An invariant domain preserving FE technique for hyperbolic systems

Jean-Luc Guermond and Bojan Popov

Department of Mathematics Texas A&M University

Advanced numerical methods: Recent developments, analysis and applications October 03-07, 2016 IHP, Paris

Acknowledgments

Collaborators: Murtazo Nazarov (Uppsala University) Vladimir Tomov (LLNL) Young Yang (Penn State University) Laura Saavedra (Universidad Politécnica de Madrid)

Support:

Hyperbolic systems

FE approximation Hyperbolic systems + ALE Maximum wave speed

Hyperbolic systems

The PDEs

• Hyperbolic system

$$\begin{split} \partial_t \mathbf{u} + \nabla \cdot \mathbf{f}(\mathbf{u}) &= 0, \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ u(\mathbf{x}, 0) &= \mathbf{u}_0(\mathbf{x}), \qquad \mathbf{x} \in D. \end{split}$$

- *D* open polyhedral domain in \mathbb{R}^d .
- $\mathbf{f} \in \mathcal{C}^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the flux.
- u₀, admissible initial data.
- Periodic BCs or **u**₀ has compact support (to simplify BCs)

The PDEs

- Hyperbolic system
- $$\begin{split} \partial_t \mathbf{u} + \nabla \cdot \mathbf{f}(\mathbf{u}) &= 0, \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ u(\mathbf{x}, 0) &= \mathbf{u}_0(\mathbf{x}), \qquad \mathbf{x} \in D. \end{split}$$
- D open polyhedral domain in \mathbb{R}^d .
- $\mathbf{f} \in \mathcal{C}^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the flux
- u₀, admissible initial data.
- Periodic BCs or \mathbf{u}_0 has compact support (to simplify BCs)

The PDEs

- Hyperbolic system
- $$\begin{split} \partial_t \mathbf{u} + \nabla \cdot \mathbf{f}(\mathbf{u}) &= 0, \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ u(\mathbf{x}, 0) &= \mathbf{u}_0(\mathbf{x}), \qquad \mathbf{x} \in D. \end{split}$$
- D open polyhedral domain in \mathbb{R}^d .
- $\mathbf{f} \in \mathcal{C}^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the flux.
- u₀, admissible initial data.
- Periodic BCs or **u**₀ has compact support (to simplify BCs)

The PDEs

- Hyperbolic system
- $$\begin{split} \partial_t \mathbf{u} + \nabla \cdot \mathbf{f}(\mathbf{u}) &= 0, \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ u(\mathbf{x}, 0) &= \mathbf{u}_0(\mathbf{x}), \qquad \mathbf{x} \in D. \end{split}$$
- D open polyhedral domain in \mathbb{R}^d .
- $\mathbf{f} \in \mathcal{C}^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the flux.
- **u**₀, admissible initial data.
- Periodic BCs or u₀ has compact support (to simplify BCs)

The PDEs

• Hyperbolic system

$$\partial_t \mathbf{u} + \nabla \cdot \mathbf{f}(\mathbf{u}) = 0, \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+.$$

 $u(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}), \qquad \mathbf{x} \in D.$

- D open polyhedral domain in \mathbb{R}^d .
- $\mathbf{f} \in \mathcal{C}^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the flux.
- u₀, admissible initial data.
- Periodic BCs or \mathbf{u}_0 has compact support (to simplify BCs)

Assumptions

• \exists admissible set A s.t. for all $(\mathbf{u}_l, \mathbf{u}_r) \in A$ the 1D Riemann problem

$$\partial_t \mathbf{v} + \partial_x (\mathbf{n} \cdot \mathbf{f}(\mathbf{v})) = 0, \quad \mathbf{v}(x, 0) = \begin{cases} \mathbf{u}_l & \text{if } x < 0 \\ \mathbf{u}_r & \text{if } x > 0. \end{cases}$$

has a unique "entropy" solution $\mathbf{u}(\mathbf{u}_l, \mathbf{u}_r)(x, t)$ for all $\mathbf{n} \in \mathbb{R}^d$, $\|\mathbf{n}\|_{\ell^2} = 1$. There exists an invariant set $A \subset A$, i.e.,

 $\mathbf{u}(\mathbf{u}_l,\mathbf{u}_r)(x,t)\in A, \quad \forall t\geq 0, \forall x\in \mathbb{R}, \quad \forall \mathbf{u}_l,\mathbf{u}_r\in A.$

• A is convex.

Assumptions

• \exists admissible set A s.t. for all $(\mathbf{u}_l, \mathbf{u}_r) \in A$ the 1D Riemann problem

$$\partial_t \mathbf{v} + \partial_x (\mathbf{n} \cdot \mathbf{f}(\mathbf{v})) = 0, \quad \mathbf{v}(x, 0) = \begin{cases} \mathbf{u}_l & \text{if } x < 0 \\ \mathbf{u}_r & \text{if } x > 0. \end{cases}$$

has a unique "entropy" solution $\mathbf{u}(\mathbf{u}_l, \mathbf{u}_r)(x, t)$ for all $\mathbf{n} \in \mathbb{R}^d$, $\|\mathbf{n}\|_{\ell^2} = 1$. • There exists an invariant set $A \subset A$, i.e.,

 $\mathbf{u}(\mathbf{u}_l,\mathbf{u}_r)(x,t)\in A, \quad \forall t\geq 0, \forall x\in \mathbb{R}, \quad \forall \mathbf{u}_l,\mathbf{u}_r\in A.$

• A is convex.

Assumptions

• \exists admissible set A s.t. for all $(\mathbf{u}_l, \mathbf{u}_r) \in A$ the 1D Riemann problem

$$\partial_t \mathbf{v} + \partial_x (\mathbf{n} \cdot \mathbf{f}(\mathbf{v})) = 0, \quad \mathbf{v}(x, 0) = \begin{cases} \mathbf{u}_l & \text{if } x < 0 \\ \mathbf{u}_r & \text{if } x > 0. \end{cases}$$

has a unique "entropy" solution $\mathbf{u}(\mathbf{u}_l, \mathbf{u}_r)(x, t)$ for all $\mathbf{n} \in \mathbb{R}^d$, $\|\mathbf{n}\|_{\ell^2} = 1$. • There exists an invariant set $A \subset A$, i.e.,

 $\mathbf{u}(\mathbf{u}_l,\mathbf{u}_r)(x,t)\in A, \quad \forall t\geq 0, \forall x\in \mathbb{R}, \quad \forall \mathbf{u}_l,\mathbf{u}_r\in A.$

• A is convex.

Examples of invariant sets

- Invariant domains are convex for genuinely nonlinear systems (Hoff (1979, 1985), Chueh, Conley, Smoller (1973)).
- Scalar conservation in \mathbb{R}^d : $A = [a, b], \quad \forall a \leq b \in \mathbb{R}$.
- Euler: $A = \{ \rho > 0, \ e > 0, \ s \ge a \}, \quad \forall a \in \mathbb{R}$, where s is the specific entropy.

• p-system (1D): etc. $\mathbf{U} = (v, u)^{\mathrm{T}}$

 $A := \{ \mathbf{U} \in \mathbb{R}_+ \times \mathbb{R} \mid a \le W_2(\mathbf{U}) \le W_1(\mathbf{U}) \le b \}, \quad \forall a \le b \in \mathbb{R}$

$$W_1(\mathsf{U}) = u + \int_v^\infty \sqrt{-p'(s)} \,\mathrm{d}s, \quad \text{and} \quad W_2(\mathsf{U}) = u - \int_v^\infty \sqrt{-p'(s)} \,\mathrm{d}s.$$

Examples of invariant sets

- Invariant domains are convex for genuinely nonlinear systems (Hoff (1979, 1985), Chueh, Conley, Smoller (1973)).
- Scalar conservation in \mathbb{R}^d : $A = [a, b], \quad \forall a \leq b \in \mathbb{R}$.
- Euler: $A = \{ \rho > 0, \ e > 0, \ s \ge a \}, \quad \forall a \in \mathbb{R}$, where s is the specific entropy.

• p-system (1D): etc. $\mathsf{U} = (v, u)^{\mathrm{T}}$

 $A := \{ \mathbf{U} \in \mathbb{R}_+ imes \mathbb{R} \mid a \leq W_2(\mathbf{U}) \leq W_1(\mathbf{U}) \leq b \}, \quad \forall a \leq b \in \mathbb{R} \}$

$$W_1(\mathsf{U}) = u + \int_v^\infty \sqrt{-p'(s)} \,\mathrm{d}s, \quad ext{and} \quad W_2(\mathsf{U}) = u - \int_v^\infty \sqrt{-p'(s)} \,\mathrm{d}s$$

Examples of invariant sets

- Invariant domains are convex for genuinely nonlinear systems (Hoff (1979, 1985), Chueh, Conley, Smoller (1973)).
- Scalar conservation in \mathbb{R}^d : $A = [a, b], \quad \forall a \leq b \in \mathbb{R}$.
- Euler: $A = \{ \rho > 0, \ e > 0, \ s \ge a \}, \quad \forall a \in \mathbb{R}$, where s is the specific entropy.

• p-system (1D): etc. $\mathbf{U} = (v, u)^{\mathrm{T}}$

 $A := \{ \mathbf{U} \in \mathbb{R}_+ imes \mathbb{R} \mid a \leq W_2(\mathbf{U}) \leq W_1(\mathbf{U}) \leq b \}, \quad \forall a \leq b \in \mathbb{R} \}$

$$W_1(\mathsf{U}) = u + \int_v^\infty \sqrt{-p'(s)} \,\mathrm{d}s, \quad \text{and} \quad W_2(\mathsf{U}) = u - \int_v^\infty \sqrt{-p'(s)} \,\mathrm{d}s.$$

Examples of invariant sets

 Invariant domains are convex for genuinely nonlinear systems (Hoff (1979, 1985), Chueh, Conley, Smoller (1973)).

• Scalar conservation in
$$\mathbb{R}^d$$
: $A = [a, b], \quad \forall a \leq b \in \mathbb{R}$

• Euler: $A = \{ \rho > 0, \ e > 0, \ s \ge a \}, \quad \forall a \in \mathbb{R}$, where s is the specific entropy.

• p-system (1D): etc.
$${\sf U}=(v,u)^{
m T}$$

$$\mathsf{A} := \{\mathsf{U} \in \mathbb{R}_+ \times \mathbb{R} \mid \mathsf{a} \leq W_2(\mathsf{U}) \leq W_1(\mathsf{U}) \leq \mathsf{b}\}, \quad \forall \mathsf{a} \leq \mathsf{b} \in \mathbb{R}$$

$$W_1(\mathsf{U}) = u + \int_v^\infty \sqrt{-p'(s)} \,\mathrm{d}s, \quad ext{and} \quad W_2(\mathsf{U}) = u - \int_v^\infty \sqrt{-p'(s)} \,\mathrm{d}s.$$

FE approximation

Hyperbolic systems FE approximation Hyperbolic systems + ALE

Hyperbolic systems

FE space/Shape functions

- $\{\mathcal{T}_h\}_{h>0}$ shape regular conforming mesh sequence
- $\{\varphi_1, \ldots, \varphi_N\}$, positive + partition of unity
- Ex: \mathbb{P}_1 , \mathbb{Q}_1 , Bernstein polynomials (any degree)
- $m_i := \int_D \varphi_i \, \mathrm{d} \mathbf{x}$, lumped mass matrix

Algorithm: Galerkin + First-order viscosity + Explicit Euler

$$m_i \frac{\mathsf{U}_i^{n+1} - \mathsf{U}_i^n}{\Delta t} + \int_D \nabla \cdot \left(\sum_{j \in \mathcal{I}(S_i)} (\mathsf{f}(\mathsf{U}_j^n)) \varphi_j \right) \varphi_i \, \mathrm{d}\mathsf{x} + \sum_{j \in \mathcal{I}(S_i)} d_{ij}^n (\mathsf{U}_i^n - \mathsf{U}_j^n) = 0.$$

FE space/Shape functions

- $\{\mathcal{T}_h\}_{h>0}$ shape regular conforming mesh sequence
- $\{\varphi_1, \ldots, \varphi_N\}$, positive + partition of unity
- Ex: \mathbb{P}_1 , \mathbb{Q}_1 , Bernstein polynomials (any degree)
- $m_i := \int_D \varphi_i \, \mathrm{d} \mathbf{x}$, lumped mass matrix

Algorithm: Galerkin + First-order viscosity + Explicit Euler

$$m_i \frac{\mathsf{U}_i^{n+1} - \mathsf{U}_i^n}{\Delta t} + \int_D \nabla \cdot \left(\sum_{j \in \mathcal{I}(S_i)} (\mathsf{f}(\mathsf{U}_j^n)) \varphi_j \right) \varphi_i \, \mathrm{d}\mathsf{x} + \sum_{j \in \mathcal{I}(S_i)} d_{ij}^n (\mathsf{U}_i^n - \mathsf{U}_j^n) = 0.$$

FE space/Shape functions

- $\{\mathcal{T}_h\}_{h>0}$ shape regular conforming mesh sequence
- $\{\varphi_1, \ldots, \varphi_N\}$, positive + partition of unity
- Ex: \mathbb{P}_1 , \mathbb{Q}_1 , Bernstein polynomials (any degree)
- $m_i := \int_D \varphi_i \, \mathrm{d} \mathbf{x}$, lumped mass matrix

Algorithm: Galerkin + First-order viscosity + Explicit Euler

$$m_i \frac{\mathsf{U}_i^{n+1} - \mathsf{U}_i^n}{\Delta t} + \int_D \nabla \cdot \left(\sum_{j \in \mathcal{I}(S_i)} (\mathsf{f}(\mathsf{U}_j^n)) \varphi_j \right) \varphi_i \, \mathrm{d}\mathsf{x} + \sum_{j \in \mathcal{I}(S_i)} d_{ij}^n (\mathsf{U}_i^n - \mathsf{U}_j^n) = 0.$$

FE space/Shape functions

- $\{\mathcal{T}_h\}_{h>0}$ shape regular conforming mesh sequence
- $\{\varphi_1, \ldots, \varphi_N\}$, positive + partition of unity
- Ex: \mathbb{P}_1 , \mathbb{Q}_1 , Bernstein polynomials (any degree)
- $m_i := \int_D \varphi_i \, \mathrm{d} \mathbf{x}$, lumped mass matrix

Algorithm: Galerkin + First-order viscosity + Explicit Euler

$$m_i \frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\Delta t} + \int_D \nabla \cdot \left(\sum_{j \in \mathcal{I}(S_i)} (\mathbf{f}(\mathbf{U}_j^n)) \varphi_j \right) \varphi_i \, \mathrm{dx} + \sum_{j \in \mathcal{I}(S_i)} d_{ij}^n (\mathbf{U}_i^n - \mathbf{U}_j^n) = 0.$$

FE space/Shape functions

- $\{\mathcal{T}_h\}_{h>0}$ shape regular conforming mesh sequence
- $\{\varphi_1, \ldots, \varphi_N\}$, positive + partition of unity
- Ex: \mathbb{P}_1 , \mathbb{Q}_1 , Bernstein polynomials (any degree)
- $m_i := \int_D \varphi_i \, \mathrm{d} \mathbf{x}$, lumped mass matrix

Algorithm: Galerkin + First-order viscosity + Explicit Euler

$$m_i \frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\Delta t} + \int_D \nabla \cdot \left(\sum_{j \in \mathcal{I}(S_i)} (\mathbf{f}(\mathbf{U}_j^n)) \varphi_j \right) \varphi_i \, \mathrm{d}\mathbf{x} + \sum_{j \in \mathcal{I}(S_i)} d_{ij}^n (\mathbf{U}_i^n - \mathbf{U}_j^n) = 0.$$

FE space/Shape functions

- $\{\mathcal{T}_h\}_{h>0}$ shape regular conforming mesh sequence
- $\{\varphi_1, \ldots, \varphi_N\}$, positive + partition of unity
- Ex: \mathbb{P}_1 , \mathbb{Q}_1 , Bernstein polynomials (any degree)
- $m_i := \int_D \varphi_i \, \mathrm{d} \mathbf{x}$, lumped mass matrix

Algorithm: Galerkin + First-order viscosity + Explicit Euler

$$m_i \frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\Delta t} + \int_D \nabla \cdot \left(\sum_{j \in \mathcal{I}(S_i)} (\mathbf{f}(\mathbf{U}_j^n)) \varphi_j \right) \varphi_i \, \mathrm{d}\mathbf{x} + \sum_{j \in \mathcal{I}(S_i)} d_{ij}^n (\mathbf{U}_i^n - \mathbf{U}_j^n) = 0.$$

How should we choose artificial viscosity dⁿ_{ii}?

