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Nonlinear heat conduction

∂(cv u)

∂t
− div

(
k(u)∇u

)
= b

where

u - temperature

cv - heat capacity

k(u) - thermal conductivity
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Subsurface flow: Richards’s equation

∂(φ s η)

∂t
− div

(η kr(p)
µ

K(∇p− ρg)
)

= b

where

φ - porosity

η - molar density of water

ρ - density of water

µ - viscosity of water

s = s(p) - saturation

K - absolute permeability

kr(p) - relative permeability

In terms of the hydraulic head u = p/(ρg)− z, we have

∂θ(u)

∂t
− div

(
k(u)∇u

)
= b
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Richards’ equation: comments (1/2)

(coarse) polytopal meshes

complex topography and stratigraphy

heterogeneous coefficients
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Richards’ equation: comments (2/2)

water conservation
uncertainty quantification

Figures were prepared by Haruko Wainwright from LBNL.Konstantin Lipnikov Mimetic Finite Difference Method for Nonlinear Parabolic Equations: Applications and Theory



Surface flow (1/2)

Mesh is made by Rao Garimella from LANL.
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Surface flow (2/2)

∂(η h)

∂t
− div

(
η

h5/2

nmann

√
‖∇zs‖+ ε

∇(h+ zs)
)

= b

where

h - depth of ponded water(could be 0)

η - molar density of water

zs - surface elevation

ε - small regularization parameter

With this change of variables, u = h+ zs, we have

∂θ(u)

∂t
− div(k(u)∇u) = b
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Scheme requirements

be conservative

provide meaningful solution on coarse meshes

be convergent on polytopal meshes

handle degenerate and strongly varying coefficients

lead to SPD matrix (stability and numerical efficiency)
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Numerical artifact (1/4)

Consider 1D heat equation with k(u) = u3 and θ(u) = u.
Initial condition: u(x, 0) = 10−3

Boundary conditions: u(0, t) = 1.4 3
√
t and u(1, t) = 10−3
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Numerical artifacts (2/4)

The classical conservative FV scheme underestimates
extremely wave velocity:
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Numerical artifacts (3/4)

The heat-barrier problem affects conventional conservative
schemes (MFE, HFV, MFV, MFD) and schemes with similar
properties:

The problem remains after increasing the initial temperature
to u(x, 0) = 0.02, although wave speed has increased slightly.
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Numerical artifacts (4/4)

Snapshots of the correct solution at the same time moments:
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Explanation of the numerical artifact

Consider the TPFA of the velocity q = −k(u)∇u on the
interface between two cells:

qf = −T12 (u2 − u1)

where

T12 =
k1 k2

k1 d2f + k2 d1f
.

Thus, if u2 � u1, then k2 � k1 and

T12 ≈
k2

d2f
.

If u2 ≈ 0, the flux is almost zero and solution is incorrect
even on a reasonably fine mesh.
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Known solutions and their limitations (1/3)

Refine mesh around the moving front. This strategy
should work for Richards’s equation but should breaks
down for other physical models that allow k(u) = 0 such
as in the surface flow model. Cons:

strong mesh refinement may be needed
AMR data structure
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Known solutions and their limitations (2/3)

Two-velocity formulation (enhanced MFE (Arbogast,
Dawson, Keenan, Wheeler, Yotov; SINUM, 1998)).

v = −∇u,
q = k(u)v

∂θ(u)

∂t
+ divq = b
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Known solutions and their limitations (3/3)

vh = −M−1
1 (divh)TM2 uh

M3qh = M4 vh

∂θh
∂t

+ divh qh = Qh

Eliminating velocities and multiplying by M2, we obtain

M2
∂θh
∂t

+ M2 divhM−1
3 M4 M−1

1︸ ︷︷ ︸
symmetric ?

(divh)TM2 uh = M2 bh

M3 = M1. Not clear how to enforce qf = kfvf on each
mesh face f .

M3 = I and M4 = D4. But D4M−1
1 is not symmetric

which leads to potential problems with multigrid solvers.
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Objective of mimetic schemes

The mimetic finite difference method preserves or mimics
critical mathematical and physical properties of systems of
PDEs such as conservation laws, exact identities, solution
symmetries, and maximum principles.

These properties are important for multiphysics simulations.

The mimetic schemes are designed to work on unstructured
polygonal and polyhedral meshes.

