(u(k), u(0))

)
and thus:∫

Ω
ϕσ

u(k+1) − u(k)

∆t
+
∑
K3σ

∫
K
ψσ

(
u(k) − u(0)

∆t
+ L(u(k), u(0))

)
= 0

So one can apply mass-lumping without spoiling the accuracy (for regular enough
meshes)

One gets a second order scheme, oscillation free if we start from an oscillation free
scheme, explicit, no mass matrix to invert

R. Abgrall 16/42



After some simple algebra:

∫
K
ϕσ

(
u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx +

∫
K
θσ

( ˜u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx

becomes: ∫
K
ϕσ

u(k+1) − u(k)

∆t
+

∫
K
ψσ

(
u(k) − u(0)

∆t
+ L(u(k), u(0))

)
and thus:∫

Ω
ϕσ

u(k+1) − u(k)

∆t
+
∑
K3σ

∫
K
ψσ

(
u(k) − u(0)

∆t
+ L(u(k), u(0))

)
= 0

So one can apply mass-lumping without spoiling the accuracy (for regular enough
meshes)

One gets a second order scheme, oscillation free if we start from an oscillation free
scheme, explicit, no mass matrix to invert

R. Abgrall 16/42



After some simple algebra:

∫
K
ϕσ

(
u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx +

∫
K
θσ

( ˜u(k+1) − u(0)

∆t
− L(u(k), u(0))

)
dx

becomes: ∫
K
ϕσ

u(k+1) − u(k)

∆t
+

∫
K
ψσ

(
u(k) − u(0)

∆t
+ L(u(k), u(0))

)
and thus:∫

Ω
ϕσ

u(k+1) − u(k)

∆t
+
∑
K3σ

∫
K
ψσ

(
u(k) − u(0)

∆t
+ L(u(k), u(0))

)
= 0

So one can apply mass-lumping without spoiling the accuracy (for regular enough
meshes)

One gets a second order scheme, oscillation free if we start from an oscillation free
scheme, explicit, no mass matrix to invert

R. Abgrall 16/42



Two illustrations

-2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2
-5

-4.5

-4

-3.5

-3

-2.5

-2

log10(h)

1

1

2

1.6

SL-RK2

GL-RK2

SL-RK3

GL-RK3

lo
g
1
0
(∥

ϵ p
∥ L

2
)

Figure 1: Vortex advection : grid convergence for the LDA scheme with F1. :
convergence history.

1

R. Abgrall 17/42



Two illustrations

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

x

y

B-SL-RK2

2

R. Abgrall 17/42



Overview

1 Introduction and motivation

2 Warming up

3 Finite element without mass matrix

4 Numerical applications

5 Conclusion, perspectives

R. Abgrall 18/42



What is the essence of these manipulations ?

We have two pieces in our toolkit:

• A first order (in time scheme): From Un, compute V such that L1(V ,Un) = 0
where

L1(V ,Un)σ = |Cσ |
Vσ − Un

σ

∆t
+
∑
K3σ

∫
K
ψσL(U(n),U(n))

Easily to solve

• A (formaly) second order scheme: From Un, compute W such that
L2(W ,Un) = 0 where

L2(W ,Un)σ =
∑
K3σ

∫
K
ψσ

(
W − Un

∆t
+ L(W (n),U(n))

)

• What we do is: starting from U(0) = Un,

compute U(1) such that L1(U(1),Un) = L1(U(0),Un)− L2(U(0),Un)

then U(2) : such that L1(U(2),Un) = L1(U(1),Un)− L2(U(1),Un)

• This is Defect correction !

R. Abgrall 19/42



What is the essence of these manipulations ?

We have two pieces in our toolkit:

• A first order (in time scheme): From Un, compute V such that L1(V ,Un) = 0
where

L1(V ,Un)σ = |Cσ |
Vσ − Un

σ

∆t
+
∑
K3σ

∫
K
ψσL(U(n),U(n))

Easily to solve

• A (formaly) second order scheme: From Un, compute W such that
L2(W ,Un) = 0 where

L2(W ,Un)σ =
∑
K3σ

∫
K
ψσ

(
W − Un

∆t
+ L(W (n),U(n))

)

• What we do is: starting from U(0) = Un,

compute U(1) such that L1(U(1),Un) = L1(U(0),Un)− L2(U(0),Un)

then U(2) : such that L1(U(2),Un) = L1(U(1),Un)− L2(U(1),Un)

• This is Defect correction !

R. Abgrall 19/42



What is the essence of these manipulations ?