Algorithm: Galerkin + First-order viscosity + Explicit Euler

Introduce

$$\mathbf{c}_{ij} = \int_D \varphi_i(\mathbf{x}) \nabla \varphi_j(\mathbf{x}) \, \mathrm{d}\mathbf{x}.$$

Then

$$m_i \frac{\mathsf{U}_i^{n+1} - \mathsf{U}_i^n}{\Delta t} = \sum_j \left(-\mathsf{c}_{ij} \cdot \mathsf{f}(\mathsf{U}_j) + d_{ij}^n \mathsf{U}_j \right).$$

- Observe that conservation implies $\sum_i c_{ij} = 0$, (partition of unity)
- We define d_{ii}^n such that $\sum_i d_{ii}^n = 0$, (conservation).

Remark

Algorithm: Galerkin + First-order viscosity + Explicit Euler

Introduce

$$\mathbf{c}_{ij} = \int_D \varphi_i(\mathbf{x}) \nabla \varphi_j(\mathbf{x}) \, \mathrm{d} \mathbf{x}.$$

Then

$$m_i \frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\Delta t} = \sum_j \left(-\mathbf{c}_{ij} \cdot \mathbf{f}(\mathbf{U}_j) + d_{ij}^n \mathbf{U}_j \right).$$

- Observe that conservation implies $\sum_{i} c_{ij} = 0$, (partition of unity)
- We define d_{ii}^n such that $\sum_i d_{ii}^n = 0$, (conservation).

Remark

Algorithm: Galerkin + First-order viscosity + Explicit Euler

Introduce

$$\mathbf{c}_{ij} = \int_D \varphi_i(\mathbf{x}) \nabla \varphi_j(\mathbf{x}) \, \mathrm{d} \mathbf{x}.$$

Then

$$m_i \frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\Delta t} = \sum_j \left(-\mathbf{c}_{ij} \cdot \mathbf{f}(\mathbf{U}_j) + d_{ij}^n \mathbf{U}_j \right).$$

- Observe that conservation implies $\sum_{i} \mathbf{c}_{ij} = 0$, (partition of unity)
- We define d_{ii}^n such that $\sum_i d_{ii}^n = 0$, (conservation).

Remark

Algorithm: Galerkin + First-order viscosity + Explicit Euler

Introduce

$$\mathbf{c}_{ij} = \int_D \varphi_i(\mathbf{x}) \nabla \varphi_j(\mathbf{x}) \, \mathrm{d} \mathbf{x}.$$

Then

$$m_i \frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\Delta t} = \sum_j \left(-\mathbf{c}_{ij} \cdot \mathbf{f}(\mathbf{U}_j) + d_{ij}^n \mathbf{U}_j \right).$$

- Observe that conservation implies $\sum_{i} \mathbf{c}_{ij} = 0$, (partition of unity)
- We define d_{ii}^n such that $\sum_i d_{ii}^n = 0$, (conservation).

Remark

Algorithm: Galerkin + First-order viscosity + Explicit Euler

Introduce

$$\mathbf{c}_{ij} = \int_D \varphi_i(\mathbf{x}) \nabla \varphi_j(\mathbf{x}) \, \mathrm{d} \mathbf{x}.$$

Then

$$m_i \frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\Delta t} = \sum_j \left(-\mathbf{c}_{ij} \cdot \mathbf{f}(\mathbf{U}_j) + d_{ij}^n \mathbf{U}_j \right).$$

- Observe that conservation implies $\sum_{i} \mathbf{c}_{ij} = 0$, (partition of unity)
- We define d_{ii}^n such that $\sum_i d_{ii}^n = 0$, (conservation).

Remark

Algorithm: Galerkin + First-order viscosity + Explicit Euler

• Observe that conservation implies $\sum_{j} \mathbf{c}_{ij} = 0$ and $\sum_{j} d_{ij}^{n} = 0$.

$$m_i \frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\Delta t} = \sum_j \left(\mathbf{c}_{ij} \cdot (\mathbf{f}(\mathbf{U}_i) - \mathbf{f}(\mathbf{U}_j)) + d_{ij}^n (\mathbf{U}_i + \mathbf{U}_j) \right).$$

• Try to construct convex combination ...

$$\begin{split} \mathsf{U}_{i}^{n+1} &= \mathsf{U}_{i}^{n}(1+2\frac{\Delta t}{m_{i}}D_{ii}) + \sum_{j\neq i}\frac{\Delta t}{m_{i}}\left(\mathsf{c}_{ij}\cdot(\mathsf{f}(\mathsf{U}_{i})-\mathsf{f}(\mathsf{U}_{j})) + d_{ij}^{n}(\mathsf{U}_{i}+\mathsf{U}_{j})\right) \\ &= \mathsf{U}_{i}^{n}(1-\sum_{j\neq i}2\frac{\Delta t}{m_{i}}d_{ij}^{n}) + \sum_{j\neq i}\frac{2\Delta t}{m_{i}}d_{ij}^{n}\left(\frac{1}{2}(\mathsf{U}_{i}+\mathsf{U}_{j}) + \frac{\mathsf{c}_{ij}}{2d_{ij}^{n}}(\mathsf{f}(\mathsf{U}_{i})-\mathsf{f}(\mathsf{U}_{j}))\right) \end{split}$$

• Introduce intermediate states $\overline{U}(U_i, U_j)$

$$\overline{\mathsf{U}}(\mathsf{U}_i,\mathsf{U}_j):=rac{1}{2}(\mathsf{U}_i+\mathsf{U}_j)+rac{\mathsf{c}_{ij}}{2d_{ii}^n}\cdot(\mathsf{f}(\mathsf{U}_i)-\mathsf{f}(\mathsf{U}_j)).$$

Algorithm: Galerkin + First-order viscosity + Explicit Euler

• Observe that conservation implies $\sum_{j} \mathbf{c}_{ij} = 0$ and $\sum_{j} d_{ij}^{n} = 0$.

$$m_i \frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\Delta t} = \sum_j \left(\mathbf{c}_{ij} \cdot (\mathbf{f}(\mathbf{U}_i) - \mathbf{f}(\mathbf{U}_j)) + d_{ij}^n (\mathbf{U}_i + \mathbf{U}_j) \right).$$

• Try to construct convex combination ...

$$\begin{split} \mathsf{U}_{i}^{n+1} &= \mathsf{U}_{i}^{n}(1 + 2\frac{\Delta t}{m_{i}}D_{ii}) + \sum_{j\neq i}\frac{\Delta t}{m_{i}}\left(\mathsf{c}_{ij}\cdot(\mathsf{f}(\mathsf{U}_{i}) - \mathsf{f}(\mathsf{U}_{j})) + d_{ij}^{n}(\mathsf{U}_{i} + \mathsf{U}_{j})\right) \\ &= \mathsf{U}_{i}^{n}(1 - \sum_{j\neq i}2\frac{\Delta t}{m_{i}}d_{ij}^{n}) + \sum_{j\neq i}\frac{2\Delta t}{m_{i}}d_{ij}^{n}\left(\frac{1}{2}(\mathsf{U}_{i} + \mathsf{U}_{j}) + \frac{\mathsf{c}_{ij}}{2d_{ij}^{n}}\cdot(\mathsf{f}(\mathsf{U}_{i}) - \mathsf{f}(\mathsf{U}_{j}))\right) \end{split}$$

• Introduce intermediate states $\overline{U}(U_i, U_j)$

$$\overline{\mathsf{U}}(\mathsf{U}_i,\mathsf{U}_j):=rac{1}{2}(\mathsf{U}_i+\mathsf{U}_j)+rac{\mathsf{c}_{ij}}{2d_{ij}^n}\cdot(\mathsf{f}(\mathsf{U}_i)-\mathsf{f}(\mathsf{U}_j)).$$

Algorithm: Galerkin + First-order viscosity + Explicit Euler

• Observe that conservation implies $\sum_{j} \mathbf{c}_{ij} = 0$ and $\sum_{j} d_{ij}^{n} = 0$.

$$m_i \frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\Delta t} = \sum_j \left(\mathbf{c}_{ij} \cdot (\mathbf{f}(\mathbf{U}_i) - \mathbf{f}(\mathbf{U}_j)) + d_{ij}^n (\mathbf{U}_i + \mathbf{U}_j) \right).$$

• Try to construct convex combination ...

$$\begin{aligned} \mathbf{J}_{i}^{n+1} &= \mathbf{U}_{i}^{n} (1 + 2\frac{\Delta t}{m_{i}} D_{ii}) + \sum_{j \neq i} \frac{\Delta t}{m_{i}} \left(\mathbf{c}_{ij} \cdot (\mathbf{f}(\mathbf{U}_{i}) - \mathbf{f}(\mathbf{U}_{j})) + d_{ij}^{n} (\mathbf{U}_{i} + \mathbf{U}_{j}) \right) \\ &= \mathbf{U}_{i}^{n} (1 - \sum_{j \neq i} 2\frac{\Delta t}{m_{i}} d_{ij}^{n}) + \sum_{j \neq i} \frac{2\Delta t}{m_{i}} d_{ij}^{n} \left(\frac{1}{2} (\mathbf{U}_{i} + \mathbf{U}_{j}) + \frac{\mathbf{c}_{ij}}{2d_{ij}^{n}} \cdot (\mathbf{f}(\mathbf{U}_{i}) - \mathbf{f}(\mathbf{U}_{j})) \right) \end{aligned}$$

• Introduce intermediate states $\overline{\mathbf{U}}(\mathbf{U}_i,\mathbf{U}_j)$

$$\overline{\mathsf{U}}(\mathsf{U}_i,\mathsf{U}_j) := \frac{1}{2}(\mathsf{U}_i + \mathsf{U}_j) + \frac{\mathsf{c}_{ij}}{2d_{ij}^n} \cdot (\mathsf{f}(\mathsf{U}_i) - \mathsf{f}(\mathsf{U}_j)).$$

Algorithm: Galerkin + First-order viscosity + Explicit Euler

• Observe that conservation implies $\sum_j \mathbf{c}_{ij} = 0$ and $\sum_j d_{ij}^n = 0$.

$$m_i \frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\Delta t} = \sum_j \left(\mathbf{c}_{ij} \cdot (\mathbf{f}(\mathbf{U}_i) - \mathbf{f}(\mathbf{U}_j)) + d_{ij}^n (\mathbf{U}_i + \mathbf{U}_j) \right).$$

• Try to construct convex combination ...

$$\begin{aligned} \mathbf{J}_{i}^{n+1} &= \mathbf{U}_{i}^{n} (1 + 2\frac{\Delta t}{m_{i}} D_{ii}) + \sum_{j \neq i} \frac{\Delta t}{m_{i}} \left(\mathbf{c}_{ij} \cdot (\mathbf{f}(\mathbf{U}_{i}) - \mathbf{f}(\mathbf{U}_{j})) + d_{ij}^{n} (\mathbf{U}_{i} + \mathbf{U}_{j}) \right) \\ &= \mathbf{U}_{i}^{n} (1 - \sum_{j \neq i} 2\frac{\Delta t}{m_{i}} d_{ij}^{n}) + \sum_{j \neq i} \frac{2\Delta t}{m_{i}} d_{ij}^{n} \left(\frac{1}{2} (\mathbf{U}_{i} + \mathbf{U}_{j}) + \frac{\mathbf{c}_{ij}}{2d_{ij}^{n}} \cdot (\mathbf{f}(\mathbf{U}_{i}) - \mathbf{f}(\mathbf{U}_{j})) \right) \end{aligned}$$

• Introduce intermediate states $\overline{\mathbf{U}}(\mathbf{U}_i,\mathbf{U}_j)$

$$\overline{\mathbf{U}}(\mathbf{U}_i,\mathbf{U}_j) := \frac{1}{2}(\mathbf{U}_i + \mathbf{U}_j) + \frac{\mathbf{c}_{ij}}{2d_{ij}^n} \cdot (\mathbf{f}(\mathbf{U}_i) - \mathbf{f}(\mathbf{U}_j)).$$

Algorithm: Galerkin + First-order viscosity + Explicit Euler

• Now construct convex combination

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} (1 - \sum_{j \neq i} 2 \frac{\Delta t}{m_{i}} d_{ij}^{n}) + \sum_{j \neq i} \frac{2\Delta t}{m_{i}} d_{ij}^{n} \overline{\mathbf{U}}(\mathbf{U}_{i}, \mathbf{U}_{j})$$

• Are the states $\overline{\mathbf{U}}(\mathbf{U}_i,\mathbf{U}_j)$ good objects?

Algorithm: Galerkin + First-order viscosity + Explicit Euler

• Now construct convex combination

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} (1 - \sum_{j \neq i} 2 \frac{\Delta t}{m_{i}} d_{ij}^{n}) + \sum_{j \neq i} \frac{2\Delta t}{m_{i}} d_{ij}^{n} \overline{\mathbf{U}}(\mathbf{U}_{i}, \mathbf{U}_{j})$$

• Are the states $\overline{\mathbf{U}}(\mathbf{U}_i,\mathbf{U}_j)$ good objects?