Konstantin Lipnikov Mimetic Finite Difference Method for Nonlinear Parabolic Equations: Applications and Theory



New mimetic scheme for a linear problem

To resolve the heat-barrier problem, we first develop a new
mimetic scheme for the Poisson equation written in the
following mixed form:

q = −∇u
div (k q) = b

subject to u = 0 on ∂Ω.

We will derive its mimetic discretization as

qh = −G̃RADuh

DIVk qh = bh

DIVk approximates the combined operator div k(.).

G̃RAD approximates the continuum operator ∇.
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Four-step discretization algorithm

1 Select degrees of freedom (for q and u).

2 Discretize the primary mimetic operator (DIVk).

3 Construct local inner products that satisfy consistency
and stability conditions. Assemble global inner products.

4 Formulate the discrete duality principle:[
DIVkqh, uh

]
Ch

= −
[
qh, G̃RADuh

]
Fh

that mimics the continuum Green formula:∫
Ω

div(k q)udx = −
∫

Ω
k q · ∇udx
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Step 1: Select degrees of freedom

Dofs for the velocity q are associated with
mesh faces and represent average fluxes. Dofs
for the potential u are associated with mesh
cells and represent average values:

qcf ≈
1

|f |

∫
f
q · nf dx, uc ≈

1

|c|

∫
c
udx.

Define k̃f as some approximation of k on face f . Define
spaces

qh =


qf1
qf2
...
qfn

 ∈ Fh, uh =


uc1
uc2

...
ucm

 ∈ Ch,
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Step 2: Discretize the primary mimetic operator

We use a coordinate-invariant definition of the divergence:∫
c
div (kq) dx =

∫
∂c
kq · ndx =

∑
f∈∂c

∫
f
k q · nf dx

Replacing integrals by mid-point quadratures, we have

(DIVk qh)|c =
1

|c|
∑
f∈∂c

αc,f |f | k̃fqf

where αf,c = ±1.
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Step 3: Construct local inner products

We need accurate approximations of cell-based integrals:[
vh, uh

]
c,Ch
≈
∫
c
v udx

[
wh, qh]c,Fh

≈
∫
c
kw · qdx

Inner products can be re-written as vector-
matrix-vector products with SPD matrices:[
vh, uh

]
c,Ch

= vcMc,Ch uc

[
wh, qh]c,Fh

=
(
wc
f1
, . . . , wc

f4

)
Mc,Fh

 qf1
...
qf4


In this example, Mc,Ch is 1× 1 matrix and Mc,Fh

is 4× 4
matrix. Obvious choice is Mc,Ch = |c|.
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Step 4: Formulate the discrete duality principle

[
DIVk qh︸ ︷︷ ︸

vh

, uh
]
Ch

= −
[
qh, G̃RADuh︸ ︷︷ ︸

wh

]
Fh

∀qh,∀uh

By the definition of the inner product, it can be associated
with a symmetric positive definite matrix:[

vh, uh
]
Ch

= vTh MCh uh[
wh, qh

]
Fh

= wT
h MFh

qh

MCh = diag(|c1|, . . . , |cm|) and MFh
=
∑
c∈Ωh

NcMc,Fh
N T

c

Derived gradient operator

G̃RAD = −M−1
Fh

(DIVk)T MCh
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Final mimetic scheme

The algebraic form of the MFD scheme is

qh = −G̃RADuh = M−1
Fh

(DIVk)T MCh uh
DIVk qh = bh

or in a symmetrized form: MFh
−(DIVk)T MCh

−MCh DIVk 0

 qh

uh

 =

 0

−MCh bh


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Consistency condition (1/4)

[
wh, qh]c,Fh

= (wh)TMc,Fh
qh ≈

∫
c
kw · q dx

Derivation of the inner product matrix Mc,Fh
is based on the

consistency and stability conditions. Consider a pentagonal
cell for example:
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Consistency condition (2/4)

The lowest-order scheme requires 1st-order approximation:[
wh, qh]c,Fh

=

∫
c
kw · qdx+O(h)|c|

1 Replace w with its best constant approximation w0

2 Approximate k by a function k1
c ∈ P 1(c)

3 Restrict q to space Sc which contains constant functions:

Sc =
{
q : q · nf ∈ P 0(f), div(k1

c q) ∈ P 0(c)
}

The consistency condition is[
w0

h, qh]c,Fh
=

∫
c
k1
c w

0 · qdx ∀w0 ∈ P 0(c), ∀q ∈ Sc.
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Consistency condition (3/4)

For any w0 there exists a linear polynomial v1 such that

w0 = ∇v1 and

∫
c
v1dx = 0.

