Entropy dissipative methods for parabolic problems

Clément Cancès

Equipe RAPSODI, Inria Lille - Nord Europe

Advanced numerical methods: recent developments, analysis, and applications

Outline of the talk

Entropy and dissipation for a model parabolic problem

- 2 Scharfetter-Gummel: a monotone, linear, and well-balanced scheme
- Opstream mobility schemes
- 4 Schemes with positive local dissipation tensors
- 5 Conclusion and prospects

Outline of the talk

Entropy and dissipation for a model parabolic problem

- 2 Scharfetter-Gummel: a monotone, linear, and well-balanced scheme
- 3 Upstream mobility schemes
- 4 Schemes with positive local dissipation tensors
- 5 Conclusion and prospects

A model problem

The Fokker-Planck equation

$$\begin{cases} \partial_t u - \nabla \cdot (\mathbf{\Lambda}(\nabla u + u \nabla \Psi)) = 0 & \text{in } \Omega \times (0, \infty), \\ \mathbf{\Lambda} (u \nabla \Psi + \nabla u) \cdot \mathbf{n} = 0 & \text{on } \partial \Omega \times (0, \infty), \\ u_{|_{t=0}} = u_0 \ge 0 & \text{in } \Omega. \end{cases}$$
(FP)

with $\Psi \in C^2(\overline{\Omega})$ and Λ uniformly elliptic

$$0 \leq \lambda_{\star} \boldsymbol{I} \leq \boldsymbol{\Lambda} = \boldsymbol{\Lambda}^{T} \leq \lambda^{\star} \boldsymbol{I}.$$

A model problem

The Fokker-Planck equation

$$\begin{cases} \partial_t u - \nabla \cdot (\mathbf{\Lambda}(\nabla u + u \nabla \Psi)) = 0 & \text{in } \Omega \times (0, \infty), \\ \mathbf{\Lambda}(u \nabla \Psi + \nabla u) \cdot \mathbf{n} = 0 & \text{on } \partial \Omega \times (0, \infty), \\ u_{|_{t=0}} = u_0 \ge 0 & \text{in } \Omega. \end{cases}$$
(FP)

with $\Psi \in C^2(\overline{\Omega})$ and Λ uniformly elliptic

$$0 \leq \lambda_{\star} \boldsymbol{I} \leq \boldsymbol{\Lambda} = \boldsymbol{\Lambda}^{T} \leq \lambda^{\star} \boldsymbol{I}.$$

Very classical results

- The problem is well-posed
- $u \ge 0$ everywhere in $\overline{\Omega} \times \mathbb{R}_+$

Free energy and dissipation

Since $\nabla u = u \nabla \log(u)$, the problem rewrites as a nonlinear parabolic equation

$$\partial_t u - \nabla \cdot (u \mathbf{\Lambda} \nabla (\log(u) + \Psi)) = 0.$$
 (1)

Free energy:
$$\mathfrak{E}(u) = \underbrace{\int_{\Omega} (u \log u - u) d\mathbf{x}}_{\text{entropy}} + \underbrace{\int_{\Omega} u \Psi d\mathbf{x}}_{\text{pot. energy}} = \mathfrak{E}_{\text{ent}}(u) + \mathfrak{E}_{\text{pot}}(u),$$

Dissipation: $\mathfrak{D}(u) = \int_{\Omega} u \Lambda \nabla (\log(u) + \Psi) \cdot \nabla (\log(u) + \Psi) d\mathbf{x} \ge 0.$

Multiply (1) by $\log(u) + \Psi$ provides

$$rac{\mathrm{d}}{\mathrm{d}t}\mathfrak{E}(u)=-\mathfrak{D}(u)\leq 0.$$

Three important remarks

[Arnold et al. '01], [Carrillo et al. '01], [Bolley, Gentil, and Guillin '12], ...

The crucial estimate is nonlinear

▶ Test with a nonlinear function of the unknown and use

 $abla \phi(u) = \phi'(u)
abla u$ (hence $abla u
abla \log(u) = 4 |
abla \sqrt{u}|^2 \ge 0$)

Three important remarks

[Arnold et al. '01], [Carrillo et al. '01], [Bolley, Gentil, and Guillin '12], ...

The crucial estimate is nonlinear

▶ Test with a nonlinear function of the unknown and use

 $\nabla \phi(u) = \phi'(u) \nabla u$ (hence $\nabla u \nabla \log(u) = 4 |\nabla \sqrt{u}|^2 \ge 0$)

Convergence to equilibrium

▶ Define $u_{\infty} = e^{-\Psi}$, then

 $u(\cdot, t) \longrightarrow u_{\infty}$ in $L^{2}(\Omega)$ as $t \to \infty$.

+ exponentially fast convergence if Ψ and Ω are convex.

