Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors

Eric Cancès, Geneviève Dusson, Yvon Maday, Benjamin Stamm, <u>Martin Vohralík</u>

INRIA Paris

Institut Henri Poincaré, Paris, October 3, 2016

Outline

Introduction

- Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - 7 Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 1 / 37

Laplace eigenvalue problem

Setting

• $\Omega \subset \mathbb{R}^d$, d = 2, 3, polygon/polyhedron

Energy minimization Find $u_1 \in V := H_0^1(\Omega)$ such that $(u_1, 1) > 0$ and

$$u_1 := \arg \min_{v \in V, ||v||=1} \left\{ \frac{1}{2} ||\nabla v||^2 \right\}.$$

Strong formultion

Find eigenvector & eigenvalue pair (u_1, λ_1) such that

$$-\Delta u_1 = \lambda_1 u_1 \quad \text{in } \Omega,$$
$$u_1 = 0 \quad \text{on } \partial \Omega.$$

Laplace eigenvalue problem

Setting

• $\Omega \subset \mathbb{R}^d$, d = 2, 3, polygon/polyhedron

Energy minimization

Find $u_1 \in V := H_0^1(\Omega)$ such that $(u_1, 1) > 0$ and

$$u_1 := \arg \min_{v \in V, \, \|v\|=1} \left\{ \frac{1}{2} \|\nabla v\|^2 \right\}.$$

Strong formultion

Find eigenvector & eigenvalue pair (u_1, λ_1) such that

$$-\Delta u_1 = \lambda_1 u_1 \quad \text{in } \Omega,$$
$$u_1 = 0 \quad \text{on } \partial \Omega.$$

Laplace eigenvalue problem

Setting

• $\Omega \subset \mathbb{R}^d$, d = 2, 3, polygon/polyhedron

Energy minimization

Find $u_1 \in V := H_0^1(\Omega)$ such that $(u_1, 1) > 0$ and

$$u_1 := \arg \min_{\nu \in V, \|\nu\|=1} \left\{ \frac{1}{2} \|\nabla \nu\|^2 \right\}.$$

Strong formultion

Find eigenvector & eigenvalue pair (u_1, λ_1) such that

$$\begin{aligned} -\Delta u_1 &= \lambda_1 u_1 & \text{ in } \Omega, \\ u_1 &= 0 & \text{ on } \partial \Omega. \end{aligned}$$

Full problem

Weak formulation of the full problem

Find $(u_k, \lambda_k) \in V \times \mathbb{R}^+$, $k \ge 1$, with $||u_k|| = 1$, such that

$$(\nabla u_k, \nabla v) = \lambda_k(u_k, v) \quad \forall v \in V.$$

Comments

• take
$$v = u_k$$
 as test function $\Rightarrow \|\nabla u_k\|^2 = \lambda_k$

•
$$0 < \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_k \to \infty$$

• u_k , $k \ge 1$, form an orthonormal basis of $L^2(\Omega)$

Full problem

Weak formulation of the full problem

Find $(u_k, \lambda_k) \in V \times \mathbb{R}^+$, $k \ge 1$, with $||u_k|| = 1$, such that

$$(\nabla u_k, \nabla v) = \lambda_k(u_k, v) \quad \forall v \in V.$$

Comments

- take $v = u_k$ as test function $\Rightarrow \|\nabla u_k\|^2 = \lambda_k$
- $0 < \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_k \to \infty$
- u_k , $k \ge 1$, form an orthonormal basis of $L^2(\Omega)$

Previous results, Laplace eigenvalue bounds

 Plum (1997), Goerisch and He (1989), Still (1988), Kuttler and Sigillito (1978), Moler and Payne (1968), Fox and Rheinboldt (1966), Bazley and Fox (1961), Weinberger (1956), Forsythe (1955), Kato (1949)

• . . .