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Define $\mathbf{n}_{ij} = \mathbf{c}_{ij} / \|\mathbf{c}_{ij}\|_{\ell^2} \in \mathbb{R}^d$, (unit vector).
- $f_{ij}(U) := n_{ij} \cdot f(U)$ is an hyperbolic flux by definition of hyperbolicity!
- Then

$$\overline{\mathsf{U}}(\mathsf{U}_i,\mathsf{U}_j) := \frac{1}{2}(\mathsf{U}_i + \mathsf{U}_j) + \frac{\|\mathsf{c}_{ij}\|_{\ell^2}}{2d_{ij}^n}(\mathsf{f}_{ij}(\mathsf{U}_i) - \mathsf{f}_{ij}(\mathsf{U}_j))$$

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Define $\mathbf{n}_{ij} = \mathbf{c}_{ij} / \|\mathbf{c}_{ij}\|_{\ell^2} \in \mathbb{R}^d$, (unit vector).
- $f_{ij}(U) := n_{ij} \cdot f(U)$ is an hyperbolic flux by definition of hyperbolicity!
- Then

$$\overline{\mathsf{U}}(\mathsf{U}_i,\mathsf{U}_j) := \frac{1}{2}(\mathsf{U}_i + \mathsf{U}_j) + \frac{\|\mathsf{c}_{ij}\|_{\ell^2}}{2d_{ji}^m}(\mathsf{f}_{ij}(\mathsf{U}_i) - \mathsf{f}_{ij}(\mathsf{U}_j))$$

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Define $\mathbf{n}_{ij} = \mathbf{c}_{ij} / \|\mathbf{c}_{ij}\|_{\ell^2} \in \mathbb{R}^d$, (unit vector).
- $f_{ij}(U) := n_{ij} \cdot f(U)$ is an hyperbolic flux by definition of hyperbolicity!
- Then

$$\overline{\mathsf{U}}(\mathsf{U}_i,\mathsf{U}_j) := rac{1}{2}(\mathsf{U}_i+\mathsf{U}_j) + rac{\|\mathsf{c}_{ij}\|_{\ell^2}}{2d_{ij}^n}(\mathsf{f}_{ij}(\mathsf{U}_i)-\mathsf{f}_{ij}(\mathsf{U}_j))$$

Lemma (GP (2015))

• Consider the fake 1D Riemann problem!

$$\partial_t \mathbf{v} + \partial_x (\mathbf{n}_{ij} \cdot \mathbf{f}(\mathbf{v})) = 0, \quad \mathbf{v}(x, 0) = \begin{cases} \mathbf{U}_i & \text{if } x < 0 \\ \mathbf{U}_j & \text{if } x > 0. \end{cases}$$

• Let $\lambda_{\max}(\mathbf{f}, \mathbf{n}_{ij}, \mathbf{U}_i, \mathbf{U}_j)$ be maximum wave speed in 1D Riemann problem

• Then
$$\overline{\mathbf{U}}(\mathbf{U}_i,\mathbf{U}_j) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \mathbf{v}(x,t) \, \mathrm{d}x$$
 with fake time $t = \frac{\|\mathbf{c}_{ij}\|_{\ell^2}}{2d_{ij}^n}$, provided

$$\frac{\|\mathsf{c}_{ij}\|_{\ell^2}}{2d_{ij}^m}\lambda_{\max}(\mathsf{f},\mathsf{n}_{ij},\mathsf{U}_i,\mathsf{U}_j) = \boxed{t\lambda_{\max}(\mathsf{f},\mathsf{n}_{ij},\mathsf{U}_i,\mathsf{U}_j) \leq \frac{1}{2}}$$

$$d_{ij}^n := \lambda_{\max}(\mathbf{f}, \mathbf{n}_{ij}, \mathbf{U}_i, \mathbf{U}_j) \|\mathbf{c}_{ij}\|_{\ell^2}, \quad j \neq i.$$

Lemma (GP (2015))

• Consider the fake 1D Riemann problem!

$$\partial_t \mathbf{v} + \partial_x (\mathbf{n}_{ij} \cdot \mathbf{f}(\mathbf{v})) = 0, \quad \mathbf{v}(x, 0) = \begin{cases} \mathbf{U}_i & \text{if } x < 0 \\ \mathbf{U}_j & \text{if } x > 0. \end{cases}$$

- Let $\lambda_{max}(\mathbf{f}, \mathbf{n}_{ij}, \mathbf{U}_i, \mathbf{U}_j)$ be maximum wave speed in 1D Riemann problem
- Then $\overline{\mathbf{U}}(\mathbf{U}_i,\mathbf{U}_j) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \mathbf{v}(x,t) \, \mathrm{d}x$ with fake time $t = \frac{\|\mathbf{c}_{ij}\|_{\ell^2}}{2d_{ij}^n}$, provided

$$\frac{\|\mathsf{c}_{ij}\|_{\ell^2}}{2d_{ij}^n}\lambda_{\max}(\mathsf{f},\mathsf{n}_{ij},\mathsf{U}_i,\mathsf{U}_j) = \boxed{t\lambda_{\max}(\mathsf{f},\mathsf{n}_{ij},\mathsf{U}_i,\mathsf{U}_j) \leq \frac{1}{2}}$$

$$d_{ij}^n := \lambda_{\max}(\mathbf{f}, \mathbf{n}_{ij}, \mathbf{U}_i, \mathbf{U}_j) \|\mathbf{c}_{ij}\|_{\ell^2}, \quad j \neq i.$$

Lemma (GP (2015))

• Consider the fake 1D Riemann problem!

$$\partial_t \mathbf{v} + \partial_x (\mathbf{n}_{ij} \cdot \mathbf{f}(\mathbf{v})) = 0, \quad \mathbf{v}(x, 0) = \begin{cases} \mathbf{U}_i & \text{if } x < 0 \\ \mathbf{U}_j & \text{if } x > 0. \end{cases}$$

- Let $\lambda_{\max}(\mathbf{f}, \mathbf{n}_{ij}, \mathbf{U}_i, \mathbf{U}_j)$ be maximum wave speed in 1D Riemann problem
- Then $\overline{\mathbf{U}}(\mathbf{U}_i,\mathbf{U}_j) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \mathbf{v}(x,t) \, \mathrm{d}x$ with fake time $t = \frac{\|\mathbf{c}_{ij}\|_{\ell^2}}{2d_{ij}^n}$, provided

$$\frac{\|\mathsf{c}_{ij}\|_{\ell^2}}{2d_{ij}^n}\lambda_{\mathsf{max}}(\mathsf{f},\mathsf{n}_{ij},\mathsf{U}_i,\mathsf{U}_j) = \boxed{t\lambda_{\mathsf{max}}(\mathsf{f},\mathsf{n}_{ij},\mathsf{U}_i,\mathsf{U}_j) \leq \frac{1}{2}}$$

$$d_{ij}^n := \lambda_{\max}(\mathbf{f}, \mathbf{n}_{ij}, \mathbf{U}_i, \mathbf{U}_j) \|\mathbf{c}_{ij}\|_{\ell^2}, \quad j \neq i.$$

Lemma (GP (2015))

• Consider the fake 1D Riemann problem!

$$\partial_t \mathbf{v} + \partial_x (\mathbf{n}_{ij} \cdot \mathbf{f}(\mathbf{v})) = 0, \quad \mathbf{v}(x, 0) = \begin{cases} \mathbf{U}_i & \text{if } x < 0 \\ \mathbf{U}_j & \text{if } x > 0. \end{cases}$$

- Let $\lambda_{\max}(\mathbf{f}, \mathbf{n}_{ij}, \mathbf{U}_i, \mathbf{U}_j)$ be maximum wave speed in 1D Riemann problem
- Then $\overline{\mathbf{U}}(\mathbf{U}_i,\mathbf{U}_j) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \mathbf{v}(x,t) \, \mathrm{d}x$ with fake time $t = \frac{\|\mathbf{c}_{ij}\|_{\ell^2}}{2d_{ij}^n}$, provided

$$\frac{\|\mathsf{c}_{ij}\|_{\ell^2}}{2d_{ij}^n}\lambda_{\mathsf{max}}(\mathsf{f},\mathsf{n}_{ij},\mathsf{U}_i,\mathsf{U}_j) = \boxed{t\lambda_{\mathsf{max}}(\mathsf{f},\mathsf{n}_{ij},\mathsf{U}_i,\mathsf{U}_j) \leq \frac{1}{2}}$$

$$d_{ij}^n := \lambda_{\max}(\mathbf{f}, \mathbf{n}_{ij}, \mathbf{U}_i, \mathbf{U}_j) \|\mathbf{c}_{ij}\|_{\ell^2}, \quad j \neq i.$$

Theorem (GP (2015))

Provided CFL condition, $(1 - 2\frac{\Delta t}{m_i}|D_{ii}|) \ge 0$.

- Local invariance: $U_i^{n+1} \in Conv\{\overline{U}(U_i^n, U_j^n) \mid j \in \mathcal{I}(S_i)\}.$
- Global invariance: The scheme preserves all the convex invariant sets. (Let A be a convex invariant set, assume U₀ ∈ A, then U_iⁿ⁺¹ ∈ A for all n ≥ 0.)
- Discrete entropy inequality for all the entropy pairs (η, q) :

$$\frac{m_i}{\Delta t}(\eta(\mathsf{U}_i^{n+1}) - \eta(\mathsf{U}_i^n)) + \int_D \nabla \cdot (\Pi_h \mathsf{q}(\mathsf{u}_h^n))\varphi_i \, \mathrm{d}x + \sum_{i \neq j \in \mathcal{I}(S_i)} d_{ij}\eta(\mathsf{U}_j^n) \le 0.$$

Theorem (GP (2015))

Provided CFL condition, $(1 - 2\frac{\Delta t}{m_i}|D_{ii}|) \ge 0$.

- Local invariance: $\mathbf{U}_i^{n+1} \in Conv\{\overline{\mathbf{U}}(\mathbf{U}_i^n, \mathbf{U}_i^n) \mid j \in \mathcal{I}(S_i)\}.$
- Global invariance: The scheme preserves all the convex invariant sets. (Let A be a convex invariant set, assume U₀ ∈ A, then U_iⁿ⁺¹ ∈ A for all n ≥ 0.)
- Discrete entropy inequality for all the entropy pairs (η, q):

 $\frac{m_i}{\Delta t}(\eta(\mathsf{U}_i^{n+1}) - \eta(\mathsf{U}_i^n)) + \int_D \nabla \cdot (\Pi_h \mathsf{q}(\mathsf{u}_h^n))\varphi_i \, \mathrm{d}x + \sum_{i \neq j \in \mathcal{I}(S_i)} d_{ij}\eta(\mathsf{U}_j^n) \le 0.$

Theorem (GP (2015))

Provided CFL condition, $(1 - 2\frac{\Delta t}{m_i}|D_{ii}|) \ge 0$.

- Local invariance: $\mathbf{U}_i^{n+1} \in Conv\{\overline{\mathbf{U}}(\mathbf{U}_i^n, \mathbf{U}_i^n) \mid j \in \mathcal{I}(S_i)\}.$
- Global invariance: The scheme preserves all the convex invariant sets. (Let A be a convex invariant set, assume U₀ ∈ A, then U₀ⁿ⁺¹ ∈ A for all n ≥ 0.)
- Discrete entropy inequality for all the entropy pairs (η, q) :

 $\frac{m_i}{\Delta t}(\eta(\mathbf{U}_i^{n+1}) - \eta(\mathbf{U}_i^n)) + \int_D \nabla \cdot (\Pi_h \mathbf{q}(\mathbf{u}_h^n))\varphi_i \, \mathrm{d}x + \sum_{i \neq j \in \mathcal{I}(S_i)} d_{ij}\eta(\mathbf{U}_j^n) \le 0.$

Theorem (GP (2015))

Provided CFL condition, $(1 - 2\frac{\Delta t}{m_i}|D_{ii}|) \ge 0$.

- Local invariance: $\mathbf{U}_i^{n+1} \in Conv\{\overline{\mathbf{U}}(\mathbf{U}_i^n,\mathbf{U}_j^n) \mid j \in \mathcal{I}(S_i)\}.$
- Global invariance: The scheme preserves all the convex invariant sets. (Let A be a convex invariant set, assume U₀ ∈ A, then U_iⁿ⁺¹ ∈ A for all n ≥ 0.)
- Discrete entropy inequality for all the entropy pairs (η, q) :

 $\frac{m_i}{\Delta t}(\eta(\mathsf{U}_i^{n+1}) - \eta(\mathsf{U}_i^n)) + \int_D \nabla \cdot (\Pi_h \mathsf{q}(\mathsf{u}_h^n))\varphi_i \, \mathrm{d}x + \sum_{i \neq j \in \mathcal{I}(S_i)} d_{ij}\eta(\mathsf{U}_j^n) \le 0.$

Theorem (GP (2015))

Provided CFL condition, $(1 - 2\frac{\Delta t}{m_i}|D_{ii}|) \ge 0$.

- Local invariance: $\mathbf{U}_i^{n+1} \in Conv\{\overline{\mathbf{U}}(\mathbf{U}_i^n,\mathbf{U}_j^n) \mid j \in \mathcal{I}(S_i)\}.$
- Global invariance: The scheme preserves all the convex invariant sets. (Let A be a convex invariant set, assume U₀ ∈ A, then U_iⁿ⁺¹ ∈ A for all n ≥ 0.)
- Discrete entropy inequality for all the entropy pairs (η, q) :

$$\frac{m_i}{\Delta t}(\eta(\mathbf{U}_i^{n+1}) - \eta(\mathbf{U}_i^n)) + \int_D \nabla \cdot (\Pi_h \mathbf{q}(\mathbf{u}_h^n)) \varphi_i \, \mathrm{d}x + \sum_{i \neq j \in \mathcal{I}(S_i)} d_{ij} \eta(\mathbf{U}_j^n) \leq 0.$$

Is it new?

- Loose extension of non-staggered Lax-Friedrichs to FE.
- Similar results proved by Hoff (1979, 1985), Perthame-Shu (1996), Frid (2001) in FV context and compressible Euler.
- Not aware of similar results for arbitrary hyperbolic systems and continuous FE.

Is it new?

- Loose extension of non-staggered Lax-Friedrichs to FE.
- Similar results proved by Hoff (1979, 1985), Perthame-Shu (1996), Frid (2001) in FV context and compressible Euler.
- Not aware of similar results for arbitrary hyperbolic systems and continuous FE.

Is it new?

- Loose extension of non-staggered Lax-Friedrichs to FE.
- Similar results proved by Hoff (1979, 1985), Perthame-Shu (1996), Frid (2001) in FV context and compressible Euler.
- Not aware of similar results for arbitrary hyperbolic systems and continuous FE.