We have two pieces in our toolkit:

• A first order (in time scheme): From Un, compute V such that L1(V ,Un) = 0
where

L1(V ,Un)σ = |Cσ |
Vσ − Un

σ

∆t
+
∑
K3σ

∫
K
ψσL(U(n),U(n))

Easily to solve

• A (formaly) second order scheme: From Un, compute W such that
L2(W ,Un) = 0 where

L2(W ,Un)σ =
∑
K3σ

∫
K
ψσ

(
W − Un

∆t
+ L(W (n),U(n))

)

• What we do is: starting from U(0) = Un,

compute U(1) such that L1(U(1),Un) = L1(U(0),Un)− L2(U(0),Un)

then U(2) : such that L1(U(2),Un) = L1(U(1),Un)− L2(U(1),Un)

• This is Defect correction !

R. Abgrall 19/42



What is the essence of these manipulations ?

We have two pieces in our toolkit:

• A first order (in time scheme): From Un, compute V such that L1(V ,Un) = 0
where

L1(V ,Un)σ = |Cσ |
Vσ − Un

σ

∆t
+
∑
K3σ

∫
K
ψσL(U(n),U(n))

Easily to solve

• A (formaly) second order scheme: From Un, compute W such that
L2(W ,Un) = 0 where

L2(W ,Un)σ =
∑
K3σ

∫
K
ψσ

(
W − Un

∆t
+ L(W (n),U(n))

)

• What we do is: starting from U(0) = Un,

compute U(1) such that L1(U(1),Un) = L1(U(0),Un)− L2(U(0),Un)

then U(2) : such that L1(U(2),Un) = L1(U(1),Un)− L2(U(1),Un)

• This is Defect correction !

R. Abgrall 19/42



What is the essence of these manipulations ?

We have two pieces in our toolkit:

• A first order (in time scheme): From Un, compute V such that L1(V ,Un) = 0
where

L1(V ,Un)σ = |Cσ |
Vσ − Un

σ

∆t
+
∑
K3σ

∫
K
ψσL(U(n),U(n))

Easily to solve

• A (formaly) second order scheme: From Un, compute W such that
L2(W ,Un) = 0 where

L2(W ,Un)σ =
∑
K3σ

∫
K
ψσ

(
W − Un

∆t
+ L(W (n),U(n))

)

• What we do is: starting from U(0) = Un,

compute U(1) such that L1(U(1),Un) = L1(U(0),Un)− L2(U(0),Un)

then U(2) : such that L1(U(2),Un) = L1(U(1),Un)− L2(U(1),Un)

• This is Defect correction !

R. Abgrall 19/42



Defect correction for ODEs
du

dt
= L(u), u(t = 0) = u0

[Dutt, Greegard, Rokhlin, BIT, vol 40(2), 2000]

Idea: mimic Picard iteration. in [tn, tn+1], Intermediate
times:tn,0 = tn < tn,1 < . . . < tn,m . . . < tn,m = tn+1

• Picard: un+1 = un +
∫ tn+1

tn
f (u(s))ds ≈ un +

∫ tn+1
tn

I`(f (u, s) ds

• Define L1 as the Euler forward method:
L1(U, un) =

(
Um − un + ∆t

∫ tn,m

tn,0

I0(s)ds, . . .

Up − un + ∆t

∫ tn,p

tn,0

I0(s)ds, . . . ,U0 − un + ∆t

∫ tn,0

tn,0

I0(s)ds

)T

• Define L2 as the high order method

L2(U, un) =

(
Um − un + ∆

∫ tn,m

tn,0

Im(s)ds, . . .

Up − un + ∆t

∫ tn,p

tn,0

Im(s)ds, . . . ,U0 − un + ∆t

∫ tn,0

tn,0

Im(s)ds

)T

• Clearly L1(U, un)− L2(U, un) = O(∆t)

• Um+1 defined by L1(Uk+1, un) = L1(Uk , un)− L2(Uk , un), make at most m
iterations. Get m + 1-th order of accuracy.

R. Abgrall 20/42



Defect correction for ODEs
du

dt
= L(u), u(t = 0) = u0

[Dutt, Greegard, Rokhlin, BIT, vol 40(2), 2000]

Idea: mimic Picard iteration. in [tn, tn+1], Intermediate
times:tn,0 = tn < tn,1 < . . . < tn,m . . . < tn,m = tn+1

• Picard: un+1 = un +
∫ tn+1

tn
f (u(s))ds ≈ un +

∫ tn+1
tn

I`(f (u, s) ds

• Define L1 as the Euler forward method:
L1(U, un) =

(
Um − un + ∆t

∫ tn,m

tn,0

I0(s)ds, . . .