Using twice properties of space Sc, we have:[
w0

h, qh]c,Fh
= (w0

h)TMc,Fh
qh =

∫
c
k1
c w

0 · q dx

= −
∫
c
v1div(k1

c q)︸ ︷︷ ︸
=constant

dx+

∫
∂c
k1
c v

1 q · ndx =
5∑

i=1

∫
fi

k1
c v

1 q · nfi︸ ︷︷ ︸
=constant

dx

=
(∫

f1

k1
c v

1 dx, . . . ,

∫
f5

k1
c v

1 dx
)
qh ∀q ∈ Sc

Since qh is arbitrary, we conclude (w0
h)TMc,Fh

= (rc)
T .
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Consistency condition (4/4)

Algebraic equations w.r.t. unknown matrix Mc,Fh
:

Mc,Fh

 w0
f1
...
w0
f5

 =



∫
f1

k1
c v

1 dx

...∫
f5

k1
c v

1 dx

 ∀w0 = ∇v1.

It is sufficient to consider only linearly independent functions
v1. In two-dimensions, we have v1

a = x− xc and v1
b = y − yc:

Mimetic matrix equation

Mc,Fh︸ ︷︷ ︸
5×5

Nc︸︷︷︸
5×2

= Rc︸︷︷︸
5×2

.

The problem is under-determined for any cell c (triangles:
Shashkov, Hyman, Liska, Nicolaides, Trapp).
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Construction of Nc and Rc for a pentagon

Mc,Fh
Nc = Rc

Required information: normals to faces, centroid of cell,
quadrature rule on faces:

Nc =



n1x n1y

n2x n2y

...
...

n5x n5y


Rc =



∫
f1

k1
c (x− xc)

∫
f1

k1
c (y − yc)∫

f2

k1
c (x− xc)

∫
f2

k1
c (y − yc)

...
...∫

f5

k1
c (x− xc)

∫
f5

k1
c (y − yc)


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Construction of Nc and Rc for a hexahedron

Mc,Fh
Nc = Rc

Required information: normals to faces, centroid of cell,
quadrature rule on faces:

Nc =



n1x n1y n1z

n2x n2y n2z

...
...

...

n6x n6y n6z


Rc =



∫
f1

k1c (x− xc)

∫
f1

k1c (y − yc)

∫
f1

k1c (z − zc)∫
f2

k1c (x− xc)

∫
f2

k1c (y − yc)

∫
f2

k1c (z − zc)

...
...

...∫
f6

k1c (x− xc)

∫
f6

k1c (y − yc)

∫
f6

k1c (z − zc)


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Properties of Nc and Rc

Lemma

For any polygon (polyhedron in 3D), we have

NT
c Rc = RT

c Nc = I
∫
c
k1
c dx

K.L., G.Manzini, D.Moulton, M.Shashkov, JCP, 305 (2016), 111-126
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Solution of the mimetic matrix equation

Lemma

A one-parameter family of SPD solutions to Mc,Fh
Nc = Rc is

Mc,Fh
= Mconsistency

c,Fh
+ Mstability

c,Fh

where
Mconsistency

c,Fh
= Rc (RT

c Nc)
−1RT

c

and

Mstability
c,Fh

= ac

(
I− Nc

(
NT
c Nc

)−1 NT
c

)
ac > 0.
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Stability condition (1/2)

Typical behavior of errors and function of the normalize

parameter ac/a∗c where a∗c =
1

d

∫
c
k1 dx.

The free parameter ac
can vary 2-orders in
magnitude.
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Stability condition (2/2)

A reasonable choice for ac leads to a more accurate mimetic
scheme. Its value is controlled by the following inequalities:

σ?|c| ‖qh‖2 ≤
[
qh, qh]c,Fh

≤ σ?|c| ‖qh‖2

where σ? and σ? are independent of mesh.

In practice, a good scaling is given by

ac = a∗c =
1

d

∫
c
k1 dx.
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1D analysis of new scheme (1/3)

ui−1/2

k1i−1/2
ui+1/2

k1i+1/2

qi, k̃i

Flux formula is

k̃iqi =
2k̃2

i

hi−1/2k
1
i−1/2 + hi+1/2k

1
i+1/2

(ui−1/2 − ui+1/2)

conventional FV scheme: k̃i =
√
kHi kAi

scheme with the arithmetic averaging: k̃i = kAi

”upwinded” scheme: k̃i = k1
i−1/2 q

+
i + k1

i+1/2 q
−
i
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The case of discontinuous coefficient k

ui−1/2

k1i−1/2
ui+1/2

k1i+1/2

qi
k̃
i−1/2
i , k̃

i+1/2
i

New flux continuity conditions:

k̃
i−1/2
i q

i−1/2
i = k̃

i+1/2
i q

i+1/2
i

Flux formula is

2
(
k̃
i−1/2
i k̃

i+1/2
i

)2
hi−1/2 k

1
i−1/2

(
k̃
i+1/2
i

)2
+ hi+1/2 k

1
i+1/2

(
k̃
i−1/2
i

)2 (ui−1/2 − ui+1/2)
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Convergence estimate