Previous results, guaranteed lower bounds on λ_1

- Carstensen and Gedicke (2014) & Liu (2015): ⊕ guaranteed bound, arbitrarily coarse mesh; ⊖ a priori arguments (largest mesh element diameter), only lowest-order nonconforming FEs
- Hu, Huang, Lin (2014): ⊕ bounds in nonconforming FEs; ⊖ saturation assumption may be necessary
- Armentano and Durán (2004): ⊕ bounds in nonconforming FEs; ⊖ only asymptotic
- Šebestová and Vejchodský (2014), Kuznetsov and Repin (2013): ⊕ general guaranteed bounds; ⊖ condition on applicability, suboptimal convergence speed
- Liu and Oishi (2013):
 ⊕ guaranteed bound;
 ⊖ only
 lowest-order conforming FEs, auxiliary eigenvalue problem

Previous results, guaranteed lower bounds on λ_1

- Carstensen and Gedicke (2014) & Liu (2015): ⊕ guaranteed bound, arbitrarily coarse mesh; ⊖ a priori arguments (largest mesh element diameter), only lowest-order nonconforming FEs
- Hu, Huang, Lin (2014): ⊕ bounds in nonconforming FEs; ⊖ saturation assumption may be necessary
- Armentano and Durán (2004): ⊕ bounds in nonconforming FEs; ⊖ only asymptotic
- Šebestová and Vejchodský (2014), Kuznetsov and Repin (2013): ⊕ general guaranteed bounds; ⊖ condition on applicability, suboptimal convergence speed
- Liu and Oishi (2013):
 ⊕ guaranteed bound;
 ⊖ only
 lowest-order conforming FEs, auxiliary eigenvalue problem.

Previous results, guaranteed lower bounds on λ_1

- Carstensen and Gedicke (2014) & Liu (2015): ⊕ guaranteed bound, arbitrarily coarse mesh; ⊖ a priori arguments (largest mesh element diameter), only lowest-order nonconforming FEs
- Hu, Huang, Lin (2014): ⊕ bounds in nonconforming FEs; ⊖ saturation assumption may be necessary
- Armentano and Durán (2004): ⊕ bounds in nonconforming FEs; ⊖ only asymptotic
- Šebestová and Vejchodský (2014), Kuznetsov and Repin (2013): ⊕ general guaranteed bounds; ⊖ condition on applicability, suboptimal convergence speed
- Liu and Oishi (2013):
 ⊕ guaranteed bound;
 ⊖ only
 lowest-order conforming FEs, auxiliary eigenvalue problem

Previous results, Laplace eigenvector bounds

- Rannacher, Westenberger, Wollner (2010), Grubišić and Ovall (2009), Durán, Padra, Rodríguez (2003), Heuveline and Rannacher (2002), Larson (2000), Maday and Patera (2000), Verfürth (1994) ...
- ... typically contain uncomputable terms, higher-order on fine enough meshes
- Wang, Chamoin, Ladevèze, Zhong (2016): bounds via the constitutive relation error framework (almost guaranteed)

Previous results, Laplace eigenvector bounds

- Rannacher, Westenberger, Wollner (2010), Grubišić and Ovall (2009), Durán, Padra, Rodríguez (2003), Heuveline and Rannacher (2002), Larson (2000), Maday and Patera (2000), Verfürth (1994) ...
- ... typically contain uncomputable terms, higher-order on fine enough meshes
- Wang, Chamoin, Ladevèze, Zhong (2016): bounds via the constitutive relation error framework (almost guaranteed)

Assumption A (Conforming variational solution)

There holds

- $(u_h, \lambda_h) \in V \times \mathbb{R}^+$
- $\|u_h\| = 1$

•
$$\|\nabla u_h\|^2 = \lambda_h$$

We want to estimate

first eigenvalue error

first eigenvector energy error

 $\|\nabla(u_1-u_h)\| \leq \eta(u_h,\lambda_h)$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 7 / 37

Assumption A (Conforming variational solution)

There holds

- $(u_h, \lambda_h) \in V \times \mathbb{R}^+$
- $\|u_h\| = 1$

•
$$\|\nabla u_h\|^2 = \lambda_h$$

We want to estimate

first eigenvalue error

first eigenvector energy error

 $\|\nabla(u_1-u_h)\| \leq \eta(u_h,\lambda_h)$

 $(\Rightarrow \lambda_h \geq \lambda_1)$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Assumption A (Conforming variational solution)

There holds

• $(u_h, \lambda_h) \in V \times \mathbb{R}^+$

$$\bullet \|u_h\| = 1$$

•
$$\|\nabla u_h\|^2 = \lambda_h$$

We want to estimate

first eigenvalue error

$$\sqrt{\lambda_h - \lambda_1} \leq \eta(u_h, \lambda_h)$$

first eigenvector energy error

 $\|\nabla(\boldsymbol{u}_1 - \boldsymbol{u}_h)\| \leq \eta(\boldsymbol{u}_h, \lambda_h)$

 $(\Rightarrow \lambda_h \geq \lambda_1)$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Assumption A (Conforming variational solution)