Up − un + ∆t

∫ tn,p

tn,0

I0(s)ds, . . . ,U0 − un + ∆t

∫ tn,0

tn,0

I0(s)ds

)T

• Define L2 as the high order method

L2(U, un) =

(
Um − un + ∆

∫ tn,m

tn,0

Im(s)ds, . . .

Up − un + ∆t

∫ tn,p

tn,0

Im(s)ds, . . . ,U0 − un + ∆t

∫ tn,0

tn,0

Im(s)ds

)T

• Clearly L1(U, un)− L2(U, un) = O(∆t)

• Um+1 defined by L1(Uk+1, un) = L1(Uk , un)− L2(Uk , un), make at most m
iterations. Get m + 1-th order of accuracy.

R. Abgrall 20/42



Defect correction: principle

tn = tn,0

tn,1

Euler

Iteration

tn+1 = tn,m+1

L1

L1

m m + 1

L2

1

R. Abgrall 21/42



Application to finite elements

∂u

∂t
+ div f (u) = 0 t ∈ [0,T ],

u(0) = u0

Operators

• L2 operatior defined from:∫
Ω
ψσ

un+1,m − un

∆t
+

∫ tn,k

tn

ψσdiv Im(f (un
l ); s)ds = 0

• L1 operator defined from:

|Cσ |
un+1,m
σ − un

σ

∆t
+

∫ tn,k

tn

ψσdiv I0(f (un
l ); s)ds = 0

Questions:

• What is |Cσ | ?

• Can we have a condition like L1 − L2 = O(∆t) + O(h) ? If so, under which
condition(s) ?

R. Abgrall 22/42



Application to finite elements

∂u

∂t
+ div f (u) = 0 t ∈ [0,T ],

u(0) = u0

Operators

• L2 operatior defined from:∫
Ω
ψσ

un+1,m − un

∆t
+

∫ tn,k

tn

ψσdiv Im(f (un
l ); s)ds = 0

• L1 operator defined from:

|Cσ |
un+1,m
σ − un

σ

∆t
+

∫ tn,k

tn

ψσdiv I0(f (un
l ); s)ds = 0

Questions:

• What is |Cσ | ?

• Can we have a condition like L1 − L2 = O(∆t) + O(h) ? If so, under which
condition(s) ?

R. Abgrall 22/42



Construction of the L1 operator

From

|Cσ |
un+1,m
σ − un

σ

∆t
+

∫ tn,k

tn

ψσdiv I0(f (un
l ); s)ds = 0

• |Cσ | > 0

• Under which conditions under ||L1 − L2|| = O(∆t) + O(h)?
We write, for any σ, L`σ = (L`σ,0, L

`
σ,1, . . . , L

`
σ,m)T and look for:

max
k=0,m

||L1
k − L2

k ||2.

We have

||L1
k − L2

k ||2 = sup
vσ

∑
σ vσ(L1

σ − L2
σ)

||vh||2
.

∑
σ

vσ(L1
σ − L2

σ) =
∑

K

∑
σ∈K

vσ(L1
σ − L2

σ)

so we look at
∑
σ∈K vσ(L1

σ − L2
σ).

R. Abgrall 23/42



Construction of the L1 operator

From

|Cσ |
un+1,m
σ − un

σ

∆t
+

∫ tn,k

tn

ψσdiv I0(f (un
l ); s)ds = 0

• |Cσ | > 0

• Under which conditions under ||L1 − L2|| = O(∆t) + O(h)?
We write, for any σ, L`σ = (L`σ,0, L

`
σ,1, . . . , L

`
σ,m)T and look for:

max
k=0,m

||L1
k − L2

k ||2.

We have

||L1
k − L2

k ||2 = sup
vσ

∑
σ vσ(L1

σ − L2
σ)

||vh||2
.

∑
σ

vσ(L1
σ − L2

σ) =
∑

K

∑
σ∈K

vσ(L1
σ − L2

σ)

so we look at
∑
σ∈K vσ(L1

σ − L2
σ).