- Let $\delta > \mathbf{0}$ and $\epsilon = \|\mathbf{f}\|_{\operatorname{Lip}} \, \delta$
- Consider mollifiers ω_{δ} and $\boldsymbol{\omega}_{\epsilon}$

$$\omega_{\delta}(t) := \begin{cases} \frac{1}{3\delta} & |t| \leq \delta, \\ \frac{2\delta - |t|}{3\delta^2} & \delta \leq |t| \leq 2\delta, \\ 0 & \text{otherwise}, \end{cases}$$

$$\boldsymbol{\omega}_{\epsilon}(\mathbf{x}) := \prod_{l=1}^{d} \omega_{\epsilon}(x_l), \quad \mathbf{x} := (x_1, \ldots, x_d).$$

• Following Kruskov (1970), define

$$\phi(\mathbf{x},\mathbf{y},t,s) := \boldsymbol{\omega}_{\epsilon}(\mathbf{x}-\mathbf{y})\boldsymbol{\omega}_{\delta}(t-s), \qquad \forall (\mathbf{y},s) \in D \times [0,T].$$

$${\sf F}_{\delta}(t):=\int_0^t \omega_{\delta}(s)\,{
m d} s.$$

- Let $\delta > \mathbf{0}$ and $\epsilon = \|\mathbf{f}\|_{\mathrm{Lip}}\,\delta$
- Consider mollifiers ω_{δ} and $\boldsymbol{\omega}_{\epsilon}$

$$\omega_{\delta}(t):=egin{cases} rac{1}{3\delta} & |t|\leq\delta,\ rac{2\delta-|t|}{3\delta^2} & \delta\leq|t|\leq 2\delta,\ 0 & ext{otherwise}, \end{cases}$$

$$\boldsymbol{\omega}_{\epsilon}(\mathbf{x}) := \prod_{l=1}^{d} \omega_{\epsilon}(x_l), \quad \mathbf{x} := (x_1, \ldots, x_d).$$

• Following Kruskov (1970), define

$$\phi(\mathbf{x},\mathbf{y},t,s) := \boldsymbol{\omega}_{\epsilon}(\mathbf{x}-\mathbf{y})\omega_{\delta}(t-s), \qquad \forall (\mathbf{y},s) \in D \times [0,T].$$

$$\Gamma_{\delta}(t) := \int_0^t \omega_{\delta}(s) \, \mathrm{d}s.$$

- Let $\delta > \mathbf{0}$ and $\epsilon = \|\mathbf{f}\|_{\mathrm{Lip}}\,\delta$
- Consider mollifiers ω_δ and $oldsymbol{\omega}_\epsilon$

$$\omega_{\delta}(t) := \begin{cases} \frac{1}{3\delta} & |t| \leq \delta, \\ \frac{2\delta - |t|}{3\delta^2} & \delta \leq |t| \leq 2\delta, \\ 0 & \text{otherwise}, \end{cases} \qquad \boldsymbol{\omega}_{\epsilon}(\mathbf{x}) := \Pi_{l=1}^{d} \omega_{\epsilon}(x_{l}), \quad \mathbf{x} := (x_{1}, \dots, x_{d}).$$

• Following Kruskov (1970), define

$$\phi(\mathbf{x},\mathbf{y},t,s) := \boldsymbol{\omega}_{\epsilon}(\mathbf{x}-\mathbf{y})\omega_{\delta}(t-s), \qquad \forall (\mathbf{y},s) \in D \times [0,T].$$

$$\Gamma_{\delta}(t) := \int_0^t \omega_{\delta}(s) \, \mathrm{d} s.$$

- Let $\delta > \mathbf{0}$ and $\epsilon = \|\mathbf{f}\|_{\mathrm{Lip}}\,\delta$
- Consider mollifiers ω_δ and $oldsymbol{\omega}_\epsilon$

$$\omega_{\delta}(t) := \begin{cases} \frac{1}{3\delta} & |t| \leq \delta, \\ \frac{2\delta - |t|}{3\delta^2} & \delta \leq |t| \leq 2\delta, \\ 0 & \text{otherwise}, \end{cases} \qquad \boldsymbol{\omega}_{\epsilon}(\mathbf{x}) := \Pi_{l=1}^{d} \omega_{\epsilon}(x_{l}), \quad \mathbf{x} := (x_{1}, \dots, x_{d}).$$

• Following Kruskov (1970), define

$$\phi(\mathbf{x},\mathbf{y},t,s) := \boldsymbol{\omega}_{\epsilon}(\mathbf{x}-\mathbf{y})\omega_{\delta}(t-s), \qquad \forall (\mathbf{y},s) \in D \times [0,T].$$

$${\sf F}_{\delta}(t):=\int_0^t \omega_{\delta}(s)\,{
m d} s.$$

A priori error estimate for scalar equations: A useful lemma

Lemma (Guermond, Popov (2014-15))

Assume $u_0 \in BV(\Omega)$. Let $\tilde{u}_h : D \times [0, T] \longrightarrow \mathbb{R}$ be any approximate solution. Assume that there is Λ a bounded functional on Lipschitz functions so that $\forall k \in [u_{\min}, u_{\max}]$, $\forall \psi \in W_c^{1,\infty}(D \times [0, T]; \mathbb{R}^+)$:

$$\begin{split} &-\int_0^T\!\!\!\int_D \left(|\widetilde{u}_h - k| \partial_t \psi + \operatorname{sgn}(\widetilde{u}_h - k)(\mathbf{f}(\widetilde{u}_h) - \mathbf{f}(k)) \cdot \nabla \psi \right) \mathrm{d} \mathbf{x} \, \mathrm{d} t \\ &+ \|\pi_h \big((\widetilde{u}_h(\mathcal{T}) - k) \bar{\pi}_h \psi(\cdot, \mathcal{T}_h) \big) \|_{\ell_h^1} - \|\pi_h \big((\widetilde{u}_h(0) - k) \bar{\pi}_h \psi(\cdot, \sigma_h) \big) \|_{\ell_h^1} \leq \Lambda(\psi), \end{split}$$

where $\|\cdot\|_{\ell_h^1}$ is the discrete L^1 -norm and $|T - T_h| \leq \gamma \Delta t$, $|0 - \sigma_h| \leq \gamma \Delta t$, $\gamma > 0$ is a uniform constant. Then the following estimate holds

$$\|u(\cdot, T) - \tilde{u}_h(\cdot, T)\|_{L^1(\Omega)} \leq c \left((\epsilon + h)|u_0|_{BV(\Omega)} + \Lambda^*\right)$$

where $\Lambda^* := \sup_{0 \le t \le T} \frac{\int_0^t \int_D \Lambda(\phi) \, \mathrm{d} \mathbf{y} \, \mathrm{d} s}{\Gamma_{\delta}(t)}.$

• Generalization of results by Cockburn Gremaud (1996) and Bouchut, Perthame (1998) based on Kruskov (1970), Kuznecov (1976).

A priori error estimate for scalar equations: A useful lemma

Lemma (Guermond, Popov (2014-15))

Assume $u_0 \in BV(\Omega)$. Let $\tilde{u}_h : D \times [0, T] \longrightarrow \mathbb{R}$ be any approximate solution. Assume that there is Λ a bounded functional on Lipschitz functions so that $\forall k \in [u_{\min}, u_{\max}]$, $\forall \psi \in W_c^{1,\infty}(D \times [0, T]; \mathbb{R}^+)$:

$$\begin{split} &-\int_0^T\!\!\!\int_D \left(|\widetilde{u}_h - k| \partial_t \psi + \operatorname{sgn}(\widetilde{u}_h - k)(\mathbf{f}(\widetilde{u}_h) - \mathbf{f}(k)) \cdot \nabla \psi \right) \mathrm{d} \mathbf{x} \, \mathrm{d} t \\ &+ \|\pi_h \big((\widetilde{u}_h(\mathcal{T}) - k) \bar{\pi}_h \psi(\cdot, \mathcal{T}_h) \big) \|_{\ell_h^1} - \|\pi_h \big((\widetilde{u}_h(0) - k) \bar{\pi}_h \psi(\cdot, \sigma_h) \big) \|_{\ell_h^1} \leq \Lambda(\psi), \end{split}$$

where $\|\cdot\|_{\ell_h^1}$ is the discrete L^1 -norm and $|T - T_h| \leq \gamma \Delta t$, $|0 - \sigma_h| \leq \gamma \Delta t$, $\gamma > 0$ is a uniform constant. Then the following estimate holds

$$\|u(\cdot, T) - \tilde{u}_h(\cdot, T)\|_{L^1(\Omega)} \leq c \left((\epsilon + h)|u_0|_{BV(\Omega)} + \Lambda^*\right)$$

where $\Lambda^* := \sup_{0 \le t \le T} \frac{\int_0^t \int_D \Lambda(\phi) \, \mathrm{d} \mathbf{y} \, \mathrm{d} s}{\Gamma_{\delta}(t)}$.

• Generalization of results by Cockburn Gremaud (1996) and Bouchut, Perthame (1998) based on Kruskov (1970), Kuznecov (1976).

A priori error estimate for scalar equations: A useful lemma

Lemma (Guermond, Popov (2014-15))

Assume $u_0 \in BV(\Omega)$. Let $\tilde{u}_h : D \times [0, T] \longrightarrow \mathbb{R}$ be any approximate solution. Assume that there is Λ a bounded functional on Lipschitz functions so that $\forall k \in [u_{\min}, u_{\max}]$, $\forall \psi \in W_c^{1,\infty}(D \times [0, T]; \mathbb{R}^+)$:

$$\begin{split} &-\int_0^T\!\!\!\int_D \left(|\widetilde{u}_h - k| \partial_t \psi + \operatorname{sgn}(\widetilde{u}_h - k)(\mathbf{f}(\widetilde{u}_h) - \mathbf{f}(k)) \cdot \nabla \psi \right) \mathrm{d} \mathbf{x} \, \mathrm{d} t \\ &+ \|\pi_h \big((\widetilde{u}_h(\mathcal{T}) - k) \bar{\pi}_h \psi(\cdot, \mathcal{T}_h) \big) \|_{\ell_h^1} - \|\pi_h \big((\widetilde{u}_h(0) - k) \bar{\pi}_h \psi(\cdot, \sigma_h) \big) \|_{\ell_h^1} \leq \Lambda(\psi), \end{split}$$

where $\|\cdot\|_{\ell_h^1}$ is the discrete L^1 -norm and $|T - T_h| \leq \gamma \Delta t$, $|0 - \sigma_h| \leq \gamma \Delta t$, $\gamma > 0$ is a uniform constant. Then the following estimate holds

$$\|u(\cdot, T) - \tilde{u}_h(\cdot, T)\|_{L^1(\Omega)} \leq c \left((\epsilon + h)|u_0|_{BV(\Omega)} + \Lambda^*\right)$$

where $\Lambda^* := \sup_{0 \le t \le T} \frac{\int_0^t \int_D \Lambda(\phi) \, \mathrm{d} \mathbf{y} \, \mathrm{d} s}{\Gamma_{\delta}(t)}.$

• Generalization of results by Cockburn Gremaud (1996) and Bouchut, Perthame (1998) based on Kruskov (1970), Kuznecov (1976).

English translation

Control on all the Kruskov entropies \Rightarrow Convergence estimate.

Theorem (Guermond, Popov (2014-15))

- BV estimate is trivial in 1D (Harten's lemma).
- BV estimate can be proved in nD on special meshes.
- Similar results for FV Chainais-Hillairet (1999), Eymard et al (1998)
- First error estimates for explicit continuous FE method (as far as we know).

English translation

Control on all the Kruskov entropies \Rightarrow Convergence estimate.

Theorem (Guermond, Popov (2014-15))

- BV estimate is trivial in 1D (Harten's lemma).
- BV estimate can be proved in nD on special meshes.
- Similar results for FV Chainais-Hillairet (1999), Eymard et al (1998)
- First error estimates for explicit continuous FE method (as far as we know).

English translation

Control on all the Kruskov entropies \Rightarrow Convergence estimate.

Theorem (Guermond, Popov (2014-15))

- BV estimate is trivial in 1D (Harten's lemma).
- BV estimate can be proved in nD on special meshes.
- Similar results for FV Chainais-Hillairet (1999), Eymard et al (1998)
- First error estimates for explicit continuous FE method (as far as we know).

English translation

Control on all the Kruskov entropies \Rightarrow Convergence estimate.

Theorem (Guermond, Popov (2014-15))

- BV estimate is trivial in 1D (Harten's lemma).
- BV estimate can be proved in nD on special meshes.
- Similar results for FV Chainais-Hillairet (1999), Eymard et al (1998)
- First error estimates for explicit continuous FE method (as far as we know).

English translation

Control on all the Kruskov entropies \Rightarrow Convergence estimate.

Theorem (Guermond, Popov (2014-15))

- BV estimate is trivial in 1D (Harten's lemma).
- BV estimate can be proved in nD on special meshes.
- Similar results for FV Chainais-Hillairet (1999), Eymard et al (1998)
- First error estimates for explicit continuous FE method (as far as we know).

English translation

Control on all the Kruskov entropies \Rightarrow Convergence estimate.

Theorem (Guermond, Popov (2014-15))

- BV estimate is trivial in 1D (Harten's lemma).
- BV estimate can be proved in nD on special meshes.
- Similar results for FV Chainais-Hillairet (1999), Eymard et al (1998)
- First error estimates for explicit continuous FE method (as far as we know).

Higher-order in time

- Use SSP method to get higher-order in time.
- Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker (2005), Higueras (2005), etc.:

Remark on SSP

- SSP is not about positivity, it is about convexity.
- Let A be a convex set and assume that $U \longmapsto S_{\Delta t}(U)$ is an SSP scheme based on Euler step $U \longmapsto E_{\Delta t}(U)$ for all $\Delta t \leq \Delta t_0$, then

(If Euler step $E_{\Delta t}(\mathbf{U})$ is invariant domain preserving in A)

then (SSP step $S_{\Delta t}(\mathbf{U})$ is invariant domain preserving in A)

Higher-order in time

- Use SSP method to get higher-order in time.
- Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker (2005), Higueras (2005), etc.:

Remark on SSP

- SSP is not about positivity, it is about convexity.
- Let A be a convex set and assume that $U \longmapsto S_{\Delta t}(U)$ is an SSP scheme based on Euler step $U \longmapsto E_{\Delta t}(U)$ for all $\Delta t \leq \Delta t_0$, then

(If Euler step $E_{\Delta t}(\mathbf{U})$ is invariant domain preserving in A)

then (SSP step $S_{\Delta t}(\mathbf{U})$ is invariant domain preserving in A)

Higher-order in time

- Use SSP method to get higher-order in time.
- Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker (2005), Higueras (2005), etc.:

Remark on SSP

- SSP is not about positivity, it is about convexity.
- Let A be a convex set and assume that $U \longmapsto S_{\Delta t}(U)$ is an SSP scheme based on Euler step $U \longmapsto E_{\Delta t}(U)$ for all $\Delta t \leq \Delta t_0$, then

(If Euler step $E_{\Delta t}(\mathsf{U})$ is invariant domain preserving in A

then $ig(\mathsf{SSP} \ \mathsf{step} \ \mathcal{S}_{\Delta t}(\mathsf{U})$ is invariant domain preserving in Aig)

Higher-order in time

- Use SSP method to get higher-order in time.
- Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker (2005), Higueras (2005), etc.:

Remark on SSP

- SSP is not about positivity, it is about convexity.
- Let A be a convex set and assume that $U \longmapsto S_{\Delta t}(U)$ is an SSP scheme based on Euler step $U \longmapsto E_{\Delta t}(U)$ for all $\Delta t \leq \Delta t_0$, then

(If Euler step $E_{\Delta t}(\mathbf{U})$ is invariant domain preserving in A

then $ig(\mathsf{SSP} \ \mathsf{step} \ \mathcal{S}_{\Delta t}(\mathsf{U})$ is invariant domain preserving in Aig)