Three important remarks

[Arnold et al. '01], [Carrillo et al. '01], [Bolley, Gentil, and Guillin '12], ...

The crucial estimate is nonlinear

▶ Test with a nonlinear function of the unknown and use

 $\nabla \phi(u) = \phi'(u) \nabla u$ (hence $\nabla u \nabla \log(u) = 4 |\nabla \sqrt{u}|^2 \ge 0$)

Convergence to equilibrium

▶ Define $u_{\infty} = e^{-\Psi}$, then

 $u(\cdot, t) \longrightarrow u_{\infty}$ in $L^{2}(\Omega)$ as $t \to \infty$.

+ exponentially fast convergence if Ψ and Ω are convex.

Extensions many other problems:

Porous media flows, semiconductors, chemotaxis, ...

Outline of the talk

Entropy and dissipation for a model parabolic problem

2 Scharfetter-Gummel: a monotone, linear, and well-balanced scheme

3 Upstream mobility schemes

4 Schemes with positive local dissipation tensors

5 Conclusion and prospects

[Scharfetter and Gummel '69], [Chatard '11], ...

Isotropic diffusion tensor $\Lambda = I_d$

Super-admissible mesh

- \mathcal{T} : control volumes, $\mathcal{K} \in \mathcal{T}$
- \mathcal{E} : edges, $\sigma \in \mathcal{E}$
- Δt : time step

Implicit Finite Volume scheme

$$\frac{u_{K}^{n+1} - u_{K}^{n}}{\Delta t} m_{K} + \sum_{\sigma \in \mathcal{E}_{K}} \mathcal{F}_{K,\sigma}^{n+1} = 0$$
$$\mathcal{F}_{K,\sigma}^{n+1} \simeq -\int_{\sigma} \left(\nabla u^{n+1} + u^{n+1} \nabla \Psi \right) \cdot \mathbf{n}_{K,\sigma} \mathrm{d}\mathbf{x}$$

Approximate solution

$$u_h^{n+1}(\mathbf{x}) = u_K^{n+1} \text{ if } \mathbf{x} \in K, \qquad u_h(\cdot, t) = u_h^{n+1} \text{ if } t \in (n\Delta t, (n+1)\Delta t].$$

[Scharfetter and Gummel '69], [Chatard '11], ...

Set $\Psi_{\mathcal{K}} = \Psi(\mathbf{x}_{\mathcal{K}})$ and $B(s) = \frac{s}{e^s - 1} \ge 0$

$$\mathcal{F}_{K,\sigma}^{n+1} = \frac{m_{\sigma}}{\mathrm{d}_{\sigma}} \left(B(\Psi_L - \Psi_K) u_K^{n+1} - B(\Psi_K - \Psi_L) u_L^{n+1} \right), \qquad \sigma = K | L$$

[Scharfetter and Gummel '69], [Chatard '11], ...

Set $\Psi_{\mathcal{K}} = \Psi(\mathbf{x}_{\mathcal{K}})$ and $B(s) = \frac{s}{e^s - 1} \ge 0$

$$\mathcal{F}_{\mathcal{K},\sigma}^{n+1} = \frac{m_{\sigma}}{\mathrm{d}_{\sigma}} \left(B(\Psi_L - \Psi_K) u_{\mathcal{K}}^{n+1} - B(\Psi_K - \Psi_L) u_{\mathcal{L}}^{n+1} \right), \qquad \sigma = \mathcal{K}|L$$

Key properties of the SG scheme

[Scharfetter and Gummel '69], [Chatard '11], ...

Set $\Psi_{\mathcal{K}} = \Psi(\mathbf{x}_{\mathcal{K}})$ and $B(s) = \frac{s}{e^s - 1} \ge 0$

$$\mathcal{F}_{K,\sigma}^{n+1} = \frac{m_{\sigma}}{\mathrm{d}_{\sigma}} \left(B(\Psi_L - \Psi_K) u_K^{n+1} - B(\Psi_K - \Psi_L) u_L^{n+1} \right), \qquad \sigma = K | L$$

Key properties of the SG scheme

(a) Linearity: the scheme amounts to a linear system

$$(\mathbb{M} + \mathbb{A}_{\Psi}) \boldsymbol{U}^{n+1} = \mathbb{M} \boldsymbol{U}^n, \qquad \boldsymbol{U}^{n+1} = (\boldsymbol{u}_{K}^{n+1})_{K}$$

[Scharfetter and Gummel '69], [Chatard '11], ...