R. Abgrall 23/42



We can write

L1
σ,p = |Cσ ∩ K |(Um

σ − un
σ) +

∫ tn+1

tn

∫
K
ψσ div I0(f (un,l ; s)ds,

L2
σ,p =

∫
K
ψσ(Um − un) +

∫ tn+1

tn

ψσ div Im(f (un,l ; s)ds

so that

L1
σ,p − L2

σ,p = |Cσ ∩ K |(Um
σ − un

σ)−
∫

K
ψσ(Um − un)

+

∫ tn+1

tn

div
(
I0(f (un,l ; s)− Im(f (un,l ; s)

)
ψσ

I0 piecewise constant, Im Lagrange interpolation of degree m

R. Abgrall 24/42



Structural conditions

If
∑
σ∈K |Cσ ∩ K |(Um

σ − un
σ) =

∫
K

(Um − un)dx

i.e. ∑
σ∈K

|Cσ ∩ K |(Um
σ − un

σ) =
∑
σ∈K

∫
K
ψσ(Um − un)

because
∑
ψσ = 1 =

∑
σ∈K ϕσ Then: one can show that the condition

L1 − L2 = O(∆t) + O(h) is met

Proof:

Same technique as in R. Abgrall, Toward the ultimate conservative scheme: Following
the quest. J. Comput. Phys., 167(2):277-315, 2001

i.e. analysis of the truncation error on a general mesh, use of conservation relation.

R. Abgrall 25/42



Structural conditions

If
∑
σ∈K |Cσ ∩ K |(Um

σ − un
σ) =

∫
K

(Um − un)dx

i.e. ∑
σ∈K

|Cσ ∩ K |(Um
σ − un

σ) =
∑
σ∈K

∫
K
ψσ(Um − un)

because
∑
ψσ = 1 =

∑
σ∈K ϕσ Then: one can show that the condition

L1 − L2 = O(∆t) + O(h) is met

Proof:

Same technique as in R. Abgrall, Toward the ultimate conservative scheme: Following
the quest. J. Comput. Phys., 167(2):277-315, 2001

i.e. analysis of the truncation error on a general mesh, use of conservation relation.

R. Abgrall 25/42



Consequence

Condition: ∑
σ∈K

|Cσ ∩ K |(Um
σ − un

σ) =

∫
K

(Um − un)dx

Not all finite element work.

• Main constraint on |Cσ : |Cσ ∩ K | > 0????

• P1: OK. |Cσ ∩ K | =
|K |

d + 1
• Qr OK if one takes Gaussian integration points as Lagrange interpolation points.

• Pr , r > 1: not OK in general. Think of P2 for example

• On simplices: Bezier polynomials, Nurbs:

• All OK because

∫
K
ϕσdx > 0

Hence one has to forget somewhat pure nodal interpolation.

R. Abgrall 26/42



Consequence

Condition: ∑
σ∈K

|Cσ ∩ K |(Um
σ − un

σ) =

∫
K

(Um − un)dx

Not all finite element work.

• Main constraint on |Cσ : |Cσ ∩ K | > 0????

• P1: OK. |Cσ ∩ K | =
|K |

d + 1
• Qr OK if one takes Gaussian integration points as Lagrange interpolation points.

• Pr , r > 1: not OK in general. Think of P2 for example

• On simplices: Bezier polynomials, Nurbs:

• All OK because

∫
K
ϕσdx > 0

Hence one has to forget somewhat pure nodal interpolation.

R. Abgrall 26/42



Consequence

Condition: ∑
σ∈K

|Cσ ∩ K |(Um
σ − un

σ) =

∫
K

(Um − un)dx

Not all finite element work.

• Main constraint on |Cσ : |Cσ ∩ K | > 0????

• P1: OK. |Cσ ∩ K | =
|K |

d + 1
• Qr OK if one takes Gaussian integration points as Lagrange interpolation points.

• Pr , r > 1: not OK in general. Think of P2 for example

• On simplices: Bezier polynomials, Nurbs:

• All OK because

∫
K
ϕσdx > 0

Hence one has to forget somewhat pure nodal interpolation.

R. Abgrall 26/42



Consequence

Condition: ∑
σ∈K

|Cσ ∩ K |(Um
σ − un

σ) =

∫
K

(Um − un)dx

Not all finite element work.

• Main constraint on |Cσ : |Cσ ∩ K | > 0????

• P1: OK. |Cσ ∩ K | =
|K |

d + 1
• Qr OK if one takes Gaussian integration points as Lagrange interpolation points.

• Pr , r > 1: not OK in general. Think of P2 for example

• On simplices: Bezier polynomials, Nurbs:

• All OK because

∫
K
ϕσdx > 0

Hence one has to forget somewhat pure nodal interpolation.