Higher-order in time

- Use SSP method to get higher-order in time.
- Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker (2005), Higueras (2005), etc.:

Remark on SSP

- SSP is not about positivity, it is about convexity.
- Let A be a convex set and assume that $\mathbf{U} \mapsto S_{\Delta t}(\mathbf{U})$ is an SSP scheme based on Euler step $\mathbf{U} \mapsto E_{\Delta t}(\mathbf{U})$ for all $\Delta t \leq \Delta t_0$, then

(If Euler step $E_{\Delta t}(\mathbf{U})$ is invariant domain preserving in A

then $\left(\mathsf{SSP} ext{ step } S_{\Delta t}(\mathsf{U}) ext{ is invariant domain preserving in } A
ight)$

Higher-order in time

- Use SSP method to get higher-order in time.
- Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker (2005), Higueras (2005), etc.:

Remark on SSP

- SSP is not about positivity, it is about convexity.
- Let A be a convex set and assume that $\mathbf{U} \longmapsto S_{\Delta t}(\mathbf{U})$ is an SSP scheme based on Euler step $\mathbf{U} \longmapsto E_{\Delta t}(\mathbf{U})$ for all $\Delta t \leq \Delta t_0$, then

(If Euler step $E_{\Delta t}(\mathbf{U})$ is invariant domain preserving in A)

:hen $ig(\mathsf{SSP} \ \mathsf{step} \ S_{\Delta t}(\mathsf{U})$ is invariant domain preserving in Aig)

Higher-order in time

- Use SSP method to get higher-order in time.
- Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker (2005), Higueras (2005), etc.:

Remark on SSP

- SSP is not about positivity, it is about convexity.
- Let A be a convex set and assume that $\mathbf{U} \longmapsto S_{\Delta t}(\mathbf{U})$ is an SSP scheme based on Euler step $\mathbf{U} \longmapsto E_{\Delta t}(\mathbf{U})$ for all $\Delta t \leq \Delta t_0$, then

(If Euler step $E_{\Delta t}(\mathbf{U})$ is invariant domain preserving in A)

then (SSP step $S_{\Delta t}(\mathbf{U})$ is invariant domain preserving in A)

Higher-order in time

- Use SSP method to get higher-order in time.
- Strong Stability Preserving methods (SSP), Kraaijevanger (1991) (amazing paper), Gottlieb-Shu-Tadmor (2001), Spiteri-Ruuth (2002) Ferracina-Spijker (2005), Higueras (2005), etc.:

Remark on SSP

- SSP is not about positivity, it is about convexity.
- Let A be a convex set and assume that $\mathbf{U} \longmapsto S_{\Delta t}(\mathbf{U})$ is an SSP scheme based on Euler step $\mathbf{U} \longmapsto E_{\Delta t}(\mathbf{U})$ for all $\Delta t \leq \Delta t_0$, then

(If Euler step $E_{\Delta t}(\mathbf{U})$ is invariant domain preserving in A)

then (SSP step $S_{\Delta t}(\mathbf{U})$ is invariant domain preserving in A)

Higher-order in space: Entropy viscosity

- Use entropy viscosity (or something else)
- FCT or other limitation (work in progress)

Higher-order in space: Entropy viscosity

- Use entropy viscosity (or something else)
- FCT or other limitation (work in progress)

Strong explosion; ent. vis. sol. 1.5 million \mathbb{P}_2 nodes

(author: Murtazo Nazarov; 1.5 million \mathbb{P}_2 nodes)

FE approximation

Hyperbolic systems + AL

Maximum wave speed

Mach 10 ramp, ent. vis. sol. 1.2 million \mathbb{P}_2 nodes

(author: Murtazo Nazarov; 1.2 millions \mathbb{P}_2 nodes)

Hyperbolic systems + ALE

Hyperbolic systems

• Instead of tracking the characteristics (there are too many), we want to move the mesh.

ALE formulation

- Let $\Phi : \mathbb{R}^d \times \mathbb{R}_+ \longrightarrow \mathbb{R}^d$ be a uniformly Lipschitz mapping $(\mathbb{R}^d \ni \boldsymbol{\xi} \longmapsto \Phi(\boldsymbol{\xi}, t) \in \mathbb{R}^d$ invertible on $[0, t^*])$
- Let $v_A(x, t) = \partial_t \Phi(\Phi_t^{-1}(x), t)$ Arbitrary Lagrangian Eulerian velocity
- \bullet We are going to use $v_{\rm A}$ to move the mesh.

Lemma

$$\partial_t \int_{\mathbb{R}^d} \mathbf{u}(\mathbf{x},t) \varphi(\mathbf{x},t) \, \mathrm{d}\mathbf{x} = \int_{\mathbb{R}^d} \nabla \cdot (\mathbf{u} \otimes \mathbf{v}_{\mathrm{A}} - \mathbf{f}(\mathbf{u})) \varphi(\mathbf{x},t) \, \mathrm{d}\mathbf{x}.$$

 Instead of tracking the characteristics (there are too many), we want to move the mesh.

ALE formulation

- Let $\Phi : \mathbb{R}^d \times \mathbb{R}_+ \longrightarrow \mathbb{R}^d$ be a uniformly Lipschitz mapping $(\mathbb{R}^d \ni \boldsymbol{\xi} \longmapsto \Phi(\boldsymbol{\xi}, t) \in \mathbb{R}^d$ invertible on $[0, t^*]$)
- Let $\mathbf{v}_{A}(\mathbf{x},t) = \partial_t \mathbf{\Phi}(\mathbf{\Phi}_t^{-1}(\mathbf{x}),t)$ Arbitrary Lagrangian Eulerian velocity
- \bullet We are going to use $v_{\rm A}$ to move the mesh.

Lemma

$$\partial_t \int_{\mathbb{R}^d} \mathbf{u}(\mathbf{x},t) \varphi(\mathbf{x},t) \, \mathrm{d}\mathbf{x} = \int_{\mathbb{R}^d} \nabla \cdot (\mathbf{u} \otimes \mathbf{v}_{\mathrm{A}} - \mathbf{f}(\mathbf{u})) \varphi(\mathbf{x},t) \, \mathrm{d}\mathbf{x}.$$

 Instead of tracking the characteristics (there are too many), we want to move the mesh.

ALE formulation

- Let $\Phi : \mathbb{R}^d \times \mathbb{R}_+ \longrightarrow \mathbb{R}^d$ be a uniformly Lipschitz mapping $(\mathbb{R}^d \ni \boldsymbol{\xi} \longmapsto \Phi(\boldsymbol{\xi}, t) \in \mathbb{R}^d$ invertible on $[0, t^*]$)
- Let $\mathbf{v}_{A}(\mathbf{x},t) = \partial_{t} \mathbf{\Phi}(\mathbf{\Phi}_{t}^{-1}(\mathbf{x}),t)$ Arbitrary Lagrangian Eulerian velocity
- \bullet We are going to use $v_{\rm A}$ to move the mesh.

Lemma

$$\partial_t \int_{\mathbb{R}^d} \mathbf{u}(\mathbf{x},t) \varphi(\mathbf{x},t) \, \mathrm{d}\mathbf{x} = \int_{\mathbb{R}^d} \nabla \cdot (\mathbf{u} \otimes \mathbf{v}_{\mathrm{A}} - \mathbf{f}(\mathbf{u})) \varphi(\mathbf{x},t) \, \mathrm{d}\mathbf{x}.$$

 Instead of tracking the characteristics (there are too many), we want to move the mesh.

ALE formulation

- Let $\Phi : \mathbb{R}^d \times \mathbb{R}_+ \longrightarrow \mathbb{R}^d$ be a uniformly Lipschitz mapping $(\mathbb{R}^d \ni \boldsymbol{\xi} \longmapsto \Phi(\boldsymbol{\xi}, t) \in \mathbb{R}^d$ invertible on $[0, t^*]$)
- Let $\mathbf{v}_{A}(\mathbf{x},t) = \partial_t \mathbf{\Phi}(\mathbf{\Phi}_t^{-1}(\mathbf{x}),t)$ Arbitrary Lagrangian Eulerian velocity
- \bullet We are going to use \textbf{v}_A to move the mesh.

emma

$$\partial_t \int_{\mathbb{R}^d} \mathbf{u}(\mathbf{x},t) \varphi(\mathbf{x},t) \, \mathrm{d}\mathbf{x} = \int_{\mathbb{R}^d} \nabla \cdot (\mathbf{u} \otimes \mathbf{v}_{\mathrm{A}} - \mathbf{f}(\mathbf{u})) \varphi(\mathbf{x},t) \, \mathrm{d}\mathbf{x}.$$

 Instead of tracking the characteristics (there are too many), we want to move the mesh.

ALE formulation

- Let $\Phi : \mathbb{R}^d \times \mathbb{R}_+ \longrightarrow \mathbb{R}^d$ be a uniformly Lipschitz mapping $(\mathbb{R}^d \ni \boldsymbol{\xi} \longmapsto \Phi(\boldsymbol{\xi}, t) \in \mathbb{R}^d$ invertible on $[0, t^*]$)
- Let $\mathbf{v}_{A}(\mathbf{x},t) = \partial_t \mathbf{\Phi}(\mathbf{\Phi}_t^{-1}(\mathbf{x}),t)$ Arbitrary Lagrangian Eulerian velocity
- \bullet We are going to use $\textbf{v}_{\rm A}$ to move the mesh.

Lemma

$$\partial_t \int_{\mathbb{R}^d} \mathbf{u}(\mathbf{x},t) \varphi(\mathbf{x},t) \, \mathrm{d}\mathbf{x} = \int_{\mathbb{R}^d} \nabla \cdot (\mathbf{u} \otimes \mathbf{v}_{\mathrm{A}} - \mathbf{f}(\mathbf{u})) \varphi(\mathbf{x},t) \, \mathrm{d}\mathbf{x}.$$

Geometric Finite elements

- Let $(\mathcal{T}_h^0)_{h>0}$ be a shape-regular sequence of matching meshes.
- Reference Lagrange finite element $(\widehat{K}, \widehat{P}^{geo}, \widehat{\Sigma}^{geo})$ for geometry
- Lagrange nodes $\{\widehat{\mathbf{a}}_i\}_{i \in \{1: n_{ob}^{\text{geo}}\}}$ and Lagrange shape functions $\{\widehat{\theta}_i^{\text{geo}}\}_{i \in \{1: n_{ob}^{\text{geo}}\}}$
- $\{\mathbf{a}^n_i\}_{i\in\{1:I^{geo}\}}$ collection of all the Lagrange nodes in the mesh \mathcal{T}^n_h
- $j^{\text{geo}} : \mathcal{T}_h^n \times \{1: n_{\text{sh}}^{\text{geo}}\} \longrightarrow \{1: I^{\text{geo}}\}$ geometric connectivity array
- Geometric transformation $T_K^n : \widehat{K} \longrightarrow K$ defined by

$$\mathcal{T}_{K}^{n}(\widehat{\mathbf{x}}) = \sum_{i \in \{1: n_{\mathrm{sh}}^{\mathrm{geo}}\}} \mathbf{a}_{j^{\mathrm{geo}}(i,K)}^{n} \widehat{\theta}_{i}^{\mathrm{geo}}(\widehat{\mathbf{x}}).$$

Geometric Finite elements

- Let $(\mathcal{T}_h^0)_{h>0}$ be a shape-regular sequence of matching meshes.
- Reference Lagrange finite element $(\widehat{K}, \widehat{P}^{\mathrm{geo}}, \widehat{\Sigma}^{\mathrm{geo}})$ for geometry
- Lagrange nodes $\{\widehat{\mathbf{a}}_i\}_{i \in \{1: n_{ob}^{\text{geo}}\}}$ and Lagrange shape functions $\{\widehat{\theta}_i^{\text{geo}}\}_{i \in \{1: n_{ob}^{\text{geo}}\}}$
- $\{\mathbf{a}^n_i\}_{i \in \{1:I^{geo}\}}$ collection of all the Lagrange nodes in the mesh \mathcal{T}^n_h
- $j^{\text{geo}} : \mathcal{T}_h^n \times \{1: n_{\text{sh}}^{\text{geo}}\} \longrightarrow \{1: I^{\text{geo}}\}$ geometric connectivity array
- Geometric transformation $T_K^n : \widehat{K} \longrightarrow K$ defined by

$$\mathcal{T}_{K}^{n}(\widehat{\mathbf{x}}) = \sum_{i \in \{1: n_{\mathrm{sh}}^{\mathrm{geo}}\}} \mathbf{a}_{j^{\mathrm{geo}}(i,K)}^{n} \widehat{\theta}_{i}^{\mathrm{geo}}(\widehat{\mathbf{x}}).$$

Geometric Finite elements

- Let (𝒯⁰_h)_{h>0} be a shape-regular sequence of matching meshes.
- Reference Lagrange finite element $(\widehat{K}, \widehat{P}^{\mathrm{geo}}, \widehat{\Sigma}^{\mathrm{geo}})$ for geometry
- Lagrange nodes $\{\widehat{a}_i\}_{i \in \{1: n_{eb}^{geo}\}}$ and Lagrange shape functions $\{\widehat{\theta}_i^{geo}\}_{i \in \{1: n_{eb}^{geo}\}}$
- $\{\mathbf{a}_i^n\}_{i \in \{1: f^{\text{geo}}\}}$ collection of all the Lagrange nodes in the mesh \mathcal{T}_h^n
- $j^{\text{geo}} : \mathcal{T}_h^n \times \{1: n_{\text{sh}}^{\text{geo}}\} \longrightarrow \{1: I^{\text{geo}}\}$ geometric connectivity array
- Geometric transformation $T_K^n : \widehat{K} \longrightarrow K$ defined by

$$T_K^n(\widehat{\mathbf{x}}) = \sum_{i \in \{1: n_{\mathrm{sh}}^{\mathrm{geo}}\}} \mathbf{a}_{j^{\mathrm{geo}}(i,K)}^n \widehat{\theta}_i^{\mathrm{geo}}(\widehat{\mathbf{x}}).$$

Geometric Finite elements

- Let $(\mathcal{T}_h^0)_{h>0}$ be a shape-regular sequence of matching meshes.
- Reference Lagrange finite element $(\widehat{K}, \widehat{P}^{\mathrm{geo}}, \widehat{\Sigma}^{\mathrm{geo}})$ for geometry
- Lagrange nodes $\{\widehat{\mathbf{a}}_i\}_{i \in \{1: n_{e_b}^{geo}\}}$ and Lagrange shape functions $\{\widehat{\theta}_i^{geo}\}_{i \in \{1: n_{e_b}^{geo}\}}$
- $\{\mathbf{a}_i^n\}_{i \in \{1: I^{\text{geo}}\}}$ collection of all the Lagrange nodes in the mesh \mathcal{T}_h^n
- $j^{\text{geo}} : \mathcal{T}_h^n \times \{1: n_{\text{sh}}^{\text{geo}}\} \longrightarrow \{1: I^{\text{geo}}\}$ geometric connectivity array
- Geometric transformation $T_K^n : \widehat{K} \longrightarrow K$ defined by

$$\mathcal{T}_{K}^{n}(\widehat{\mathbf{x}}) = \sum_{i \in \{1: n_{\mathrm{sh}}^{\mathrm{geo}}\}} \mathbf{a}_{j^{\mathrm{geo}}(i,K)}^{n} \widehat{\theta}_{i}^{\mathrm{geo}}(\widehat{\mathbf{x}}).$$

