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© Application driven requirements

@ Deficiency of conventional conservative schemes
© Known solutions and their limitations

@ Mimetic finite difference method

© Convergence analysis

@ Verification
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Nonlinear heat conduction

I(cyu)
ot

— div(k(u)Vu) = b

where
u - temperature
¢y - heat capacity
k(u) - thermal conductivity
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Subsurface flow: Richards's equation

‘9(%;”77) - div(”k;(p)K(vp ~pg)) = b

where
¢ - porosity
1 - molar density of water
p - density of water
1 - viscosity of water
s = s(p) - saturation
K - absolute permeability
k.(p) - relative permeability
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Subsurface flow: Richards's equation

8(«; n div(n k;(p)K(vp_ pg)) _

where
¢ - porosity
1 - molar density of water
p - density of water
1 - viscosity of water
s = s(p) - saturation
K - absolute permeability
k.(p) - relative permeability

In terms of the hydraulic head u = p/(pg) — z, we have

00(u)
ot

— div(k(u)Vu) =b N
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Richards’ equation: comments (1/2
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o (coarse) polytopal meshes
e complex topography and stratigraphy

e heterogeneous coefficients A
Lot Alamos
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Richards' equation: comments (2/2

@ water conservation
@ uncertainty quantification Lot Alamos
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Surface flow (1/2)

Mesh is made by Rao Garimella from LANL. -
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Surface flow (2/2)

00h) _ iy (n i V(h+ zs)> —b

ot Nnanny/ || Vzs|| + €

where
h - depth of ponded water(could be 0)
1 - molar density of water
zs - surface elevation

€ - small regularization parameter
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Surface flow (2/2)

(1) — div( ho'%

V(ih+2z5)) =b
ot nnmanm/HVzS||+e ( >>

where
h - depth of ponded water(could be 0)
1 - molar density of water
zs - surface elevation

€ - small regularization parameter

With this change of variables, u = h + z;, we have

9(u) . B
T div(k(u)Vu) =b )
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Scheme requirements

@ be conservative

provide meaningful solution on coarse meshes

@ be convergent on polytopal meshes

handle degenerate and strongly varying coefficients

lead to SPD matrix (stability and numerical efficiency)
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Numerical artifact (1/4)

Consider 1D heat equation with k(u) = v? and 0(u) = u.
Initial condition: u(z,0) = 1073

Boundary conditions: u(0,t) = 1.4/t and u(1,t) = 1073

* t=0.3
* t=0.5
* t=0.7
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Numerical artifacts (2/4)

The classical conservative FV scheme underestimates
extremely wave velocity:

* t=0.3

0.6 b S S -
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Numerical artifacts (3/4)

The heat-barrier problem affects conventional conservative
schemes (MFE, HFV, MFV, MFD) and schemes with similar
properties:

The problem remains after increasing the initial temperature
to u(x,0) = 0.02, although wave speed has increased slightly.
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Numerical artifacts (4/4)

Snapshots of the correct solution at the same time moments:

Temperature
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Explanation of the numerical artifact

Consider the TPFA of the velocity g = —k(u)Vu on the
interface between two cells:

qr = —Th2 (u2 — u1)
where

k1 ko

Tpy=——2
T K dag + kadyig

Thus, if uy < uq, then ky < k1 and

ko
Tyo ~ —/—.
12 da;

If us =~ 0, the flux is almost zero and solution is incorrect

even on a reasonably fine mesh.
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Known solutions and their limitations (1/3)

@ Refine mesh around the moving front. This strategy
should work for Richards’s equation but should breaks
down for other physical models that allow k(u) = 0 such
as in the surface flow model. Cons:

e strong mesh refinement may be needed
o AMR data structure
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Known solutions and their limitations (2/3)

e Two-velocity formulation (enhanced MFE (Arbogast,
Dawson, Keenan, Wheeler, Yotov; SINUM, 1998)).

90(u)
ot

+divg = b
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Known solutions and their limitations (3/3)

vy, = —Mfl(divh)TMg Up,
Msqn, = Mavy
00y,
= +divian = Qn
Eliminating velocities and multiplying by M, we obtain
M 87 + M divy, M M4 M (dlvh) M up, = M by,
_,_/

symmetric 7

e M3 = M. Not clear how to enforce ¢; = kyvy on each
mesh face f.

o M3 =1 and My = ;. But DsM; " is not symmetric
which leads to potential problems with multigrid solvers

Los Alamos
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Objective of mimetic schemes

The mimetic finite difference method preserves or mimics
critical mathematical and physical properties of systems of
PDEs such as conservation laws, exact identities, solution
symmetries, and maximum principles.