R. Abgrall 26/42



Some properties

• If the scheme defined by L1 is stable (L2 say) for CFL, the resulting scheme will
be stable for CFL/(degree + 1)

”Proof”One can see the scheme as a perturbation of the original scheme:

L1(un+1, un) = O(h)

Result from [Richtmyer-Morton] ends the proof.

• If the L1 operator is maximum principle preserving, and if the L2 can be writen as
a barycentric expansion of the data at previous sub-time steps, then the method
is maximum preserving preserving.

”Proof”Hint: Bézier are positive, so the mass matrix of the accurate scheme has
positive coefficients

• Example of such scheme: RDS

R. Abgrall 27/42



Some properties

• If the scheme defined by L1 is stable (L2 say) for CFL, the resulting scheme will
be stable for CFL/(degree + 1)

”Proof”One can see the scheme as a perturbation of the original scheme:

L1(un+1, un) = O(h)

Result from [Richtmyer-Morton] ends the proof.

• If the L1 operator is maximum principle preserving, and if the L2 can be writen as
a barycentric expansion of the data at previous sub-time steps, then the method
is maximum preserving preserving.

”Proof”Hint: Bézier are positive, so the mass matrix of the accurate scheme has
positive coefficients

• Example of such scheme: RDS

R. Abgrall 27/42



Some properties

• If the scheme defined by L1 is stable (L2 say) for CFL, the resulting scheme will
be stable for CFL/(degree + 1)

”Proof”One can see the scheme as a perturbation of the original scheme:

L1(un+1, un) = O(h)

Result from [Richtmyer-Morton] ends the proof.

• If the L1 operator is maximum principle preserving, and if the L2 can be writen as
a barycentric expansion of the data at previous sub-time steps, then the method
is maximum preserving preserving.

”Proof”Hint: Bézier are positive, so the mass matrix of the accurate scheme has
positive coefficients

• Example of such scheme: RDS

R. Abgrall 27/42



Overview

1 Introduction and motivation

2 Warming up

3 Finite element without mass matrix

4 Numerical applications

5 Conclusion, perspectives

R. Abgrall 28/42



Linear case

Problem

∂u

∂t
+ div f(u, x) = 0

u(x, 0) = u0(x)

with

f(u, x) = (−2πy , 2πx) u, u0(x) = e−
||x−x0||

2

40

R. Abgrall 29/42



Schemes

• SUPG:

ΦK
σ (uh) =

∫
K

(
ϕσ + hK∇uf · ∇ϕσ

)
τ

(
∆u

∆t
+ div f(x , x)

)
dx ,

• Galerkin with jump stabilization (Burman et al)

ΦK
σ =

∫
K
ϕσ

(
∆u

∆t
+ div f(x , x)

)
dx +

∑
edges of K

Γh2
e

∫
e

(
∇uh

K −∇uh
K +

)
· ∇(ϕσ)K .

R. Abgrall 30/42



1D case, u0(x) = e−80(x−0.4)2

log10 h log10 errorL1 slope log10 errorL2 slope log10 errorL∞ slope
B2 approximation

-0.8239 -2.2530 - - -2.131 -
-1.1250 -3.2430 3.287 -3.2670 3.214 -3.088 3.178
-1.4260 -4.1820 3.119 -4.1920 3.073 -4.003 3.039
-1.7270 -5.0970 3.039 -5.1000 3.016 -4.932 3.086
-2.0280 -5.9860 2.953 -6.0010 2.993 -5.825 2.966
-2.3290 -6.9010 3.039 -6.9070 3.009 -6.746 3.059

B3 approximation
-1.0000 -2.8890 - -2.310 -1.6170 -
-1.301 -4.0040 3.704 -3.4980 3.946 -2.8430 4.073
-1.602 -5.2370 4.096 -4.6810 3.930 -3.9430 3.654
-1.903 -6.4250 3.946 -5.8790 3.980 -5.1050 3.860
-2.204 -7.6320 4.009 -7.0820 3.996 -6.2990 3.966
-2.505 -8.8350 3.996 -8.2860 4.000 -7.4990 3.986

B4 approximation
-1.000 -3.5230 - -3.0500 - -2.3970 -

-1.3010 -5.0080 4.933 -4.4400 4.617 -3.6410 4.132
-1.6020 -6.4360 4.744 -5.9260 4.936 -5.1260 4.933
-1.9030 -7.9440 5.009 -7.4270 4.986 -6.6220 4.970
-2.2040 -9.4440 4.983 -8.9290 4.990 -8.1180 4.970
-2.5050 -10.610 3.873 -10.1900 4.189 -9.5060 4.611