Geometric Finite elements

- Let (𝒯⁰_h)_{h>0} be a shape-regular sequence of matching meshes.
- Reference Lagrange finite element $(\widehat{K}, \widehat{P}^{\mathrm{geo}}, \widehat{\Sigma}^{\mathrm{geo}})$ for geometry
- Lagrange nodes $\{\widehat{\mathbf{a}}_i\}_{i \in \{1: n_{c_h}^{geo}\}}$ and Lagrange shape functions $\{\widehat{\theta}_i^{geo}\}_{i \in \{1: n_{c_h}^{geo}\}}$
- $\{\mathbf{a}_i^n\}_{i \in \{1: I^{\text{geo}}\}}$ collection of all the Lagrange nodes in the mesh \mathcal{T}_h^n
- $j^{\text{geo}}: \mathcal{T}_h^n \times \{1: n_{\text{sh}}^{\text{geo}}\} \longrightarrow \{1: I^{\text{geo}}\}$ geometric connectivity array
- Geometric transformation $T_K^n : \widehat{K} \longrightarrow K$ defined by

$$\mathcal{T}_{K}^{n}(\widehat{\mathbf{x}}) = \sum_{i \in \{1: n_{\mathrm{sh}}^{\mathrm{geo}}\}} \mathbf{a}_{j^{\mathrm{geo}}(i,K)}^{n} \widehat{\theta}_{i}^{\mathrm{geo}}(\widehat{\mathbf{x}}).$$

Geometric Finite elements

- Let $(\mathcal{T}_h^0)_{h>0}$ be a shape-regular sequence of matching meshes.
- Reference Lagrange finite element $(\widehat{K}, \widehat{P}^{\mathrm{geo}}, \widehat{\Sigma}^{\mathrm{geo}})$ for geometry
- Lagrange nodes $\{\widehat{\mathbf{a}}_i\}_{i \in \{1: n_{sh}^{geo}\}}$ and Lagrange shape functions $\{\widehat{\theta}_i^{geo}\}_{i \in \{1: n_{sh}^{geo}\}}$
- $\{\mathbf{a}_i^n\}_{i \in \{1: I^{\text{geo}}\}}$ collection of all the Lagrange nodes in the mesh \mathcal{T}_h^n
- $j^{\text{geo}}: \mathcal{T}_h^n \times \{1: n_{\text{sh}}^{\text{geo}}\} \longrightarrow \{1: I^{\text{geo}}\}$ geometric connectivity array
- Geometric transformation $T_K^n:\widehat{K}\longrightarrow K$ defined by

$$T_{K}^{n}(\widehat{\mathbf{x}}) = \sum_{i \in \{1: n_{\mathrm{sh}}^{\mathrm{geo}}\}} \mathbf{a}_{j^{\mathrm{geo}}(i,K)}^{n} \widehat{\theta}_{i}^{\mathrm{geo}}(\widehat{\mathbf{x}}).$$

Geometric Finite elements

- Let $(\mathcal{T}_h^0)_{h>0}$ be a shape-regular sequence of matching meshes.
- Reference Lagrange finite element $(\widehat{K}, \widehat{P}^{\mathrm{geo}}, \widehat{\Sigma}^{\mathrm{geo}})$ for geometry
- Lagrange nodes $\{\widehat{\mathbf{a}}_i\}_{i \in \{1: n_{sh}^{geo}\}}$ and Lagrange shape functions $\{\widehat{\theta}_i^{geo}\}_{i \in \{1: n_{sh}^{geo}\}}$
- $\{\mathbf{a}_i^n\}_{i \in \{1: I^{\text{geo}}\}}$ collection of all the Lagrange nodes in the mesh \mathcal{T}_h^n
- $j^{\text{geo}}: \mathcal{T}_h^n \times \{1: n_{\text{sh}}^{\text{geo}}\} \longrightarrow \{1: I^{\text{geo}}\}$ geometric connectivity array
- Geometric transformation $T_K^n:\widehat{K}\longrightarrow K$ defined by

$$T_{K}^{n}(\widehat{\mathbf{x}}) = \sum_{i \in \{1: n_{\mathrm{sh}}^{\mathrm{geo}}\}} \mathbf{a}_{j^{\mathrm{geo}}(i,K)}^{n} \widehat{\theta}_{i}^{\mathrm{geo}}(\widehat{\mathbf{x}}).$$

Approximating Finite elements

- Reference finite element $(\widehat{K}, \widehat{P}, \widehat{\Sigma})$ }
- Shape functions $\widehat{ heta}_i({\sf x}) \geq$ 0, $\sum_{i \in \{1: n_{
 m sh}\}} \widehat{ heta}_i(\widehat{\sf x}) = 1$
- Finite element spaces

$$P(\mathcal{T}_{h}^{n}) := \{ v \in \mathcal{C}^{0}(D^{n}; \mathbb{R}); v_{|K} \circ \mathcal{T}_{K}^{n} \in \widehat{P}, \forall K \in \mathcal{T}_{h}^{n} \},$$

$$\mathbf{P}_{d}(\mathcal{T}_{h}^{n}) := [P(\mathcal{T}_{h}^{n})]^{d},$$

$$\mathbf{P}_{m}(\mathcal{T}_{h}^{n}) := [P(\mathcal{T}_{h}^{n})]^{m}.$$

Approximating Finite elements

- Reference finite element $(\widehat{K}, \widehat{P}, \widehat{\Sigma})$ }
- Shape functions $\widehat{ heta}_i(\mathbf{x}) \geq 0$, $\sum_{i \in \{1: n_{\mathrm{sh}}\}} \widehat{ heta}_i(\widehat{\mathbf{x}}) = 1$
- Finite element spaces

$$P(\mathcal{T}_h^n) := \{ \mathbf{v} \in \mathcal{C}^0(D^n; \mathbb{R}); \, \mathbf{v}_{|K} \circ \mathcal{T}_K^n \in \widehat{P}, \, \forall K \in \mathcal{T}_h^n \}, \\ \mathbf{P}_d(\mathcal{T}_h^n) := [P(\mathcal{T}_h^n)]^d, \\ \mathbf{P}_m(\mathcal{T}_h^n) := [P(\mathcal{T}_h^n)]^m.$$

Approximating Finite elements

- Reference finite element $(\widehat{K}, \widehat{P}, \widehat{\Sigma})$ }
- Shape functions $\widehat{ heta}_i(\mathbf{x}) \geq$ 0, $\sum_{i \in \{1: n_{\mathrm{sh}}\}} \widehat{ heta}_i(\widehat{\mathbf{x}}) = 1$
- Finite element spaces

$$P(\mathcal{T}_{h}^{n}) := \{ \mathbf{v} \in \mathcal{C}^{0}(D^{n}; \mathbb{R}); \, \mathbf{v}_{|K} \circ \mathcal{T}_{K}^{n} \in \widehat{P}, \, \forall K \in \mathcal{T}_{h}^{n} \}, \\ \mathbf{P}_{d}(\mathcal{T}_{h}^{n}) := [P(\mathcal{T}_{h}^{n})]^{d}, \\ \mathbf{P}_{m}(\mathcal{T}_{h}^{n}) := [P(\mathcal{T}_{h}^{n})]^{m}.$$

Approximating Finite elements

- Reference finite element $(\widehat{K}, \widehat{P}, \widehat{\Sigma})$ }
- Shape functions $\widehat{ heta}_i(\mathbf{x}) \geq$ 0, $\sum_{i \in \{1: n_{\mathrm{sh}}\}} \widehat{ heta}_i(\widehat{\mathbf{x}}) = 1$
- Finite element spaces

$$P(\mathcal{T}_h^n) := \{ \mathbf{v} \in \mathcal{C}^0(D^n; \mathbb{R}); \, \mathbf{v}_{|K} \circ \mathcal{T}_K^n \in \widehat{P}, \, \forall K \in \mathcal{T}_h^n \}, \\ \mathbf{P}_d(\mathcal{T}_h^n) := [P(\mathcal{T}_h^n)]^d, \\ \mathbf{P}_m(\mathcal{T}_h^n) := [P(\mathcal{T}_h^n)]^m.$$

The algorithm

- Initialization: $\mathfrak{m}_i^0 := \int_{\mathbb{R}^d} \psi_i^n(\mathbf{x}) \, \mathrm{d}\mathbf{x} \ \mathbf{u}_{h0} := \sum_{i \in \{1:I\}} \mathbf{U}_i^0 \psi_i^0 \in \mathbf{P}_m(\mathcal{T}_h^0)$
- ALE velocity field given: $\mathbf{w}^n = \sum_{i \in \{1:I\}} \mathbf{W}^n_i \psi^n_i \in \mathbf{P}_d(\mathcal{T}^n_h)$,
- Mesh motion:

$$\mathbf{a}_i^{n+1} = \mathbf{a}_i^n + \Delta t \mathbf{w}^n(\mathbf{a}_i^n).$$

• Mass update: (do not use $\mathfrak{m}_i^{n+1} = \int_D \psi_i^{n+1} \, \mathrm{d} \mathbf{x}$!)

$$\mathfrak{m}_i^{n+1} = \mathfrak{m}_i^n + \Delta t \int_{S_i^n} \psi_i^n(\mathbf{x}) \nabla \cdot \mathbf{w}^n(\mathbf{x}) \, \mathrm{d} \mathbf{x}.$$

• Update approximation field \mathbf{u}_h^{n+1}

$$\begin{split} \frac{\mathbf{m}_{i}^{n+1}\mathbf{U}_{i}^{n+1}-\mathbf{m}_{i}^{n}\mathbf{U}_{i}^{n}}{\Delta t} &-\sum_{j\in\mathcal{I}(S_{i}^{n})}d_{ij}^{n}\mathbf{U}_{j}^{n} \\ &+\int_{\mathbb{R}^{d}}\nabla\cdot\bigg(\sum_{j\in\{1:I\}}(\mathbf{f}(\mathbf{U}_{j}^{n})-\mathbf{U}_{j}^{n}\otimes\mathbf{W}_{j}^{n})\psi_{j}^{n}(\mathbf{x})\bigg)\psi_{i}^{n}(\mathbf{x})\,\mathrm{d}\mathbf{x}=\mathbf{0}, \end{split}$$

The algorithm

- Initialization: $\mathfrak{m}_i^0 := \int_{\mathbb{R}^d} \psi_i^n(\mathbf{x}) \, \mathrm{d}\mathbf{x} \ \mathbf{u}_{h0} := \sum_{i \in \{1:I\}} \mathbf{U}_i^0 \psi_i^0 \in \mathbf{P}_m(\mathcal{T}_h^0)$
- ALE velocity field given: $\mathbf{w}^n = \sum_{i \in \{1:I\}} \mathbf{W}^n_i \psi^n_i \in \mathbf{P}_d(\mathcal{T}^n_h)$,
- Mesh motion:

$$\mathbf{a}_i^{n+1} = \mathbf{a}_i^n + \Delta t \mathbf{w}^n(\mathbf{a}_i^n).$$

• Mass update: (do not use $\mathfrak{m}_i^{n+1} = \int_D \psi_i^{n+1} \, \mathrm{d} \mathbf{x}$!)

$$\mathfrak{m}_i^{n+1} = \mathfrak{m}_i^n + \Delta t \int_{S_i^n} \psi_i^n(\mathbf{x}) \nabla \cdot \mathbf{w}^n(\mathbf{x}) \, \mathrm{d} \mathbf{x}.$$

• Update approximation field \mathbf{u}_h^{n+1}

$$\begin{split} \frac{\mathbf{m}_{i}^{n+1}\mathbf{U}_{i}^{n+1}-\mathbf{m}_{i}^{n}\mathbf{U}_{i}^{n}}{\Delta t} &-\sum_{j\in\mathcal{I}(S_{i}^{n})}d_{ij}^{n}\mathbf{U}_{j}^{n} \\ &+\int_{\mathbb{R}^{d}}\nabla\cdot\bigg(\sum_{j\in\{1:I\}}(\mathbf{f}(\mathbf{U}_{j}^{n})-\mathbf{U}_{j}^{n}\otimes\mathbf{W}_{j}^{n})\psi_{j}^{n}(\mathbf{x})\bigg)\psi_{i}^{n}(\mathbf{x})\,\mathrm{d}\mathbf{x}=\mathbf{0}, \end{split}$$

The algorithm

- Initialization: $\mathfrak{m}_i^0 := \int_{\mathbb{R}^d} \psi_i^n(\mathbf{x}) \, \mathrm{d}\mathbf{x} \ \mathbf{u}_{h0} := \sum_{i \in \{1:I\}} \mathbf{U}_i^0 \psi_i^0 \in \mathbf{P}_m(\mathcal{T}_h^0)$
- ALE velocity field given: $\mathbf{w}^n = \sum_{i \in \{1:I\}} \mathbf{W}^n_i \psi^n_i \in \mathbf{P}_d(\mathcal{T}^n_h)$,
- Mesh motion:

$$\mathbf{a}_i^{n+1} = \mathbf{a}_i^n + \Delta t \mathbf{w}^n(\mathbf{a}_i^n).$$

• Mass update: (do not use $\mathfrak{m}_i^{n+1} = \int_D \psi_i^{n+1} \, \mathrm{d} \mathbf{x}$!)

$$\mathfrak{m}_i^{n+1} = \mathfrak{m}_i^n + \Delta t \int_{S_i^n} \psi_i^n(\mathbf{x}) \nabla \cdot \mathbf{w}^n(\mathbf{x}) \, \mathrm{d} \mathbf{x}.$$

Update approximation field uⁿ⁺¹_h

$$\begin{split} \frac{\mathbf{m}_{i}^{n+1}\mathbf{U}_{i}^{n+1}-\mathbf{m}_{i}^{n}\mathbf{U}_{i}^{n}}{\Delta t} &-\sum_{j\in\mathcal{I}(S_{i}^{n})}d_{ij}^{n}\mathbf{U}_{j}^{n} \\ &+\int_{\mathbb{R}^{d}}\nabla\cdot\bigg(\sum_{j\in\{1:I\}}(\mathbf{f}(\mathbf{U}_{j}^{n})-\mathbf{U}_{j}^{n}\otimes\mathbf{W}_{j}^{n})\psi_{j}^{n}(\mathbf{x})\bigg)\psi_{i}^{n}(\mathbf{x})\,\mathrm{d}\mathbf{x}=\mathbf{0}, \end{split}$$