Set $\Psi_{\mathcal{K}} = \Psi(\mathbf{x}_{\mathcal{K}})$ and $B(s) = \frac{s}{e^s - 1} \ge 0$

$$\mathcal{F}_{K,\sigma}^{n+1} = \frac{m_{\sigma}}{\mathrm{d}_{\sigma}} \left(B(\Psi_L - \Psi_K) u_K^{n+1} - B(\Psi_K - \Psi_L) u_L^{n+1} \right), \qquad \sigma = K | L$$

Key properties of the SG scheme

(a) Linearity: the scheme amounts to a linear system

$$(\mathbb{M} + \mathbb{A}_{\Psi}) \boldsymbol{U}^{n+1} = \mathbb{M} \boldsymbol{U}^n, \qquad \boldsymbol{U}^{n+1} = (\boldsymbol{u}_{\mathcal{K}}^{n+1})_{\mathcal{K}}$$

(b) Monotonicity: the scheme rewrites

$$\mathcal{H}_{K}\left(u_{K}^{n+1},u_{K}^{n},\left(u_{L}^{n+1}\right)_{L\neq K}\right)=0$$

[Scharfetter and Gummel '69], [Chatard '11], ...

Set $\Psi_{\mathcal{K}} = \Psi(\mathbf{x}_{\mathcal{K}})$ and $B(s) = \frac{s}{e^s - 1} \ge 0$

$$\mathcal{F}_{K,\sigma}^{n+1} = \frac{m_{\sigma}}{\mathrm{d}_{\sigma}} \left(B(\Psi_L - \Psi_K) u_K^{n+1} - B(\Psi_K - \Psi_L) u_L^{n+1} \right), \qquad \sigma = K | L$$

Key properties of the SG scheme

(c) Exact preservation of the equilibrium

$$u_K^\infty = e^{-\Psi_K}$$
 and $u_L^\infty = e^{-\Psi_L} \implies \mathcal{F}_{K,\sigma}^\infty = 0$

[Scharfetter and Gummel '69], [Chatard '11], ...

Set $\Psi_{\mathcal{K}} = \Psi(\mathbf{x}_{\mathcal{K}})$ and $B(s) = \frac{s}{e^s - 1} \ge 0$

$$\mathcal{F}_{K,\sigma}^{n+1} = \frac{m_{\sigma}}{\mathrm{d}_{\sigma}} \left(B(\Psi_L - \Psi_K) u_K^{n+1} - B(\Psi_K - \Psi_L) u_L^{n+1} \right), \qquad \sigma = K | L$$

Key properties of the SG scheme

(c) Exact preservation of the equilibrium

$$u_K^\infty = e^{-\Psi_K}$$
 and $u_L^\infty = e^{-\Psi_L} \implies \mathcal{F}_{K,\sigma}^\infty = 0$

(d) Free energy dissipation:

$$\mathfrak{E}(u_h^{n+1}) \leq \mathfrak{E}(u_h^{n+1}) + \Delta t \sum_{K \in \mathcal{T}} \mathcal{F}_{K,\sigma}^{n+1}(\log(u_K^{n+1}) + \Psi_K) \leq \mathfrak{E}(u_h^n)$$

[Scharfetter and Gummel '69], [Chatard '11], ...

The scheme is convergent

 $u_h \longrightarrow u$ in $L^1_{\mathrm{loc}}(\overline{\Omega} \times \mathbb{R}_+)$ as $h, \Delta t \to 0$

Positivity preserving

- 2nd order accuracy in space
- Convergence towards the equilibrium

$$u_h(\cdot,t) \longrightarrow u_h^\infty = e^{-\Psi_h}$$
 as $t \to \infty$

opossible extensions to nonlinear problems [Bessemoulin-Chatard, PhD thesis '12]

[Scharfetter and Gummel '69], [Chatard '11], ...

The scheme is convergent

 $u_h \longrightarrow u$ in $L^1_{\mathrm{loc}}(\overline{\Omega} \times \mathbb{R}_+)$ as $h, \Delta t \to 0$

- Positivity preserving
- 2nd order accuracy in space
- Convergence towards the equilibrium

$$u_h(\cdot,t) \longrightarrow u_h^\infty = e^{-\Psi_h}$$
 as $t \to \infty$

More general grids ?

possible extensions to nonlinear problems [Bessemoulin-Chatard, PhD thesis '12]

But...

S Extension when
$$\Lambda \neq \lambda I_d$$
?