There holds

• $(u_h, \lambda_h) \in V \times \mathbb{R}^+$

$$\bullet \|u_h\| = 1$$

•
$$\|\nabla u_h\|^2 = \lambda_h$$

We want to estimate

first eigenvalue error

$$\Leftrightarrow \lambda_{h} - \eta(\textit{\textit{u}}_{h},\lambda_{h})^{2} \leq \lambda_{1}$$

first eigenvector energy error

 $\|\nabla(\boldsymbol{u}_1-\boldsymbol{u}_h)\|\leq\eta(\boldsymbol{u}_h,\lambda_h)$

 $(\Rightarrow \lambda_h \geq \lambda_1)$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 7 / 37

Assumption A (Conforming variational solution)

There holds

• $(\boldsymbol{u}_h, \lambda_h) \in \boldsymbol{V} \times \mathbb{R}^+$

$$\bullet \|u_h\| = 1$$

•
$$\|\nabla u_h\|^2 = \lambda_h$$

We want to estimate

first eigenvalue error

$$\sqrt{\lambda_h - \lambda_1} \leq \eta(u_h, \lambda_h)$$

If itst eigenvector energy error

$$\|\nabla(\boldsymbol{u}_1-\boldsymbol{u}_h)\|\leq \eta(\boldsymbol{u}_h,\lambda_h)$$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 7 / 37

 $(\Rightarrow \lambda_h \geq \lambda_1)$

Assumption A (Conforming variational solution)

There holds

• $(u_h, \lambda_h) \in V \times \mathbb{R}^+$

$$\bullet \|u_h\| = 1$$

•
$$\|\nabla u_h\|^2 = \lambda_h$$

We want to estimate

first eigenvalue error

$$\sqrt{\lambda_h - \lambda_1} \leq \eta(\boldsymbol{u}_h, \lambda_h)$$

Ifirst eigenvector energy error

$$\|
abla(u_1 - u_h)\| \leq \eta(u_h, \lambda_h) \leq C_{ ext{eff}} \|
abla(u_1 - u_h)\|$$

• $C_{\rm eff}$ only depends on mesh shape regularity and on $\left(1 - \frac{\lambda_1}{\lambda_2}\right)$

• we give computable upper bounds on $C_{\rm eff}$

 $(\Rightarrow \lambda_h \ge \lambda_1)$

Assumption A (Conforming variational solution)

There holds

• $(u_h, \lambda_h) \in V \times \mathbb{R}^+$

$$\bullet \|u_h\| = 1$$

•
$$\|\nabla u_h\|^2 = \lambda_h$$

We want to estimate

first eigenvalue error

$$\widetilde{\eta}(u_h,\lambda_h) \leq \sqrt{\lambda_h - \lambda_1} \leq \eta(u_h,\lambda_h)$$

Ifirst eigenvector energy error

$$\|
abla(u_1 - u_h)\| \leq \eta(u_h, \lambda_h) \leq C_{\mathrm{eff}} \|
abla(u_1 - u_h)\|$$

• $C_{\rm eff}$ only depends on mesh shape regularity and on $\left(1 - \frac{\lambda_1}{\lambda_2}\right)$

• we give computable upper bounds on $C_{\rm eff}$

 $(\Rightarrow \lambda_h \ge \lambda_1)$

The pathway

 $\|\boldsymbol{u}_1 - \boldsymbol{u}_h\| \leq \alpha_h$

Prove equivalence of the eigenvalue & eigenvector errors:

$$C\|
abla(u_1-u_h)\|^2\leq \lambda_h-\lambda_1\leq \|
abla(u_1-u_h)\|^2$$

I prove equivalence of the eigenvector error & of the dual norm of the residual:

 $\underline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \le \|\nabla(u_1 - u_h)\| \le \overline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1},$ here

$$\langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V',V} := \lambda_h(u_h, v) - (\nabla u_h, \nabla v) \qquad v \in V \\ \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} := \sup_{v \in V, \, \|\nabla v\| = 1} \langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V',V}$$

• prove equivalence of the dual residual norm & its estimate: $\tilde{C}\eta(u_h, \lambda_h) \leq \overline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \leq \eta(u_h, \lambda_h)$

The pathway

) estimate the
$$L^2(\Omega)$$
 error:

$$\|u_1 - u_h\| \le \alpha_h$$

In prove equivalence of the eigenvalue & eigenvector errors:

$$C\|\nabla(u_1-u_h)\|^2 \leq \lambda_h - \lambda_1 \leq \|\nabla(u_1-u_h)\|^2$$

I prove equivalence of the eigenvector error & of the dual norm of the residual:

 $\underline{C} \|\operatorname{Res}(u_h,\lambda_h)\|_{-1} \leq \|\nabla(u_1-u_h)\| \leq \overline{C} \|\operatorname{Res}(u_h,\lambda_h)\|_{-1},$

where

 $\langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V', V} := \lambda_h(u_h, v) - (\nabla u_h, \nabla v) \qquad v \in V \\ \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} := \sup_{v \in V, \, \|\nabla v\| = 1} \langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V', V}$

• prove equivalence of the dual residual norm & its estimate: $\tilde{C}\eta(u_h, \lambda_h) \leq \overline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \leq \eta(u_h, \lambda_h)$

The pathway

$$\|u_1 - u_h\| \le \alpha_h$$

In prove equivalence of the eigenvalue & eigenvector errors:

$$C\|\nabla(u_1-u_h)\|^2 \leq \lambda_h - \lambda_1 \leq \|\nabla(u_1-u_h)\|^2$$

prove equivalence of the eigenvector error & of the dual norm of the residual:

 $\underline{C} \|\operatorname{Res}(u_h,\lambda_h)\|_{-1} \leq \|\nabla(u_1-u_h)\| \leq \overline{C} \|\operatorname{Res}(u_h,\lambda_h)\|_{-1},$

where

 $\langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V', V} := \lambda_h(u_h, v) - (\nabla u_h, \nabla v) \qquad v \in V \\ \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} := \sup_{v \in V, \, \|\nabla v\| = 1} \langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V', V}$

• prove equivalence of the dual residual norm & its estimate: $\tilde{C}\eta(u_h, \lambda_h) \leq \overline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \leq \eta(u_h, \lambda_h)$

erc

The pathway

$$\|u_1 - u_h\| \le \alpha_h$$

In prove equivalence of the eigenvalue & eigenvector errors:

$$C \|\nabla (u_1 - u_h)\|^2 \leq \lambda_h - \lambda_1 \leq \|\nabla (u_1 - u_h)\|^2$$

prove equivalence of the eigenvector error & of the dual norm of the residual:

 $\underline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \leq \|\nabla(u_1 - u_h)\| \leq \overline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1},$ where

$$\langle \operatorname{Res}(u_h, \lambda_h), \mathbf{v} \rangle_{V', V} := \lambda_h(u_h, \mathbf{v}) - (\nabla u_h, \nabla \mathbf{v}) \quad \mathbf{v} \in V \\ \| \operatorname{Res}(u_h, \lambda_h) \|_{-1} := \sup_{\mathbf{v} \in V, \| \nabla \mathbf{v} \| = 1} \langle \operatorname{Res}(u_h, \lambda_h), \mathbf{v} \rangle_{V', V}$$

• prove equivalence of the dual residual norm & its estimate: $\tilde{C}\eta(u_h,\lambda_h) \leq \overline{C} \|\operatorname{Res}(u_h,\lambda_h)\|_{-1} \leq \eta(u_h,\lambda_h)$

The pathway

) estimate the
$$L^2(\Omega)$$
 error:

$$\|u_1 - u_h\| \le \alpha_h$$

In prove equivalence of the eigenvalue & eigenvector errors:

$$C \|\nabla (u_1 - u_h)\|^2 \leq \lambda_h - \lambda_1 \leq \|\nabla (u_1 - u_h)\|^2$$

prove equivalence of the eigenvector error & of the dual norm of the residual:

 $\underline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \leq \|\nabla(u_1 - u_h)\| \leq \overline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1},$ where

$$\langle \operatorname{Res}(u_h, \lambda_h), \mathbf{v} \rangle_{V', V} := \lambda_h(u_h, \mathbf{v}) - (\nabla u_h, \nabla \mathbf{v}) \quad \mathbf{v} \in V \\ \| \operatorname{Res}(u_h, \lambda_h) \|_{-1} := \sup_{\mathbf{v} \in V, \| \nabla \mathbf{v} \| = 1} \langle \operatorname{Res}(u_h, \lambda_h), \mathbf{v} \rangle_{V', V}$$

• prove equivalence of the dual residual norm & its estimate: $\tilde{C}\eta(u_h, \lambda_h) \leq \overline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \leq \eta(u_h, \lambda_h)$

erc

Outline

- Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- A posteriori estimates
 - Eigenvalues
 - Eigenvectors
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