The algorithm

- Initialization: $\mathfrak{m}_i^0 := \int_{\mathbb{R}^d} \psi_i^n(\mathbf{x}) \, \mathrm{d}\mathbf{x} \ \mathbf{u}_{h0} := \sum_{i \in \{1:I\}} \mathbf{U}_i^0 \psi_i^0 \in \mathbf{P}_m(\mathcal{T}_h^0)$
- ALE velocity field given: $\mathbf{w}^n = \sum_{i \in \{1:I\}} \mathbf{W}^n_i \psi^n_i \in \mathbf{P}_d(\mathcal{T}^n_h)$,
- Mesh motion:

$$\mathbf{a}_i^{n+1} = \mathbf{a}_i^n + \Delta t \mathbf{w}^n(\mathbf{a}_i^n).$$

• Mass update: (do not use $\mathfrak{m}_i^{n+1} = \int_D \psi_i^{n+1} \, \mathrm{d} \mathbf{x}$!)

$$\mathfrak{m}_{i}^{n+1} = \mathfrak{m}_{i}^{n} + \Delta t \int_{S_{i}^{n}} \psi_{i}^{n}(\mathbf{x}) \nabla \cdot \mathbf{w}^{n}(\mathbf{x}) \, \mathrm{d}\mathbf{x}.$$

Update approximation field u_hⁿ⁺¹

$$\begin{split} \frac{\mathbf{m}_{i}^{n+1}\mathbf{U}_{i}^{n+1}-\mathbf{m}_{i}^{n}\mathbf{U}_{i}^{n}}{\Delta t} &-\sum_{j\in\mathcal{I}(S_{i}^{n})}d_{ij}^{n}\mathbf{U}_{j}^{n} \\ &+\int_{\mathbb{R}^{d}}\nabla\cdot\bigg(\sum_{j\in\{1:I\}}(\mathbf{f}(\mathbf{U}_{j}^{n})-\mathbf{U}_{j}^{n}\otimes\mathbf{W}_{j}^{n})\psi_{j}^{n}(\mathbf{x})\bigg)\psi_{i}^{n}(\mathbf{x})\,\mathrm{d}\mathbf{x}=\mathbf{0}, \end{split}$$

The algorithm

- Initialization: $\mathfrak{m}_i^0 := \int_{\mathbb{R}^d} \psi_i^n(\mathbf{x}) \, \mathrm{d}\mathbf{x} \ \mathbf{u}_{h0} := \sum_{i \in \{1:I\}} \mathbf{U}_i^0 \psi_i^0 \in \mathbf{P}_m(\mathcal{T}_h^0)$
- ALE velocity field given: $\mathbf{w}^n = \sum_{i \in \{1:I\}} \mathbf{W}^n_i \psi^n_i \in \mathbf{P}_d(\mathcal{T}^n_h)$,
- Mesh motion:

$$\mathbf{a}_i^{n+1} = \mathbf{a}_i^n + \Delta t \mathbf{w}^n(\mathbf{a}_i^n).$$

• Mass update: (do not use $\mathfrak{m}_i^{n+1} = \int_D \psi_i^{n+1} \, \mathrm{d} \mathbf{x}$!)

$$\mathfrak{m}_{i}^{n+1} = \mathfrak{m}_{i}^{n} + \Delta t \int_{S_{i}^{n}} \psi_{i}^{n}(\mathbf{x}) \nabla \cdot \mathbf{w}^{n}(\mathbf{x}) \, \mathrm{d}\mathbf{x}.$$

Update approximation field uⁿ⁺¹_h

$$\begin{split} \frac{\mathfrak{m}_{i}^{n+1}\mathbf{U}_{i}^{n+1}-\mathfrak{m}_{i}^{n}\mathbf{U}_{i}^{n}}{\Delta t} &-\sum_{j\in\mathcal{I}(S_{i}^{n})}d_{ij}^{n}\mathbf{U}_{j}^{n} \\ &+\int_{\mathbb{R}^{d}}\nabla\cdot\bigg(\sum_{j\in\{1:I\}}(\mathbf{f}(\mathbf{U}_{j}^{n})-\mathbf{U}_{j}^{n}\otimes\mathbf{W}_{j}^{n})\psi_{j}^{n}(\mathbf{x})\bigg)\psi_{i}^{n}(\mathbf{x})\,\mathrm{d}\mathbf{x}=\mathbf{0}, \end{split}$$

Definition of d_{ij}^n

- Consider flux $\mathbf{g}_j^n(\mathbf{v}) := \mathbf{f}(\mathbf{v}) \mathbf{v} \otimes \mathbf{W}_j^n$, $j \in \{1: I\}$
- Consider one-dimensional Riemann problem:

$$\partial_t \mathbf{v} + \partial_x (\mathbf{g}_j^n(\mathbf{v}) \cdot \mathbf{n}_{ij}^n) = 0, \quad (x,t) \in \mathbb{R} \times \mathbb{R}_+, \quad \mathbf{v}(x,0) = \begin{cases} \mathsf{U}_i^n & \text{if } x < 0 \\ \mathsf{U}_j^n & \text{if } x > 0. \end{cases}$$

• Define d_{ij}^n by

 $d_{ij}^n = \max(\lambda_{\max}(\mathbf{g}_j^n, \mathbf{n}_{ij}^n, \mathbf{U}_i^n, \mathbf{U}_j^n) \|\mathbf{c}_{ij}^n\|_{\ell^2}, \lambda_{\max}(\mathbf{g}_i^n, \mathbf{n}_{ji}^n, \mathbf{U}_j^n, \mathbf{U}_i^n) \|\mathbf{c}_{ji}^n\|_{\ell^2}).$

$$\begin{split} \lambda_{\max}(\mathbf{g}_j^n,\mathbf{n}_{ij}^n,\mathbf{U}_i^n,\mathbf{U}_j^n) &= \max(|\lambda_L(\mathbf{f},\mathbf{n}_{ij}^n,\mathbf{U}_i^n,\mathbf{U}_j^n) - \mathbf{W}_j^n\cdot\mathbf{n}_{ij}^n|,\\ &|\lambda_R(\mathbf{f},\mathbf{n}_{ij}^n,\mathbf{U}_i^n,\mathbf{U}_j^n) - \mathbf{W}_j^n\cdot\mathbf{n}_{ij}^n|). \end{split}$$

Definition of d_{ii}^n

- Consider flux $\mathbf{g}_{i}^{n}(\mathbf{v}) := \mathbf{f}(\mathbf{v}) \mathbf{v} \otimes \mathbf{W}_{j}^{n}$, $j \in \{1: I\}$
- Consider one-dimensional Riemann problem:

$$\partial_t \mathbf{v} + \partial_x (\mathbf{g}_j^n(\mathbf{v}) \cdot \mathbf{n}_{ij}^n) = 0, \quad (x,t) \in \mathbb{R} imes \mathbb{R}_+, \quad \mathbf{v}(x,0) = \begin{cases} \mathbf{U}_i^n & \text{if } x < 0 \\ \mathbf{U}_j^n & \text{if } x > 0. \end{cases}$$

• Define d_{ij}^n by

 $d_{ij}^n = \max(\lambda_{\max}(\mathbf{g}_j^n, \mathbf{n}_{ij}^n, \mathbf{U}_j^n, \mathbf{U}_j^n) \|\mathbf{c}_{ij}^n\|_{\ell^2}, \lambda_{\max}(\mathbf{g}_i^n, \mathbf{n}_{ji}^n, \mathbf{U}_j^n, \mathbf{U}_i^n) \|\mathbf{c}_{ji}^n\|_{\ell^2}).$

$$\begin{split} \lambda_{\max}(\mathbf{g}_j^n,\mathbf{n}_{ij}^n,\mathbf{U}_i^n,\mathbf{U}_j^n) &= \max(|\lambda_L(\mathbf{f},\mathbf{n}_{ij}^n,\mathbf{U}_i^n,\mathbf{U}_j^n) - \mathbf{W}_j^n\cdot\mathbf{n}_{ij}^n|,\\ &|\lambda_R(\mathbf{f},\mathbf{n}_{ij}^n,\mathbf{U}_i^n,\mathbf{U}_j^n) - \mathbf{W}_j^n\cdot\mathbf{n}_{ij}^n|). \end{split}$$

Definition of d_{ii}^n

- Consider flux $\mathbf{g}_{i}^{n}(\mathbf{v}) := \mathbf{f}(\mathbf{v}) \mathbf{v} \otimes \mathbf{W}_{j}^{n}$, $j \in \{1: I\}$
- Consider one-dimensional Riemann problem:

$$\partial_t \mathbf{v} + \partial_x (\mathbf{g}_j^n(\mathbf{v}) \cdot \mathbf{n}_{ij}^n) = 0, \quad (x,t) \in \mathbb{R} imes \mathbb{R}_+, \quad \mathbf{v}(x,0) = \begin{cases} \mathbf{U}_i^n & \text{if } x < 0 \\ \mathbf{U}_j^n & \text{if } x > 0. \end{cases}$$

• Define d_{ij}^n by

 $d_{ij}^n = \max(\lambda_{\max}(\mathbf{g}_j^n, \mathbf{n}_{ij}^n, \mathbf{U}_j^n, \mathbf{U}_j^n) \|\mathbf{c}_{ij}^n\|_{\ell^2}, \lambda_{\max}(\mathbf{g}_i^n, \mathbf{n}_{ji}^n, \mathbf{U}_j^n, \mathbf{U}_i^n) \|\mathbf{c}_{ji}^n\|_{\ell^2}).$

$$\begin{aligned} \lambda_{\max}(\mathbf{g}_j^n,\mathbf{n}_{ij}^n,\mathbf{U}_i^n,\mathbf{U}_j^n) &= \max(|\lambda_L(\mathbf{f},\mathbf{n}_{ij}^n,\mathbf{U}_i^n,\mathbf{U}_j^n) - \mathbf{W}_j^n\cdot\mathbf{n}_{ij}^n|,\\ &|\lambda_R(\mathbf{f},\mathbf{n}_{ij}^n,\mathbf{U}_i^n,\mathbf{U}_j^n) - \mathbf{W}_j^n\cdot\mathbf{n}_{ij}^n|). \end{aligned}$$

Definition of d_{ij}^n

- Consider flux $\mathbf{g}_{i}^{n}(\mathbf{v}) := \mathbf{f}(\mathbf{v}) \mathbf{v} \otimes \mathbf{W}_{j}^{n}$, $j \in \{1: I\}$
- Consider one-dimensional Riemann problem:

$$\partial_t \mathbf{v} + \partial_x (\mathbf{g}_j^n(\mathbf{v}) \cdot \mathbf{n}_{ij}^n) = 0, \quad (x,t) \in \mathbb{R} imes \mathbb{R}_+, \quad \mathbf{v}(x,0) = \begin{cases} \mathbf{U}_i^n & \text{if } x < 0 \\ \mathbf{U}_j^n & \text{if } x > 0. \end{cases}$$

• Define d_{ij}^n by

 $d_{ij}^n = \max(\lambda_{\max}(\mathbf{g}_j^n, \mathbf{n}_{ij}^n, \mathbf{U}_j^n, \mathbf{U}_j^n) \|\mathbf{c}_{ij}^n\|_{\ell^2}, \lambda_{\max}(\mathbf{g}_i^n, \mathbf{n}_{ji}^n, \mathbf{U}_j^n, \mathbf{U}_i^n) \|\mathbf{c}_{ji}^n\|_{\ell^2}).$

$$\begin{split} \lambda_{\max}(\mathbf{g}_j^n,\mathbf{n}_{ij}^n,\mathbf{U}_i^n,\mathbf{U}_j^n) &= \max(|\lambda_L(\mathbf{f},\mathbf{n}_{ij}^n,\mathbf{U}_i^n,\mathbf{U}_j^n) - \mathbf{W}_j^n\cdot\mathbf{n}_{ij}^n|,\\ &|\lambda_R(\mathbf{f},\mathbf{n}_{ij}^n,\mathbf{U}_i^n,\mathbf{U}_j^n) - \mathbf{W}_j^n\cdot\mathbf{n}_{ij}^n|). \end{split}$$

Theorem (GPSY (2015))

• The total mass $\sum_{i \in \{1:I\}} \mathfrak{m}_i^n \mathbf{U}_i^n$ is conserved.

Provided CFL condition, $(1 - 2\frac{\Delta t}{\mathfrak{m}_{\cdot}^n}|D_{ii}|) \geq 0.$

- Local invariance: $U_i^{n+1} \in Conv\{\overline{U}(U_i^n, U_j^n) \mid j \in \mathcal{I}(S_i)\}.$
- Global invariance. Let A be a convex invariant set, assume $U_0 \in A$, then $U_i^{n+1} \in A$ for all $n \ge 0$. The scheme preserves all the convex invariant sets.
- Discrete entropy inequality for any entropy pair (η, \mathbf{q})

$$\begin{split} \frac{1}{\Delta t} \big(\mathfrak{m}_{i}^{n+1} \eta (\mathbf{U}_{i}^{n+1}) - \mathfrak{m}_{i}^{n} \eta (\mathbf{U}_{i}^{n}) \big) &\leq -\sum_{j \in \mathcal{I}(S_{i}^{n})} d_{ij}^{n} \eta (\mathbf{U}_{j}^{n}) \\ &- \int_{\mathbb{R}^{d}} \nabla \cdot \bigg(\sum_{j \in \mathcal{I}(S_{i}^{n})} (\mathbf{q}(\mathbf{U}_{j}^{n}) - \eta (\mathbf{U}_{j}^{n}) \mathbf{W}_{j}^{n}) \psi_{j}^{n}(\mathbf{x}) \bigg) \psi_{i}^{n}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \end{split}$$

Corollary (GPSY (2015))

Theorem (GPSY (2015))

• The total mass $\sum_{i \in \{1:I\}} \mathfrak{m}_i^n \mathbf{U}_i^n$ is conserved.

Provided CFL condition, $(1 - 2\frac{\Delta t}{\mathfrak{m}_{i}^{n}}|D_{ii}|) \geq 0.$

- Local invariance: $U_i^{n+1} \in Conv\{\overline{U}(U_i^n, U_j^n) \mid j \in \mathcal{I}(S_i)\}.$
- Global invariance. Let A be a convex invariant set, assume $U_0 \in A$, then $U_i^{n+1} \in A$ for all $n \ge 0$. The scheme preserves all the convex invariant sets.
- Discrete entropy inequality for any entropy pair (η, \mathbf{q})

$$\begin{split} \frac{1}{\Delta t} \big(\mathfrak{m}_{i}^{n+1} \eta(\mathbf{U}_{i}^{n+1}) - \mathfrak{m}_{i}^{n} \eta(\mathbf{U}_{i}^{n}) \big) &\leq -\sum_{j \in \mathcal{I}(S_{i}^{n})} d_{ij}^{n} \eta(\mathbf{U}_{j}^{n}) \\ &- \int_{\mathbb{R}^{d}} \nabla \cdot \bigg(\sum_{j \in \mathcal{I}(S_{i}^{n})} (\mathbf{q}(\mathbf{U}_{j}^{n}) - \eta(\mathbf{U}_{j}^{n}) \mathbf{W}_{j}^{n}) \psi_{j}^{n}(\mathbf{x}) \bigg) \psi_{i}^{n}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \end{split}$$

Corollary (GPSY (2015))

Theorem (GPSY (2015))

• The total mass $\sum_{i \in \{1:I\}} \mathfrak{m}_i^n \mathbf{U}_i^n$ is conserved.