[Scharfetter and Gummel '69, Chatard '11]

Outline of the talk

Entropy and dissipation for a model parabolic problem

2 Scharfetter-Gummel: a monotone, linear, and well-balanced scheme

Opstream mobility schemes

4 Schemes with positive local dissipation tensors

5 Conclusion and prospects

A nonlinear upstream mobility CVFE scheme

[C. and Guichard, MCOM '16], [Ait Hammou, C., and Chainais-Hillairet, submitted]

Simplicial mesh

- \mathcal{T} : triangles or tetrahedra, $\mathcal{T} \in \mathcal{T}$
- \mathcal{V} : vertices, $K \in \mathcal{V}$
- \mathcal{E} : edges connected vertices, $\sigma \in \mathcal{E}$
- \mathcal{D} : dual barycentric mesh, $\omega_{\mathcal{K}} \in \mathcal{D}$
- Δt : time step

mass-lumped \mathbb{P}_1 -finite elements

• Diagonal mass matrix

$$m_{K} := \int_{\omega_{K}} \mathrm{d}\mathbf{x} = \int_{\Omega} \phi_{K} \mathrm{d}\mathbf{x}, \quad K \in \mathcal{V}$$

• Transmittivity coefficients (possibly <0)

$$\mathbf{a}_{KL} = -\int_{\Omega} \mathbf{\Lambda} \nabla \phi_K \cdot \nabla \phi_L \mathrm{d} \mathbf{x}, \quad K \neq L \in \mathcal{V}$$

A nonlinear upstream mobility CVFE scheme

[C. and Guichard, MCOM '16], [Ait Hammou, C., and Chainais-Hillairet, submitted]

Simplicial mesh

- \mathcal{T} : triangles or tetrahedra, $\mathcal{T} \in \mathcal{T}$
- \mathcal{V} : vertices, $K \in \mathcal{V}$
- \mathcal{E} : edges connected vertices, $\sigma \in \mathcal{E}$
- \mathcal{D} : dual barycentric mesh, $\omega_{K} \in \mathcal{D}$
- Δt : time step

discrete reconstructions

• Piecewise linear reconstruction

$$v_h(\mathbf{x},t) = \sum_{K \in \mathcal{V}} v_K^{n+1} \phi_K(\mathbf{x}) \quad \text{if } t \in (t_n,t_{n+1}].$$

• Piecewise constant reconstruction

$$\overline{v}_h(\mathbf{x},t) = \sum_{K \in \mathcal{V}} v_K^{n+1} \mathbf{1}_{\omega_K}(\mathbf{x}) \quad \text{if } t \in (t_n,t_{n+1}].$$

A nonlinear upstream mobility CVFE scheme

[C. and Guichard, MCOM '16], [Ait Hammou, C., and Chainais-Hillairet, submitted]

Discretization of the nonlinear version of the equation:

 $\partial_t u - \boldsymbol{\nabla} \cdot (u \boldsymbol{\Lambda} \boldsymbol{\nabla} (\log(u) + \Psi)) = 0$

into a nonlinear system $\mathcal{F}_n(\boldsymbol{u}^{n+1}) = \boldsymbol{0}$.

Conservation on the dual cell $\omega_{\mathcal{K}}$: Define $p_{\mathcal{K}}^{n+1} = \log(u_{\mathcal{K}}^{n+1}) + \Psi_{\mathcal{K}}$

$$\frac{u_{K}^{n+1}-u_{K}^{n}}{\Delta t}m_{K}+\sum_{\sigma_{KL}\in\mathcal{E}_{K}}u_{KL}^{n+1}a_{KL}\left(p_{K}^{n+1}-p_{L}^{n+1}\right)=0$$

Upwind mobility on σ_{KL} :

$$u_{KL}^{n+1} = \begin{cases} \left(u_{K}^{n+1}\right)^{+} & \text{if } a_{KL} \left(p_{K}^{n+1} - p_{L}^{n+1}\right) \ge 0\\ \left(u_{L}^{n+1}\right)^{+} & \text{if } a_{KL} \left(p_{K}^{n+1} - p_{L}^{n+1}\right) < 0 \end{cases}$$

• Loss of monotonicity when $a_{KL} < 0...$

• Loss of monotonicity when $a_{KL} < 0...$

Positivity preservation

$$u_{K}^{n} \geq 0, \qquad \forall K \in \mathcal{V}, \ \forall n \geq 0$$

Proof by induction:

• Base case:
$$u_K^0 = \frac{1}{m_K} \int_{\omega_K} u_0 \mathrm{d} \mathbf{x} \ge 0.$$

• Inductive step: assume $u_K^{n+1} = \min_K u_K^{n+1} < 0$.

$$u_{\mathcal{K}}^{n+1} = \underbrace{u_{\mathcal{K}}^{n}}_{\geq 0} - \frac{\Delta t}{m_{\mathcal{K}}} \sum_{\sigma_{\mathcal{K}L} \in \mathcal{E}_{\mathcal{K}}} \left[\underbrace{\left(u_{L}^{n+1}\right)^{+}}_{\geq 0} \times [\leq 0] + \underbrace{\left(u_{\mathcal{K}}^{n+1}\right)^{+}}_{=0} \times [\geq 0] \right] \geq 0$$