Outline

Introduction

- 2 Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 9 / 37

$L^2(\Omega)$ bound

Lemma ($L^2(\Omega)$ bound via a quadratic residual inequality)

Let Assumption A hold and let

$$\lambda_h < \frac{\lambda_2}{\lambda_2}$$

and

Then

$$\|u_1-u_h\| \leq \alpha_h := \sqrt{2} \left(1-\frac{\lambda_h}{\lambda_2}\right)^{-1} \|\boldsymbol{z}_{(h)}\|.$$

Riesz representation of the residual $z_{(h)} \in V$

$$(\nabla z_{(h)}, \nabla v) = \langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V', V}$$

= $\lambda_h(u_h, v) - (\nabla u_h, \nabla v) \qquad \forall v \in V$
 $\|\nabla z_{(h)}\| = \|\operatorname{Res}(u_h, \lambda_h)\|_{-1}$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 10 / 37

$L^2(\Omega)$ bound

Lemma ($L^2(\Omega)$ bound via a quadratic residual inequality)

Let Assumption A hold and let

$$\lambda_h < \lambda_2$$

$$(u_1, u_h) \ge 0.$$

Then

and

Riesz representation of the residual
$$v_{(h)} \in V$$

$$(\nabla \mathfrak{e}_{(h)}, \nabla \nu) = \langle \operatorname{Res}(u_h, \lambda_h), \nu \rangle_{V', V}$$

= $\lambda_h(u_h, \nu) - (\nabla u_h, \nabla \nu) \quad \forall \nu \in V$
 $\|\nabla \mathfrak{e}_{(h)}\| = \|\operatorname{Res}(u_h, \lambda_h)\|_{-1}$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

$L^2(\Omega)$ bound

Lemma ($L^2(\Omega)$ bound via a quadratic residual inequality)

Let Assumption A hold and let

$$\lambda_h < \frac{\lambda_2}{\lambda_2}$$

 $(u_1, u_h) \geq 0.$

and

unu

Then

$$\|u_1 - u_h\| \leq \alpha_h := \sqrt{2} \left(1 - \frac{\lambda_h}{\lambda_2}\right)^{-1} \|\mathbf{v}_{(h)}\|.$$

Riesz representation of the residual $z_{(h)} \in V$

$$(\nabla \dot{z}_{(h)}, \nabla v) = \langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V', V}$$
$$= \lambda_h(u_h, v) - (\nabla u_h, \nabla v) \qquad \forall v \in V$$
$$\|\nabla \dot{z}_{(h)}\| = \|\operatorname{Res}(u_h, \lambda_h)\|_{-1}$$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 10 / 37

$L^2(\Omega)$ bound

Lemma ($L^2(\Omega)$ bound via a quadratic residual inequality)

Let Assumption A hold and let

$$\lambda_h < \lambda_2$$

and

 $(u_1,u_h)\geq 0.$

Then

$$\|u_1-u_h\|\leq \alpha_h:=\sqrt{2}\left(1-\frac{\lambda_h}{\lambda_2}\right)^{-1}\|\boldsymbol{e}_{(h)}\|.$$

Riesz representation of the residual $i_{(h)} \in V$

$$\begin{aligned} (\nabla \mathbf{z}_{(h)}, \nabla \mathbf{v}) &= \langle \operatorname{Res}(u_h, \lambda_h), \mathbf{v} \rangle_{\mathbf{V}', \mathbf{V}} \\ &= \lambda_h(u_h, \mathbf{v}) - (\nabla u_h, \nabla \mathbf{v}) \qquad \forall \mathbf{v} \in \mathbf{V} \\ \|\nabla \mathbf{z}_{(h)}\| &= \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \end{aligned}$$

$L^2(\Omega)$ bound

Sketch of the proof I.

weak solution, residual, and Riesz representation definitions:

$$(\mathbf{z}_{(h)}, u_k) = \frac{1}{\lambda_k} (\nabla u_k, \nabla \mathbf{z}_{(h)}) = \frac{1}{\lambda_k} (\lambda_h (u_h, u_k) - (\nabla u_h, \nabla u_k))$$
$$= \left(\frac{\lambda_h}{\lambda_k} - 1\right) (u_h, u_k)$$

Parseval equality for *z*(*h*)

$$\|\dot{z}_{(h)}\|^2 =$$

assumption $\lambda_h < \lambda_2$

$L^2(\Omega)$ bound

Sketch of the proof I.