These properties are important for multiphysics simulations.

The mimetic schemes are designed to work on unstructured
polygonal and polyhedral meshes.

Concentration
profite

A

)
Los Alamos
°

Konstantin Lipnikov Mimetic Finite Difference Method for Nonlinear Parabolic Equati



New mimetic scheme for a linear problem

To resolve the heat-barrier problem, we first develop a new
mimetic scheme for the Poisson equation written in the
following mixed form:

q = —Vu
div(kq) = b

subject to u = 0 on 0f).

We will derive its mimetic discretization as

qn = —GRADuh
DIVFq, = b,
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New mimetic scheme for a linear problem

To resolve the heat-barrier problem, we first develop a new
mimetic scheme for the Poisson equation written in the
following mixed form:

q = —Vu
div(kq) = b

subject to u = 0 on 0f).

We will derive its mimetic discretization as

qn = —GRADuh
DIVFq, = b,

DIV* approximates the combined operator div k(.).

GRAD approximates the continuum operator V. 42 nlamos
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Four-step discretization algorithm

@ Select degrees of freedom (for q and u).
@ Discretize the primary mimetic operator (DIV¥).

© Construct local inner products that satisfy consistency
and stability conditions. Assemble global inner products.

@ Formulate the discrete duality principle:

[DIquh, uh] ch = — [qh, GRAD uh]]_.h

that mimics the continuum Green formula:

/div(kq)udwz—/kq-Vudx
Q Q
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Step 1: Select degrees of freedom

Dofs for the velocity q are associated with
mesh faces and represent average fluxes. Dofs
for the potential u are associated with mesh
cells and represent average values:

1 1 [
qcz/q-n dx, ucz/udm.
f ‘f| f / |C| c

Define l;:f as some approximation of k£ on face f. Define

spaces
df Ucy
an = qu € Fh, up = u:;2 € Ch,
dfn, Uep,
P,
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Step 2: Discretize the primary mimetic operator

We use a coordinate-invariant definition of the divergence:

/div(k‘q)dx:/ kq- ndx—Z/kq nydz

feoc

Replacing integrals by mid-point quadratures, we have

(DIV* qp), =T Z acr|fIkpqs
feoc
where o . = £1.
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Step 3: Construct local inner products

We need accurate approximations of cell-based integrals:

[vh, uh]gch ~ /vudx [wh, anleF, ~ /kw -qdx
C

[

Inner products can be re-written as vector-
matrix-vector products with SPD matrices:

[Uha uh] eCh = V¢ MQC}, Uc

af

[Wha CIh]c,]:;L = (w%? s 7w;4) MC7F}L
dfs

In this example, M., is 1 x 1 matrix and M, 7, is 4 x 4
matrix. Obvious choice is M.c, = |c|.
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Step 4: Formulate the discrete duality principle

[DIVk qh, uh] Ch = — [qh, GRAD uh]]_.h th,Vuh
Vp, Wh

By the definition of the inner product, it can be associated
with a symmetric positive definite matrix:

[on, Uh]ch = v} Mg, up
(Wh, ] 5 = wi Mz, qn
Mg, = diag(lc1],. .., [cm|) and Mz, = Y NM. 5 N
ceQy,

Derived gradient operator
GRAD = —M! (DIV¥)" M,
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Final mimetic scheme

The algebraic form of the MFD scheme is

an = —GRADw, = M5! (DIVF)T Me, uy

DIVFq, = b,
or in a symmetrized form:
M]:h - (DIVk)T Mch, an 0

~M, DIV* 0 up, M, by,
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Consistency condition (1/4)

(Wh, dnle,m, = (W) M. 7, qp = /kW ~qdx

Cc

Derivation of the inner product matrix M, r, is based on the
consistency and stability conditions. Consider a pentagonal
cell for example:
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Consistency condition (2/4)

The lowest-order scheme requires 1st-order approximation:
(Wi e, = [ kw-ads+O(h)d
C

@ Replace w with its best constant approximation w’

@ Approximate k by a function k! € P!(c)

© Restrict g to space S. which contains constant functions:
S, = {q: q-ny e Po(f), div(ki q) € PO(C)}

The consistency condition is

[W]OL, anleF, = /ki w? . qdx vw® e P(¢), Vq € S..