▶ Loss of monotonicity when $a_{KL} < 0...$

Positivity preservation

$$u_{K}^{n} \geq 0, \qquad \forall K \in \mathcal{V}, \ \forall n \geq 0$$

Remark

$$u_{KL}^{n+1} = \begin{cases} \left(u_{K}^{n+1}\right)^{+} & \text{if } a_{KL} \left(p_{K}^{n+1} - p_{L}^{n+1}\right) \ge 0\\ \left(u_{L}^{n+1}\right)^{+} & \text{if } a_{KL} \left(p_{K}^{n+1} - p_{L}^{n+1}\right) < 0 \end{cases}$$

▶ Loss of monotonicity when $a_{KL} < 0...$

Positivity preservation

$$u_{K}^{n} \geq 0, \qquad \forall K \in \mathcal{V}, \ \forall n \geq 0$$

Remark

$$u_{KL}^{n+1} = \begin{cases} u_{K}^{n+1} & \text{if } a_{KL} \left(p_{K}^{n+1} - p_{L}^{n+1} \right) \ge 0 \\ u_{L}^{n+1} & \text{if } a_{KL} \left(p_{K}^{n+1} - p_{L}^{n+1} \right) < 0 \end{cases}$$

Entropy stability and dissipation control

Proposition

There exists C depending on Λ , reg(\mathcal{T}), and t_f such that

Entropy stability

 $\mathfrak{E}_{ent}(\overline{u}_h^n) \leq C, \qquad \forall n \geq 0$

Dissipation control

$$\sum_{n=0}^{N} \Delta t \sum_{\sigma_{KL}} |a_{KL}| u_{KL}^{n+1} \left(\log(u_K^{n+1}) - \log(u_L^{n+1}) \right)^2 \leq C.$$

Entropy stability and dissipation control

Proposition

There exists C depending on Λ , reg(\mathcal{T}), and t_f such that

Entropy stability

 $\mathfrak{E}_{ent}(\overline{u}_h^n) \leq C, \qquad \forall n \geq 0$

Dissipation control

$$\sum_{n=0}^{N} \Delta t \sum_{\sigma_{KL}} |a_{KL}| u_{KL}^{n+1} \left(\log(u_K^{n+1}) - \log(u_L^{n+1}) \right)^2 \le C$$

We proved that

$$\mathfrak{E}_{\mathsf{ent}}(\overline{u}_h^n) \leq C$$
 hence $\mathfrak{E}(\overline{u}_h^n) \leq C$

We did not prove

$$\mathfrak{E}(\overline{u}_h^{n+1}) \leq \mathfrak{E}(\overline{u}_h^n) \quad ext{ if } oldsymbol{
abla} \Psi
eq 0.$$

Existence of a solution to the scheme

Proposition

There exists (at least) one solution $\mathbf{u}^{n+1} = (\mathbf{u}_{K}^{n+1})_{K}$ to the nonlinear scheme

Sketch of the proof

Step 1: there exists $\epsilon > 0$ and R > 0 depending on \mathcal{T} and Δt such that

$$0 < \epsilon \le u_K^n \le R, \qquad \forall K, \ \forall n$$

Step 2: the system $\mathcal{F}_n(\boldsymbol{u}^{n+1}) = \boldsymbol{0}$ admits one solution \boldsymbol{u}^{n+1} in $[\epsilon, R]^{\#\mathcal{V}}$

- \mathcal{F}_n is continuous on $[\epsilon, R]^{\#\mathcal{V}}$ (singularity of the log near 0 avoided)
- ► A topological degree argument to conclude [Leray and Schauder '34], [Deimling '85], [Eymard *et al.* '98]

Convergence of the scheme

[C. and Guichard, MCOM '16], [Ait Hammou, C., and Chainais-Hillairet, submitted]

- h_T : diameter of the simplex T
- ρ_T : diameter of the largest inner sphere of T

$$\operatorname{size}(\mathcal{T}) = \max_{\mathcal{T} \in \mathcal{T}} h_{\mathcal{T}}, \qquad \operatorname{reg}(\mathcal{T}) = \max_{\mathcal{T} \in \mathcal{T}} \frac{h_{\mathcal{T}}}{\rho_{\mathcal{T}}}$$

Theorem

Assume that $size(\mathcal{T})$ and Δt tend to 0 and $reg(\mathcal{T}) \leq C$, then

 $\overline{u}_h \to u \quad in \ L^1_{loc}(\overline{\Omega} \times \mathbb{R}_+)$

where u is the unique solution to the Fokker-Planck equation

Proof based on compactness arguments

A test case with an analytic solution

[Ait Hammou, C., and Chainais-Hillairet, *submitted*]

- The domain: $\Omega = [0, 1]^2$
- **•** The equation: $\Psi(x, y) = -x$

 $\partial_t u + \boldsymbol{\nabla} \cdot (\boldsymbol{\Lambda} (u \mathbf{e}_x - \boldsymbol{\nabla} u)) = 0$