R. Abgrall 31/42



Test case: 8 rotations

dofs: 19225R. Abgrall 32/42



Test case: 8 rotations

SUPG, 2 iters

R. Abgrall 33/42


movie_rotation_2iter.mpg
Media File (video/mpeg)



Test case: 8 rotations

SUPG, 6 iters

R. Abgrall 34/42


movie_rotation.mpg
Media File (video/mpeg)



Test case: 8 rotations

Galerkin+jump stabilization, 2 iters

R. Abgrall 35/42


rotation_burman_2.mpg
Media File (video/mpeg)



Error analysis
Rotation, T = 1

Initial condition: u0(x) = e−
||x−x0||

2

40 , h ≈
√

Ndofs

Ndofs L1 slope L2 slope L∞ slope

1236 1.351 10−1 − 1.335 10−1 − 5.217 10−1 −
4821 2.997 10−2 2.21 4.207 10−2 1.69 1.967 10−1 1.43

19041 3.976 10−3 2.94 7.133 10−3 2.58 4.149 10−2 2.26
75681 6.710 10−4 2.57 1.217 10−3 2.56 7.063 10−3 2.56

Second order

Ndofs L1 slope L2 slope L∞ slope

4825 2.508 10−2 − 3.056 10−2 − 1.161 10−1 −
19041 1.354 10−3 4.24 2.592 10−3 3.54 1.347 10−2 3.13
75297 1.094 10−4 3.24 2.003 10−4 3.72 1.137 10−3 3.59

300993 1.547 10−5 2.82 2.653 10−5 2.91 1.742 10−4 2.70
Third order

R. Abgrall 36/42



Non linear case
Non convex case: KPP case

∂u

∂t
+ div f(u) = 0

u(x, 0) = u0(x)

f = (cos u, sin u) and

u0(x) =

{
7
2
π if ||x|| < 1
π
4

else.

Difficulties:

• Composite waves (shock attached to fans)

• Existence of sonic points on ||x || = 1.

R. Abgrall 37/42



Schemes with jump filtering

Residuals

Φσ(uh) = βσ(uh)Φtot

+
∑

edges of ∂K

h2
e ||∇uf ||

∫
∂K

[∇uh] · [∇ϕσ]d`

Choice of βσ(uh)

• Choice 1:

βPSI
σ (uh) =

(
ΦLxF
σ

Φtot

)+

∑
σ′∈K

(
ΦLxF
σ′

Φtot

)+
,

• Choice 2:

βσ(uh)Φtot = (1− θ)βPSI
σ (uh)Φtot + θΦLxF

σ

θ =
|Φtot |∑

σ′∈K |ΦσLxF |

R. Abgrall 38/42



Results, t = 1, CFL = 0.4 for O3 and 0.8 for O2
Meshes O2 and O3: same number of DOFs

O2, residual with choice 1

R. Abgrall 39/42



Results, t = 1, CFL = 0.4 for O3 and 0.8 for O2
Meshes O2 and O3: same number of DOFs

O3, residual with choice 1

R. Abgrall 39/42



Results, t = 1, CFL = 0.3 for O3 and 0.6 for O2
Meshes O2 and O3: same number of DOFs

O2, Choice2

R. Abgrall 40/42



Results, t = 1, CFL = 0.3 for O3 and 0.6 for O2
Meshes O2 and O3: same number of DOFs

O2, Choice2

R. Abgrall 40/42



Results, t = 1, CFL = 0.3 for O3 and 0.6 for O2
Meshes O2 and O3: same number of DOFs

O3, Choice2

R. Abgrall 40/42



Results, t = 1, CFL = 0.3 for O3 and 0.6 for O2
Meshes O2 and O3: same number of DOFs

O3, Choice2

R. Abgrall 40/42



Overview

1 Introduction and motivation

2 Warming up

3 Finite element without mass matrix

4 Numerical applications

5 Conclusion, perspectives

R. Abgrall 41/42



Conclusions

• High order schemes for finite element methods without mass matrix: possible

• Seems to work

• Still some issues to be understood: this are preliminary results

• Go to systems and implicit (Viscous problems)

R. Abgrall 42/42



Conclusions

• High order schemes for finite element methods without mass matrix: possible

• Seems to work

• Still some issues to be understood: this are preliminary results

• Go to systems and implicit (Viscous problems)

R. Abgrall 42/42


	Introduction and motivation
	Warming up
	Finite element without mass matrix
	Numerical applications
	Conclusion, perspectives