weak solution, residual, and Riesz representation definitions:

$$(\mathbf{z}_{(h)}, u_k) = \frac{1}{\lambda_k} (\nabla u_k, \nabla \mathbf{z}_{(h)}) = \frac{1}{\lambda_k} (\lambda_h (u_h, u_k) - (\nabla u_h, \nabla u_k))$$
$$= \left(\frac{\lambda_h}{\lambda_k} - 1\right) (u_h, u_k)$$

Parseval equality for $\dot{r}_{(h)}$:

$$\|\dot{z}_{(h)}\|^2 = \sum_{k\geq 1} (\dot{z}_{(h)}, U_k)^2$$

assumption $\lambda_h < \lambda_2$

$L^2(\Omega)$ bound

Sketch of the proof I.

weak solution, residual, and Riesz representation definitions:

$$(\mathbf{z}_{(h)}, u_k) = \frac{1}{\lambda_k} (\nabla u_k, \nabla \mathbf{z}_{(h)}) = \frac{1}{\lambda_k} (\lambda_h (u_h, u_k) - (\nabla u_h, \nabla u_k))$$
$$= \left(\frac{\lambda_h}{\lambda_k} - 1\right) (u_h, u_k)$$

Parseval equality for $\dot{v}_{(h)}$:

$$\|\mathbf{z}_{(h)}\|^2 = \sum_{k\geq 1} \left(1 - \frac{\lambda_h}{\lambda_k}\right)^2 (u_h, u_k)^2$$

assumption $\lambda_h < \lambda_2$:

$$\min_{k\geq 2}\left(1-\frac{\lambda_h}{\lambda_k}\right)^2 = \left(1-\frac{\lambda_h}{\lambda_2}\right)^2 =: C_h$$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

$L^2(\Omega)$ bound

Sketch of the proof I.

weak solution, residual, and Riesz representation definitions:

$$(\mathbf{z}_{(h)}, u_k) = \frac{1}{\lambda_k} (\nabla u_k, \nabla \mathbf{z}_{(h)}) = \frac{1}{\lambda_k} (\lambda_h (u_h, u_k) - (\nabla u_h, \nabla u_k))$$
$$= \left(\frac{\lambda_h}{\lambda_k} - 1\right) (u_h, u_k)$$

Parseval equality for $\dot{e}_{(h)}$:

$$\|\mathbf{z}_{(h)}\|^2 = \left(\frac{\lambda_h}{\lambda_1} - 1\right)^2 (u_h, u_1)^2 + \sum_{k \ge 2} \left(1 - \frac{\lambda_h}{\lambda_k}\right)^2 (u_h, u_k)^2$$

assumption $\lambda_h < \lambda_2$:

$$\min_{k\geq 2}\left(1-\frac{\lambda_h}{\lambda_k}\right)^2 = \left(1-\frac{\lambda_h}{\lambda_2}\right)^2 =: C_h$$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 11 / 37

$L^2(\Omega)$ bound

Sketch of the proof I.

weak solution, residual, and Riesz representation definitions:

$$(\mathbf{z}_{(h)}, u_k) = \frac{1}{\lambda_k} (\nabla u_k, \nabla \mathbf{z}_{(h)}) = \frac{1}{\lambda_k} (\lambda_h (u_h, u_k) - (\nabla u_h, \nabla u_k))$$
$$= \left(\frac{\lambda_h}{\lambda_k} - 1\right) (u_h, u_k)$$

Parseval equality for $z_{(h)}$, u_k orthonormal basis:

$$\|\mathbf{z}_{(h)}\|^2 = \left(\frac{\lambda_h}{\lambda_1} - 1\right)^2 (u_h, u_1)^2 + \sum_{k \ge 2} \left(1 - \frac{\lambda_h}{\lambda_k}\right)^2 (u_h - u_1, u_k)^2$$

assumption $\lambda_h < \lambda_2$:

$$\min_{k\geq 2}\left(1-\frac{\lambda_h}{\lambda_k}\right)^2 = \left(1-\frac{\lambda_h}{\lambda_2}\right)^2 =: C_h$$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 11 / 37
I Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

$L^2(\Omega)$ bound

Sketch of the proof I.

weak solution, residual, and Riesz representation definitions:

$$(\mathbf{z}_{(h)}, u_k) = \frac{1}{\lambda_k} (\nabla u_k, \nabla \mathbf{z}_{(h)}) = \frac{1}{\lambda_k} (\lambda_h (u_h, u_k) - (\nabla u_h, \nabla u_k))$$
$$= \left(\frac{\lambda_h}{\lambda_k} - 1\right) (u_h, u_k)$$