Theorem

Let

k ∈W 1,∞(Ω)

|k1
c (x)− k̃f | ≤ Ch ∀x ∈ f

elliptic problem is H2-regular

Then, in the mesh-dependent norms induced by the inner
products, we have

|||uh − uI |||Ch + |||qh − qI |||Fh
≤ C h.
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Numerical verification (1/4)

Consider a 2D linear problem with aibi = 1:

u(x, y) =

{
a1x

2 + y2 x < 0.5

a2x
2 + y2 + 1

4(a1 − a2) x > 0.5

k(x, y) =

{
b1(1 + x sin(y)) x < 0.5

b2(1 + 2x2 sin(y)) x > 0.5

Conventional MFD scheme

New MFD scheme with various
choices for k1

c and k̃cf
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Numerical verification (2/4)

Continuous k (b1 = b2 = 1)
Linear approximation k1

c

Arithmetic average value k̃f on face f
k̃cf = ωfk

1
c1(xf ) + (1− ωf )k1

c2(xf )

# cells New MFD Standard MFD
err(u) err(q) err(u) err(q)

412 2.674e-3 3.001e-3 1.892e-3 4.148e-3
1591 6.554e-4 9.612e-4 4.690e-4 1.248e-3
6433 1.572e-4 4.382e-4 1.135e-4 4.285e-4

25698 3.886e-5 1.289e-4 2.814e-5 1.227e-4
102772 9.693e-6 5.794e-5 6.984e-6 5.814e-5

rate 2.04 1.43 2.03 1.57
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Numerical verification (3/4)

Discontinuous k (b1 = 1 and b2 = 20)
Linear approximation k1

c

k̃cf = k1
c (xf )

# cells New MFD Standard MFD
err(u) err(q) err(u) err(q)

412 2.480e-3 4.722e-3 2.762e-3 7.451e-3
1591 6.250e-4 1.567e-3 6.976e-4 2.370e-3
6433 1.729e-4 6.273e-4 1.650e-4 9.264e-4

25698 3.684e-5 1.956e-4 4.066e-5 2.581e-4
102772 9.142e-6 8.164e-5 1.007e-5 1.134e-4

rate 2.03 1.48 2.04 1.53
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Numerical verification (4/4)

Smooth hexahedral mesh
Discontinuous k (b1 = 1 and b2 = 20)
Constant approximation k1

c

k̃cf = k1
c (xf )

# 1/h New MFD Standard MFD
err(u) err(q) err(u) err(q)

10 3.930e-3 2.291e-2 3.987e-3 2.547e-2
20 1.081e-3 6.751e-3 1.088e-3 7.618e-3
40 2.788e-4 1.805e-3 2.804e-4 2.023e-3
80 7.026e-5 4.816e-4 7.071e-5 5.197e-4

rate 1.94 1.87 1.94 1.86
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Examples: Marshak wave equation

Consider a nonlinear heat conduction equation:

∂u

∂t
− div(u3∇u) = 0.

The initial value is u(0) = 0.02. Dirichlet BC on the left side
is u = 0.78 3

√
t, on the right side is u = 0.02, Neumann BC

otherwise.

In a new MFD method the heat wave moves from left to
right with the correct speed.
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Examples: Richards’s equation

Constant approximation k1
c

”Upwinded” value for k̃cf

# cells New MFD
err(u) err(q)

250 2.159e-01 1.754e-03
1000 9.893e-02 3.224e-04
4000 4.741e-02 8.353e-05
rate 1.09 2.19
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Conclusion

The new scheme solves the heat barrier problem.

It preserves symmetry and positive-definiteness of the
original operator on unstructured polyhedral meshes.

First-order convergence estimates were derived for linear
elliptic problems.

On special meshes and for some choice of k̃f , the new
scheme reduces to the classical FV scheme.

The new scheme can be extended easily to problems
with zero diffusion coefficient.
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