C
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Consistency condition (3/4)

For any w” there exists a linear polynomial v! such that
w? = Vol and /Uldl' =0.
(&
Using twice properties of space S., we have:

(Wi, dnles, = (W) TMe 7, an = / kew? - qdz
C

5
——/vldiv(kiq)dac—i—/ kivlq-ndx—Z/ kvl q-ny do
— dc i—1 7 fi ~——

c
=constant - =constant

:</ kivldx,...,/ kivlda:>qh Vq € S,
1 5

Since qy, is arbitrary, we conclude (w9)TM, 7, = (r.)" .
- Los Alamos
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Consistency condition (4/4)

Algebraic equations w.r.t. unknown matrix M, 7, :

1,1
0 /k‘vdx
Wr 1 ‘

Mer, | 1 | = : vw? = Vol
0
s / kLol da
5

It is sufficient to consider only linearly independent functions
vl. In two-dimensions, we have v} =z — z. and v} =y — y.:

Mimetic matrix equation

M.z N. = R, .
—_—— N =~
5%x5 ©OX2 5x2

The problem is under-determined for any cell ¢ (triangles:
Shashkov, Hyman, Liska, Nicolaides, Trapp). N

alg
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Construction of N, and R, for a pentagon

K
/ Mc,]:h Nc = Rc

b,k
Required information: normals to faces, centroid of cell,
quadrature rule on faces:

ey ] JACCEES TS
1 1

N2x N2y /k‘é((lﬁ-l’c) /kg(y_yc)
2 2

| M5z Moy | /k;(x_xc) /kg(y_yC)/L
L 5 5

* Lgs Alamos
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Construction of N, and R, for a hexahedron

Mc,]—'h Ne =R,

Required information: normals to faces, centroid of cell,
quadrature rule on faces:

Nizx Niy Niz / ké (w - xc) / ké (y - yC) / ki (Z - ZC)
1 f1 1
N2z N2y N2 / kl(x —xc) / El(y —ye) / kl(z—z0)
N, = R, = f2 f2 f2
Nez M6y N6z / k% (x — ) / k(l, (y — ye) / ki (z 5 2c)
- S fe fe < Los Alamos
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Properties of N. and R,

Lemma

For any polygon (polyhedron in 3D), we have

NZRC:RCTNC:H/kgd:U

C

K.L., G.Manzini, D.Moulton, M.Shashkov, JCP, 305 (2016), 111-126
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Solution of the mimetic matrix equation

Lemma
A one-parameter family of SPD solutions to M, r, N. = R, is

__ mreconsistency stability
MC?‘F}L _ MC,]:h + MC,]‘—h

where
consistenc T —1mpT
MC,]——h V= RC (RC NC) Rc
and

Mz:ﬁ;l;ility — a, <]I N, (NZNc)_l NZ“) a. > 0.

N
alg
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Stability condition (1/2)
Typical behavior of errors and function of the normalize

1
parameter a./a’ where o} = p /kzl dz.
C

1

10 —— :
|- ]
: s
10°
=
107 The free parameter a,
can vary 2-orders in
magnitude.
1072}
-3
10 :
1 2 A
10 10 < Los Alamos
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Stability condition (2/2)

A reasonable choice for a. leads to a more accurate mimetic
scheme. Its value is controlled by the following inequalities:

olel llanll? < [an, anlerm, < o*le| [lan?

where o, and o* are independent of mesh.

In practice, a good scaling is given by

1
ac:az:d/ck‘l dz.
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1D analysis of new scheme (1/3)

1
k%:l—1/2 ki+1/2
U;i—1/2 Uit1/2
@ ® o o o
qi, ki
Flux formula is
- 2k?

kiqi = (Ui1/2 — Uit1/2)

hi—1/2kz‘1—1/2 + hi+1/2ki1+1/2

o conventional FV scheme: k; = \/k/ kA

o scheme with the arithmetic averaging: k; = kf‘
o "upwinded” scheme: k; = kz'171/2 q + ki1+1/2 q

/‘ﬁ
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The case of discontinuous coefficient &

kz'171/2 kz+1/2
Ui—1/2 Wit1/2

—@ o o @ o
qi
%1—1/2 ];i-&-l/Q

i ()

New flux continuity conditions:

Fi—1/2 i—1/2  7i4+1/2 i+1/2
k; /qz /:k; /q; /

Flux formula is
2(;{; 1/2 Z+1/2)

hi-1/2 kl 1/2(kz+1/2) +higryok +1/2(kl 1/2)

(%‘—1/2 - Uz‘+1/2)

/'%
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Convergence estimate

Theorem
Let
o kcWhee(Q)
o |ki(z)—k;<Ch Vzecf
e elliptic problem is H?-regular

Then, in the mesh-dependent norms induced by the inner
products, we have

Ilun = u'llle, + Illan — a'lllz, < Ch.