Provided CFL condition, $(1 - 2\frac{\Delta t}{\mathfrak{m}_i^n}|D_{ii}|) \geq 0.$

- Local invariance: $\mathbf{U}_i^{n+1} \in Conv\{\overline{\mathbf{U}}(\mathbf{U}_i^n,\mathbf{U}_j^n) \mid j \in \mathcal{I}(S_i)\}.$
- Global invariance. Let A be a convex invariant set, assume $U_0 \in A$, then $U_i^{n+1} \in A$ for all $n \ge 0$. The scheme preserves all the convex invariant sets.
- Discrete entropy inequality for any entropy pair (η, \mathbf{q})

$$\begin{split} \frac{1}{\Delta t} \left(\mathfrak{m}_{i}^{n+1} \eta(\mathsf{U}_{i}^{n+1}) - \mathfrak{m}_{i}^{n} \eta(\mathsf{U}_{i}^{n}) \right) &\leq -\sum_{j \in \mathcal{I}(S_{i}^{n})} d_{ij}^{n} \eta(\mathsf{U}_{j}^{n}) \\ &- \int_{\mathbb{R}^{d}} \nabla \cdot \bigg(\sum_{j \in \mathcal{I}(S_{i}^{n})} (\mathsf{q}(\mathsf{U}_{j}^{n}) - \eta(\mathsf{U}_{j}^{n}) \mathsf{W}_{j}^{n}) \psi_{j}^{n}(\mathsf{x}) \bigg) \psi_{i}^{n}(\mathsf{x}) \, \mathrm{d}\mathsf{x} \end{split}$$

Corollary (GPSY (2015))

Theorem (GPSY (2015))

• The total mass $\sum_{i \in \{1:I\}} \mathfrak{m}_i^n \mathbf{U}_i^n$ is conserved.

Provided CFL condition, $(1 - 2\frac{\Delta t}{\mathfrak{m}_i^n}|D_{ii}|) \ge 0.$

- Local invariance: $\mathbf{U}_i^{n+1} \in Conv\{\overline{\mathbf{U}}(\mathbf{U}_i^n,\mathbf{U}_j^n) \mid j \in \mathcal{I}(S_i)\}.$
- Global invariance. Let A be a convex invariant set, assume $U_0 \in A$, then $U_i^{n+1} \in A$ for all $n \ge 0$. The scheme preserves all the convex invariant sets.
- Discrete entropy inequality for any entropy pair (η, \mathbf{q})

$$\begin{split} \frac{1}{\Delta t} \big(\mathfrak{m}_{i}^{n+1} \eta(\mathbf{U}_{i}^{n+1}) - \mathfrak{m}_{i}^{n} \eta(\mathbf{U}_{i}^{n}) \big) &\leq -\sum_{j \in \mathcal{I}(S_{i}^{n})} d_{ij}^{n} \eta(\mathbf{U}_{j}^{n}) \\ &- \int_{\mathbb{R}^{d}} \nabla \cdot \Big(\sum_{j \in \mathcal{I}(S_{i}^{n})} (\mathbf{q}(\mathbf{U}_{j}^{n}) - \eta(\mathbf{U}_{j}^{n}) \mathbf{W}_{j}^{n}) \psi_{j}^{n}(\mathbf{x}) \Big) \psi_{i}^{n}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \end{split}$$

Corollary (GPSY (2015))

Theorem (GPSY (2015))

• The total mass $\sum_{i \in \{1:I\}} \mathfrak{m}_i^n \mathbf{U}_i^n$ is conserved.

Provided CFL condition, $(1 - 2\frac{\Delta t}{\mathfrak{m}_i^n}|D_{ii}|) \ge 0.$

- Local invariance: $\mathbf{U}_i^{n+1} \in Conv\{\overline{\mathbf{U}}(\mathbf{U}_i^n,\mathbf{U}_j^n) \mid j \in \mathcal{I}(S_i)\}.$
- Global invariance. Let A be a convex invariant set, assume $U_0 \in A$, then $U_i^{n+1} \in A$ for all $n \ge 0$. The scheme preserves all the convex invariant sets.
- Discrete entropy inequality for any entropy pair (η, \mathbf{q})

$$\begin{split} \frac{1}{\Delta t} \left(\mathfrak{m}_{i}^{n+1} \eta(\mathbf{U}_{i}^{n+1}) - \mathfrak{m}_{i}^{n} \eta(\mathbf{U}_{i}^{n}) \right) &\leq -\sum_{j \in \mathcal{I}(S_{i}^{n})} d_{ij}^{n} \eta(\mathbf{U}_{j}^{n}) \\ &- \int_{\mathbb{R}^{d}} \nabla \cdot \bigg(\sum_{j \in \mathcal{I}(S_{i}^{n})} (\mathbf{q}(\mathbf{U}_{j}^{n}) - \eta(\mathbf{U}_{j}^{n}) \mathbf{W}_{j}^{n}) \psi_{j}^{n}(\mathbf{x}) \bigg) \psi_{i}^{n}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \end{split}$$

Corollary (GPSY (2015))

2D Burgers	

$$\partial_t u + \nabla \cdot (\frac{1}{2}u^2 \beta) = 0, \quad u_0(\mathbf{x}) = \mathbb{1}_S, \quad \text{with} \quad \beta := (1,1)^{\mathrm{T}}, \quad S := (0,1)^2$$

Figure: Burgers equation, 128×128 mesh. Left: \mathbb{Q}_1 FEM with 25 contours; Center left: Final \mathbb{Q}_1 mesh; Center right: \mathbb{P}_1 FEM with 25 contours; Right: Final \mathbb{P}_1 mesh.

Nonconvex flux (KPP problem)

$$\partial_t u + \nabla \cdot \mathbf{f}(u) = 0, \quad u_0(\mathbf{x}) = 3.25\pi \mathbb{1}_{\|\mathbf{x}\|_{\ell^2} < 1} + 0.25\pi, \quad \text{with} \quad \mathbf{f}(u) = (\sin u, \cos u)^{\mathrm{T}}$$

Figure: KPP problem, 128 × 128 mesh. Left: \mathbb{Q}_1 FEM with 25 contours; Center left: Final \mathbb{Q}_1 mesh; Center right: \mathbb{P}_1 FEM with 25 contours; Right: Final \mathbb{P}_1 mesh.

Hyperbolic systems	FE approximation	Hyperbolic systems + ALE	Maximum wave speed
Fuler			

• Compressible Euler, 2D Noh problem, $\gamma = \frac{5}{3}$

• Initial data

$$\rho_0(\mathbf{x}) = 1.0, \quad \mathbf{u}_0(\mathbf{x}) = -\frac{\mathbf{x}}{\|\mathbf{x}\|_{\ell^2}} \mathbb{1}_{\mathbf{x} \neq 0}, \quad p_0(\mathbf{x}) = 10^{-15}.$$

Table: Noh problem, convergence test, T = 0.6, CFL = 0.2

Hyperbolic systems	FE approximation	Hyperbolic systems + ALE	Maximum wave speed
Euler			

• Compressible Euler, 2D Noh problem, $\gamma = \frac{5}{3}$

Initial data

$$\rho_0(\mathbf{x}) = 1.0, \quad \mathbf{u}_0(\mathbf{x}) = -\frac{\mathbf{x}}{\|\mathbf{x}\|_{\ell^2}} \mathbb{1}_{\mathbf{x} \neq \mathbf{0}}, \quad p_0(\mathbf{x}) = 10^{-15}.$$

	\mathbb{Q}_1				\mathbb{P}_1			
# dofs	L ² -norm		L ¹ -norm		L ² -norm		L ¹ -norm	
961	2.60	-	1.44	-	2.89	-	1.71	-
3721	1.81	0.52	8.45E-01	0.77	2.21	0.39	1.09	0.64
14641	1.16	0.64	4.21E-01	1.01	1.42	0.64	5.15E-01	1.08
58081	7.66E-01	0.60	2.10E-01	0.99	9.39E-01	0.59	2.60E-01	0.99
231361	5.21E-01	0.56	1.06E-01	0.98	6.33E-01	0.57	1.28E-01	1.02

Table: Noh problem, convergence test, T = 0.6, CFL = 0.2

Compressible Euler, 2D Noh problem, $\gamma = \frac{5}{3}$

Figure: Noh problem at t = 0.6, 96×96 mesh. From left to right: density field with \mathbb{Q}_1 approximation (25 contour lines); mesh with \mathbb{Q}_1 approximation; density field with \mathbb{P}_1 approximation (25 contour lines); mesh with \mathbb{P}_1 approximation.

Compressible Euler, 3D Noh problem, $\gamma = \frac{5}{3}$

Figure: Density cuts for the 3D Noh problem at t = 0.6.

Figure: 3D Noh problem at t = 0.6. 64 MPI tasks division.

Maximum wave speed

Hyperbolic systems

How to compute local viscosity?

- $d_{ij}^n := 2\lambda_{\max}(\mathbf{f}, \mathbf{n}_{ij}, \mathbf{U}_i, \mathbf{U}_j) \|\mathbf{c}_{ij}\|_{\ell^2}$, for $j \neq i$.
- $\lambda_{\max}(\mathbf{f}, \mathbf{n}_{ij}, \mathbf{U}_i, \mathbf{U}_j)$ is max wave speed for Riemann problem

Riemann fan for Euler, $p = (\gamma - 1)\rho e$

• Structure of the Riemann problem (Lax (1957), Bressan (2000), Toro (2009)).

- Waves 1 and 3 are genuinely nonlinear (either shock or rarefaction)
- Wave 2 is linearly degenerate (contact)
- $\mathbf{w}_L = (\rho_L, u_L, p_L), \ \mathbf{w}_L^* = (\rho_L^*, u^*, p^*), \ \mathbf{w}_R^* = (\rho_R^*, u^*, p^*), \ \mathbf{w}_R = (\rho_R, u_R, p_R),$

Euler system, $p = (\gamma - 1)\rho e$

• Given the states U_L and U_R , we have

$$\lambda_{1} = u_{L} - a_{L} \left(1 + \frac{(p^{*} - p_{L})_{+}}{p_{L}} \frac{\gamma + 1}{2\gamma} \right)^{\frac{1}{2}} < \lambda_{3} = u_{R} + a_{R} \left(1 + \frac{(p^{*} - p_{R})_{+}}{p_{R}} \frac{\gamma + 1}{2\gamma} \right)^{\frac{1}{2}}$$

where p^* is the pressure of the intermediate state.

• Then and define

$$\lambda_{\max}(\mathbf{U}_L,\mathbf{U}_R) = \max(|\lambda_1|,|\lambda_3|).$$

• In practice we just need a good upper bound of p^* : $\overline{p}^* \ge p^*$. Then

 $\lambda_{\max}(\mathbf{U}_L,\mathbf{U}_R) = \max(|\lambda_1(\overline{p}^*)|,|\lambda_3(\overline{p}^*)|).$

Euler system, $p = (\gamma - 1)\rho e$

• Given the states U_L and U_R , we have

$$\lambda_{1} = u_{L} - a_{L} \left(1 + \frac{(p^{*} - p_{L})_{+}}{p_{L}} \frac{\gamma + 1}{2\gamma} \right)^{\frac{1}{2}} < \lambda_{3} = u_{R} + a_{R} \left(1 + \frac{(p^{*} - p_{R})_{+}}{p_{R}} \frac{\gamma + 1}{2\gamma} \right)^{\frac{1}{2}}$$

where p^* is the pressure of the intermediate state.

• Then and define

$$\lambda_{\max}(\mathbf{U}_L,\mathbf{U}_R) = \max(|\lambda_1|,|\lambda_3|).$$

• In practice we just need a good upper bound of p^* : $\overline{p}^* \ge p^*$. Then

$$\lambda_{\max}(\mathbf{U}_L,\mathbf{U}_R) = \max(|\lambda_1(\overline{p}^*)|,|\lambda_3(\overline{p}^*)|)$$

- To avoid computing p^* , it is a common practice to estimate λ_{\max} by $\max(|u_L| + a_L, |u_R| + a_R)$
- This estimate is inaccurate and can be wrong.

• Counter-example 1: 1-wave and the 3-wave are both shocks Toro 2009, §4.3.3

ρ_L	ρ_R	uL	u _R	<i>p</i> L	<i>p</i> _R
5.99924	5.99242	19.5975	-6.19633	460.894	46.0950

• $\lambda_{\max} \approx 12.25$ but max($|u_L| + a_L, |u_R| + a_R$) \approx 29.97, large overestimation

• Counter-example 2: 1-wave is a shock and the 3-wave is an expansion

ρ_L	ρ_R	uL	u _R	PL	<i>p</i> _R
0.01	1000	0	0	0.01	1000

• $\lambda_{\max} \approx 5.227$ but max $(|u_L| + a_L, |u_R| + a_R) \approx 1.183$, large underestimation

Definition of \tilde{p}^*

• Let \tilde{p}^* be the zero of ϕ_R , then

$$\tilde{p}^* = \left(\frac{a_L + a_R - \frac{\gamma - 1}{2}(u_R - u_L)}{a_L p_L^{-\frac{\gamma - 1}{2\gamma}} + a_R p_R^{-\frac{\gamma - 1}{2\gamma}}}\right)^{\frac{2\gamma}{\gamma - 1}}$$

Lemma (GP (2016))

We have $p^* < \tilde{p}^*$ in the physical range of γ , $1 < \gamma \leq \frac{5}{3}$.

- \tilde{p}^* is an upper bound on p^* .
- $\min(p_L, p_R) \le p^* \le \tilde{p}^*$ (starting guess for cubic Newton alg., GP (2016))

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

- Convergence analysis, error estimates beyond first-order.
- Extension to DG.
- Extension of BBZ to higher-order polynomials (order 3 and higher).
- Extension of BBZ to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

- Convergence analysis, error estimates beyond first-order.
- Extension to DG.
- Extension of BBZ to higher-order polynomials (order 3 and higher).
- Extension of BBZ to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

- Convergence analysis, error estimates beyond first-order.
- Extension to DG.
- Extension of BBZ to higher-order polynomials (order 3 and higher).
- Extension of BBZ to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

- Convergence analysis, error estimates beyond first-order.
- Extension to DG.
- Extension of BBZ to higher-order polynomials (order 3 and higher).
- Extension of BBZ to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

- Convergence analysis, error estimates beyond first-order.
- Extension to DG.
- Extension of BBZ to higher-order polynomials (order 3 and higher).
- Extension of BBZ to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

- Convergence analysis, error estimates beyond first-order.
- Extension to DG.
- Extension of BBZ to higher-order polynomials (order 3 and higher).
- Extension of BBZ to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

- Convergence analysis, error estimates beyond first-order.
- Extension to DG.
- Extension of BBZ to higher-order polynomials (order 3 and higher).
- Extension of BBZ to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

- Convergence analysis, error estimates beyond first-order.
- Extension to DG.
- Extension of BBZ to higher-order polynomials (order 3 and higher).
- Extension of BBZ to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

- Convergence analysis, error estimates beyond first-order.
- Extension to DG.
- Extension of BBZ to higher-order polynomials (order 3 and higher).
- Extension of BBZ to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).