- The diffusion tensor: $\Lambda = I_d$ and $\Lambda = \text{diag}(1, 20)$
- **The mesh:** successive refinements of a Delaunay mesh

► The analytic solution:

$$u_{\text{ex}}(x, y, t) = \exp\left(-(\pi^2 + \frac{1}{4})t + \frac{x}{2}\right)\left(\pi\cos(\pi x) + \frac{1}{2}\sin(\pi x)\right) + \pi\exp(x - \frac{1}{2}x)$$

Numerical results

- Preservation of the positivity by the nonlinear scheme
- Solution Nonlinear scheme merely of order 1: $||u u_h||_{L^2(Q)} \leq Ch$
- S The constant C strongly depends on the anisotropy ratio

C. Cancès (Inria RAPSODI)

Dissipative schemes for parabolic PDEs

Outline of the talk

Entropy and dissipation for a model parabolic problem

2 Scharfetter-Gummel: a monotone, linear, and well-balanced scheme

3 Upstream mobility schemes

4 Schemes with positive local dissipation tensors

5 Conclusion and prospects

Motivation

Specification

Tune your preferred numerical method to make it

Free Energy diminishing

 $\mathfrak{E}(\overline{u}_h^{n+1}) \leq \mathfrak{E}(\overline{u}_h^n), \qquad n \geq 0$

Second order accurate (w.r.t. space)

 $\|\overline{u}_h - u_{\mathsf{ex}}\| \le Ch^2$

Robust w.r.t. the anisotropy ratio (or the grid)

Reasonably cheap (coding and computations)

- Vertex Approximate Gradient (VAG) scheme: [C. and Guichard, JFoCM '16]
- P₁ Finite Elements: [C., Nabet, and Vohralík, in preparation]
- Discrete Duality Finite Volumes: [C., Chainais-Hillairet, and Krell, in preparation]

• . . .

Motivation

Specification

Tune your preferred numerical method to make it

Free Energy diminishing

 $\mathfrak{E}(\overline{u}_h^{n+1}) \leq \mathfrak{E}(\overline{u}_h^n), \qquad n \geq 0$

Second order accurate (w.r.t. space)

 $\|\overline{u}_h - u_{\rm ex}\| \le Ch^2$

Robust w.r.t. the anisotropy ratio (or the grid)

Reasonably cheap (coding and computations)

- Vertex Approximate Gradient (VAG) scheme: [C. and Guichard, JFoCM '16]
- P1 Finite Elements: [C., Nabet, and Vohralík, in preparation]
- Discrete Duality Finite Volumes: [C., Chainais-Hillairet, and Krell, in preparation]

^{• . . .}

The scheme and first elementary properties

Define $p_{K}^{n+1} = \log(u_{K}^{n+1}) + \Psi_{K}$ and \boldsymbol{u}^{n+1} by

$$\int_{\Omega} \frac{\overline{u}_{h}^{n+1} - \overline{u}_{h}^{n}}{\Delta t} \overline{v}_{h} \mathrm{d}\mathbf{x} + \int_{\Omega} \check{u}_{h}^{n+1} \mathbf{\Lambda} \nabla p_{h}^{n+1} \cdot \nabla v_{h} \mathrm{d}\mathbf{x} = 0, \qquad \forall \mathbf{v} \in \mathbb{R}^{\# \mathcal{V}}$$

The scheme and first elementary properties

Define $p_{K}^{n+1} = \log(u_{K}^{n+1}) + \Psi_{K}$ and \boldsymbol{u}^{n+1} by

$$\int_{\Omega} \frac{\overline{u}_{h}^{n+1} - \overline{u}_{h}^{n}}{\Delta t} \overline{v}_{h} \mathrm{d}\mathbf{x} + \int_{\Omega} \check{\boldsymbol{u}}_{h}^{n+1} \boldsymbol{\Lambda} \boldsymbol{\nabla} \boldsymbol{p}_{h}^{n+1} \cdot \boldsymbol{\nabla} \boldsymbol{v}_{h} \mathrm{d}\mathbf{x} = 0, \qquad \forall \boldsymbol{v} \in \mathbb{R}^{\# \mathcal{V}}$$

Proposition

▶ If $\check{u}_h^{n+1} \ge 0$, then the scheme is free energy diminishing

$$\mathfrak{E}(\overline{u}_h^{n+1}) + \Delta t \int_{\Omega} \check{u}_h^{n+1} \mathbf{\Lambda} \nabla p_h^{n+1} \cdot \nabla p_h^{n+1} \mathrm{d} \mathbf{x} \leq \mathfrak{E}(\overline{u}_h^n), \qquad n \geq 0$$