Parseval equality for $z_{(h)}$, u_k orthonormal basis:

$$\|\boldsymbol{z}_{(h)}\|^{2} = \left(\frac{\lambda_{h}}{\lambda_{1}}-1\right)^{2}(\boldsymbol{u}_{h},\boldsymbol{u}_{1})^{2} + \sum_{k\geq 2}\underbrace{\left(1-\frac{\lambda_{h}}{\lambda_{k}}\right)^{2}}_{\geq \boldsymbol{C}_{h}}(\boldsymbol{u}_{h}-\boldsymbol{u}_{1},\boldsymbol{u}_{k})^{2}$$

assumption
$$\lambda_h < \lambda_2$$
:

$$\min_{k \ge 2} \left(1 - \frac{\lambda_h}{\lambda_k}\right)^2 = \left(1 - \frac{\lambda_h}{\lambda_2}\right)^2 =: C_h$$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 11 / 37

rc

Sketch of the proof II.

Parseval equality for
$$u_h - u_1$$
, $(u_h - u_1, u_1) = -\frac{1}{2} ||u_1 - u_h||^2$:
 $||z_{(h)}||^2 \ge \left(\frac{\lambda_h}{\lambda_1} - 1\right)^2 (u_h, u_1)^2 + C_h ||u_1 - u_h||^2 - \frac{C_h}{4} ||u_1 - u_h||^4$

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

dropping the first term above, $e_h := ||u_1 - u_h||^2$:

$$rac{C_h}{4} e_h^2 - C_h e_h + \| z_{(h)} \|^2 \geq 0$$

assumption $(u_1, u_h) \ge 0$, employing $||u_1|| = ||u_h|| = 1$:

$$e_h = ||u_1 - u_h||^2 = 2 - 2(u_1, u_h) \le 2,$$

conclusion:

$$\frac{C_h}{2}e_h \le \| z_{(h)} \|^2 \quad \Leftrightarrow \quad \| u_1 - u_h \| \le \sqrt{2}C_h^{-\frac{1}{2}} \| z_{(h)} \|$$

TC

Sketch of the proof II.

Parseval equality for
$$u_h - u_1$$
, $(u_h - u_1, u_1) = -\frac{1}{2} ||u_1 - u_h||^2$:

$$\| \mathbf{z}_{(h)} \|^{2} \geq \left(\frac{\lambda_{h}}{\lambda_{1}} - 1 \right)^{2} (u_{h}, u_{1})^{2} + C_{h} \| u_{1} - u_{h} \|^{2} - \frac{C_{h}}{4} \| u_{1} - u_{h} \|^{4}$$

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

dropping the first term above, $e_h := ||u_1 - u_h||^2$:

$$rac{C_h}{4} e_h^2 - C_h e_h + \| z_{(h)} \|^2 \geq 0$$

assumption $(u_1, u_h) \ge 0$, employing $||u_1|| = ||u_h|| = 1$:

$$e_h = \|u_1 - u_h\|^2 = 2 - 2(u_1, u_h) \le 2,$$

conclusion:

$$\frac{C_h}{2}e_h \le \|z_{(h)}\|^2 \quad \Leftrightarrow \quad \|u_1 - u_h\| \le \sqrt{2}C_h^{-\frac{1}{2}}\|z_{(h)}\|$$

rc

Sketch of the proof II.

Parseval equality for
$$u_h - u_1$$
, $(u_h - u_1, u_1) = -\frac{1}{2} ||u_1 - u_h||^2$:

$$\|z_{(h)}\|^{2} \geq \left(\frac{\lambda_{h}}{\lambda_{1}}-1\right)^{2}(u_{h},u_{1})^{2}+C_{h}\|u_{1}-u_{h}\|^{2}-\frac{C_{h}}{4}\|u_{1}-u_{h}\|^{4}$$

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

dropping the first term above, $e_h := ||u_1 - u_h||^2$:

$$rac{C_h}{4} e_h^2 - C_h e_h + \| z_{(h)} \|^2 \geq 0$$

assumption $(u_1, u_h) \ge 0$, employing $||u_1|| = ||u_h|| = 1$:

$$e_h = \|u_1 - u_h\|^2 = 2 - 2(u_1, u_h) \le 2,$$

conclusion:

$$\frac{C_h}{2}e_h \le \|z_{(h)}\|^2 \quad \Leftrightarrow \quad \|u_1 - u_h\| \le \sqrt{2}C_h^{-\frac{1}{2}}\|z_{(h)}\|$$

TC

Sketch of the proof II.