N
alg
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Konstantin Lipnikov Mimetic Finite Difference Method for Nonlinear Parabolic Equati



Numerical verification (1/4)

Consider a 2D linear problem with a;b; = 1:

all‘z + y2
u(x,y) = a2$2 i yg

r <0.5
+ (a1 —az) >05

k(ey) = { bi(1+xsin(y)) x<0.5

ba(1 +

222 sin(y)) x> 0.5

@ Conventional MFD scheme

New MFD scheme with various
choices for k; and k§

/‘ﬁ
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Numerical verification (2/4)

Continuous k (by = by =1)

Linear approximation k. y
Arithmetic average value k; on face f
k}cc = wfk<121 (xf) + (1 — wf)k‘éz(l‘f)

# cells New MFD Standard MFD

err(u) err(q) err(u) err(q)
412 | 2.674e-3 3.001e-3 | 1.892e-3 4.148e-3
1591 | 6.554e-4 9.612e-4 | 4.690e-4 1.248e-3
6433 | 1.672e-4 4.382e-4 | 1.135e-4 4.285e-4
25698 | 3.886e-5 1.289e-4 | 2.814e-5 1.227e-4
102772 | 9.693e-6 5.794e-5 | 6.984e-6 5.814e-5

rate 2.04 1.43 2.03 1.57

N
alg
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Numerical verification (3/4)

Discontinuous %k (b; = 1 and by = 20)
Linear approximation k.
kG = ke(zy)

# cells New MFD Standard MFD

err(u) err(q) err(u) err(q)
412 | 2.480e-3 4.722e-3 | 2.762e-3 7.451e-3
1591 | 6.250e-4 1.567e-3 | 6.976e-4 2.370e-3
6433 | 1.729e-4 6.273e-4 | 1.650e-4 9.264e-4
25698 | 3.684e-5 1.956e-4 | 4.066e-5 2.581e-4
102772 | 9.142e-6 8.164e-5 | 1.007e-5 1.134e-4

rate 2.03 1.48 2.04 1.53

N
alg
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Numerical verification (4/4)

Smooth hexahedral mesh
Discontinuous %k (b; = 1 and by = 20)
E:onstant approximation ké

kG = ke(zy)

# 1/h New MFD Standard MFD

err(u) err(q) err(u) err(q)
10 | 3.930e-3 2.291e-2 | 3.987e-3 2.547e-2
20 | 1.081e-3 6.751e-3 | 1.088e-3 7.618e-3
40 | 2.788e-4 1.805e-3 | 2.804e-4 2.023e-3
80 | 7.026e-5 4.816e-4 | 7.071e-5 5.197e-4

rate 1.94 1.87 1.94 1.86

N
alg
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Examples: Marshak wave equation

Consider a nonlinear heat conduction equation:

% — div(u¥Vu) = 0.

The initial value is ©(0) = 0.02. Dirichlet BC on the left side
is u = 0.78+/t, on the right side is © = 0.02, Neumann BC
otherwise.

In a new MFD method the heat wave moves from left to
. . A
right with the correct speed. “Los Alamos
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Examples: Richards’s equation

Constant approximation Kl
" Upwinded” value for k;

FD 18
Y 1.6
Lx Q, <0
l_‘N 0.2
0.4 3 E 8 10
# cells New MFD
Q, err(u) err(q)
250 | 2.159e-01 1.754e-03
1000 | 9.893e-02 3.224e-04
I, 4000 | 4.741e-02 8.353e-05
rate 1.09 219 .
» Los Alamos
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Conclusion

@ The new scheme solves the heat barrier problem.

o It preserves symmetry and positive-definiteness of the
original operator on unstructured polyhedral meshes.

o First-order convergence estimates were derived for linear
elliptic problems.

@ On special meshes and for some choice of l~cf, the new
scheme reduces to the classical FV scheme.

@ The new scheme can be extended easily to problems
with zero diffusion coefficient.

N
alg
» Los Alamos
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