The scheme and first elementary properties

Define $p_{K}^{n+1} = \log(u_{K}^{n+1}) + \Psi_{K}$ and \boldsymbol{u}^{n+1} by

$$\int_{\Omega} \frac{\overline{u}_{h}^{n+1} - \overline{u}_{h}^{n}}{\Delta t} \overline{v}_{h} \mathrm{d}\mathbf{x} + \int_{\Omega} \check{\boldsymbol{u}}_{h}^{n+1} \boldsymbol{\Lambda} \boldsymbol{\nabla} \boldsymbol{p}_{h}^{n+1} \cdot \boldsymbol{\nabla} \boldsymbol{v}_{h} \mathrm{d}\mathbf{x} = 0, \qquad \forall \boldsymbol{v} \in \mathbb{R}^{\# \mathcal{V}}$$

Proposition

▶ If $\check{u}_h^{n+1} \ge 0$, then the scheme is free energy diminishing

$$\mathfrak{E}(\overline{u}_h^{n+1}) + \Delta t \int_{\Omega} \check{\boldsymbol{u}}_h^{n+1} \boldsymbol{\Lambda} \boldsymbol{\nabla} \boldsymbol{p}_h^{n+1} \cdot \boldsymbol{\nabla} \boldsymbol{p}_h^{n+1} \mathrm{d} \mathbf{x} \leq \mathfrak{E}(\overline{u}_h^n), \qquad n \geq 0$$

The scheme is well-balanced

 $u_K^{\infty} = e^{-\Psi_K} \implies p_h^{\infty} \equiv 0 \implies u_h^{\infty}$ is a steady solution to the scheme

(the reciprocal also holds if $\check{u}_h^{\infty} > 0$)

[C. and Guichard, JFoCM '16], [C., Nabet, and Vohralík, in preparation]

(H): There exists
$$\alpha > 0$$
 such that $\oint_{\mathcal{T}} \check{v}_h d\mathbf{x} \ge \alpha \max_{\mathcal{K} \in \mathcal{V}_{\mathcal{T}}} v_{\mathcal{K}}$ for all $v_h \ge 0$

Positivity of the solutions

There exists $\epsilon > 0$ depending on \mathcal{T} , Δt such that

$$u_{K}^{n+1} \geq \epsilon > 0, \qquad \forall K, \ \forall n \geq 0.$$

[C. and Guichard, JFoCM '16], [C., Nabet, and Vohralík, in preparation]

(H): There exists
$$\alpha > 0$$
 such that $\oint_{\mathcal{T}} \check{v}_h d\mathbf{x} \ge \alpha \max_{\mathcal{K} \in \mathcal{V}_{\mathcal{T}}} v_{\mathcal{K}}$ for all $v_h \ge 0$

Positivity of the solutions

There exists $\epsilon > 0$ depending on \mathcal{T} , Δt such that

$$u_{K}^{n+1} \geq \epsilon > 0, \qquad \forall K, \ \forall n \geq 0.$$

This property comes from the singularity of the log near 0. It may be lost for general nonlinear problems [C. and Guichard, *JFoCM* '16]

[C. and Guichard, JFoCM '16], [C., Nabet, and Vohralík, in preparation]

(H): There exists
$$\alpha > 0$$
 such that $\oint_{\mathcal{T}} \check{v}_h d\mathbf{x} \ge \alpha \max_{\mathcal{K} \in \mathcal{V}_{\mathcal{T}}} v_{\mathcal{K}}$ for all $v_h \ge 0$

Positivity of the solutions

There exists $\epsilon > 0$ depending on \mathcal{T} , Δt such that

$$u_{K}^{n+1} \geq \epsilon > 0, \qquad \forall K, \ \forall n \geq 0.$$

This property comes from the singularity of the log near 0. It may be lost for general nonlinear problems [C. and Guichard, *JFoCM* '16]

How to choose \check{u}_{h}^{n+1}

A good choice is

$$\check{u}_h^{n+1} = u_h^{n+1}$$
 or $\check{u}_h^{n+1} = \overline{u}_h^{n+1}$

[C. and Guichard, JFoCM '16], [C., Nabet, and Vohralík, in preparation]

(H): There exists
$$\alpha > 0$$
 such that $\oint_{\mathcal{T}} \check{v}_h d\mathbf{x} \ge \alpha \max_{\mathcal{K} \in \mathcal{V}_{\mathcal{T}}} v_{\mathcal{K}}$ for all $v_h \ge 0$

Positivity of the solutions

There exists $\epsilon > 0$ depending on \mathcal{T} , Δt such that

$$u_{K}^{n+1} \geq \epsilon > 0, \qquad \forall K, \ \forall n \geq 0.$$

Existence of a discrete solution

Given $\mathbf{u}^n \in (\mathbb{R}_+)^{\#\mathcal{V}}$, there exists (at least) one solution $\mathbf{u}^{n+1} \in [\epsilon, R]^{\#\mathcal{V}}$ to the nonlinear system $\mathcal{F}_n(\mathbf{u}^{n+1}) = \mathbf{0}$ corresponding to the scheme.

Topological degree argument [Leray and Schauder '34], [Deimling '85], [Eymard et al. '98]

A convergence theorem

[C. and Guichard, JFoCM '16], [C., Nabet, and Vohralík, in preparation]

Theorem

Assume that $size(\mathcal{T})$ and Δt tend to 0 and $reg(\mathcal{T}) \leq C$, then

 $\overline{u}_h \to u \quad in \ L^1_{loc}(\overline{\Omega} \times \mathbb{R}_+)$

where u is the unique solution to the Fokker-Planck equation

A convergence theorem

[C. and Guichard, JFoCM '16], [C., Nabet, and Vohralík, in preparation]

Theorem

Assume that $size(\mathcal{T})$ and Δt tend to 0 and $reg(\mathcal{T}) \leq C$, then

 $\overline{u}_h \to u \quad in \ L^1_{loc}(\overline{\Omega} \times \mathbb{R}_+)$

where u is the unique solution to the Fokker-Planck equation

Sketch of the proof

- Up to a subsequence, \overline{u}_h converges in $L^1(\Omega \times (0, t_f))$ towards a function u [Andreianov, C., and Moussa, *submitted*], [Droniou and Eymard '16]
- *u* is the unique weak solution, then the whole sequence converges.

Numerical results

Equation:

$$\partial_t u - \nabla \cdot (u \mathbf{\Lambda} \nabla (\log u - \mathbf{e}_x)) = 0 \text{ with } \mathbf{\Lambda} = \begin{pmatrix} 1 & 0 \\ 0 & \mu \end{pmatrix}.$$

Exact solution:

$$u((x,y),t) = \exp\left(-(\pi^2 + \frac{1}{4})t + \frac{x}{2}\right) \left(\pi\cos(\pi x) + \frac{1}{2}\sin(\pi x)\right) + \pi\exp\left(x - \frac{1}{2}\right).$$

Going further

Two phase flows in porous media [C. and Nabet, in preparation]

Going further

Two phase flows in porous media [C. and Nabet, in preparation]

Equilibrated flux reconstruction [C., Nabet, and Vohralík, *in preparation*] There exists $\sigma_h^{n+1} \in RT_1$ such that

$$\frac{u_h^{n+1}-u_h^n}{\Delta t}+\boldsymbol{\nabla}\cdot\boldsymbol{\sigma}^{n+1}=0.$$

Iocally conservative method

🗿 a posteriori error analysis and adaptive stopping criteria [Ern-Vohralík, '13]

Outline of the talk

Entropy and dissipation for a model parabolic problem

2 Scharfetter-Gummel: a monotone, linear, and well-balanced scheme

3 Upstream mobility schemes

4 Schemes with positive local dissipation tensors

5 Conclusion and prospects

To sum up...

Scharfetter-Gummel

- Optimal" for linear isotropic problems
- 8 No longer valid with anisotropy (or on general grids)

To sum up...

Scharfetter-Gummel

- Optimal" for linear isotropic problems
- So longer valid with anisotropy (or on general grids)

Upstream mobility

- Positivity preserving
- Convergence theorem
- Exact on the equilibrium
- ⁸ 1st order accurate w.r.t. space
- 8 Robustness w.r.t. the anisotropy
- Sextension to nonlinear problems
- 2nd order extensions (limiters) ?

To sum up...

Scharfetter-Gummel

- Optimal" for linear isotropic problems
- **S** No longer valid with anisotropy (or on general grids)

Upstream mobility

- Positivity preserving
- Convergence theorem
- Exact on the equilibrium
- 8 1st order accurate w.r.t. space
- 8 Robustness w.r.t. the anisotropy
- Sextension to nonlinear problems
- 2nd order extensions (limiters) ?

Positive local dissipation tensor

- Convergence theorem
- Exact on the equilibrium
- 𝔍 2nd order accurate w.r.t. space
- Robustness w.r.t. the anisotropy
- Sextension to nonlinear problems
- ▲ Positivity under conditions
- Inigher order extensions ?

Finite Volumes for Complex Applications

Lille - France June 12-16, 2017

Topics

/CA

- Numerical methods
- Numerical analysis
- Scientific computing
- Industrial applications

Invited speakers

- A. R. Brodkorb
- A. Chertock
- I. Faille
- E. Fernandez-Nieto

- T. Gallouët
- B. Haasdonk
- S. Mishra
- C. W. Shu
- ▶ Peer-reviewed proceedings (submission deadline: January 6, 2017)
- ▶ Special benchmark session on incompressible flows

https://indico.math.cnrs.fr/event/1299/overview