Parseval equality for
$$u_h - u_1$$
, $(u_h - u_1, u_1) = -\frac{1}{2} ||u_1 - u_h||^2$:

$$\|z_{(h)}\|^{2} \geq \left(\frac{\lambda_{h}}{\lambda_{1}}-1\right)^{2} (u_{h}, u_{1})^{2}+C_{h}\|u_{1}-u_{h}\|^{2}-\frac{C_{h}}{4}\|u_{1}-u_{h}\|^{4}$$

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

dropping the first term above, $e_h := ||u_1 - u_h||^2$:

$$rac{C_h}{4} e_h^2 - C_h e_h + \| z_{(h)} \|^2 \geq 0$$

assumption $(u_1, u_h) \ge 0$, employing $||u_1|| = ||u_h|| = 1$:

$$e_h = \|u_1 - u_h\|^2 = 2 - 2(u_1, u_h) \le 2,$$

conclusion:

$$\frac{C_h}{2}\boldsymbol{e}_h \leq \|\boldsymbol{\imath}_{(h)}\|^2 \quad \Leftrightarrow \quad \|\boldsymbol{u}_1 - \boldsymbol{u}_h\| \leq \sqrt{2}C_h^{-\frac{1}{2}}\|\boldsymbol{\imath}_{(h)}\|$$

rc

Outline

Introduction

- 2 Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 12 / 37

Theorem (Eigenvalue error – eigenvector error equivalence)

Under the above assumptions, there holds

$$\frac{1}{2}\left(1-\frac{\lambda_1}{\lambda_2}\right)\left(1-\frac{\alpha_h^2}{4}\right)\|\nabla(u_1-u_h)\|^2 \leq \lambda_h - \lambda_1 \leq \|\nabla(u_1-u_h)\|^2,$$

as well as $\|\nabla(u_1 - u_h)\|^2 - \lambda_1 \alpha_h^2 \le \lambda_h - \lambda_h$

Key arguments of the proof

• there holds

$$\lambda_h - \lambda_1 = \|\nabla (u_h - u_1)\|^2 - \lambda_1 \|u_1 - u_h\|^2$$

• drop the second term or estimate it with $||u_1 - u_h|| \le \alpha_h$ • use $||\nabla v||^2 = \sum_{k\ge 1} \lambda_k (v, u_k)^2$ for $v = u_1 - u_h$: $||\nabla (u_1 - u_h)||^2 - \lambda_1 ||u_1 - u_h||^2 \ge (\lambda_2 - \lambda_1) ||u_1 - u_h||^2 - \frac{\lambda_2 - \lambda_1}{||u_1 - u_h||^2} ||u_1 - u_h||^2$

Theorem (Eigenvalue error – eigenvector error equivalence)

Under the above assumptions, there holds

$$\frac{1}{2}\left(1-\frac{\lambda_1}{\lambda_2}\right)\left(1-\frac{\alpha_h^2}{4}\right)\|\nabla(u_1-u_h)\|^2 \leq \lambda_h-\lambda_1 \leq \|\nabla(u_1-u_h)\|^2,$$

as well as $\|\nabla(u_1-u_h)\|^2 - \lambda_1 \alpha_h^2 \leq \lambda_h - \lambda_1.$

Key arguments of the proof

• there holds

$$\lambda_h - \lambda_1 = \|\nabla (u_h - u_1)\|^2 - \lambda_1 \|u_1 - u_h\|^2$$

• drop the second term or estimate it with $||u_1 - u_h|| \le \alpha_h$ • use $||\nabla v||^2 = \sum_{k\ge 1} \lambda_k (v, u_k)^2$ for $v = u_1 - u_h$: $||\nabla (u_1 - u_h)||^2 - \lambda_1 ||u_1 - u_h||^2 \ge (\lambda_2 - \lambda_1) ||u_1 - u_h||^2 - \frac{\lambda_2 - \lambda_1}{||u_1 - u_h||^2} ||u_1 - u_h||^2$

Theorem (Eigenvalue error – eigenvector error equivalence)

Under the above assumptions, there holds

$$\frac{1}{2}\left(1-\frac{\lambda_1}{\lambda_2}\right)\left(1-\frac{\alpha_h^2}{4}\right)\|\nabla(u_1-u_h)\|^2 \leq \lambda_h-\lambda_1 \leq \|\nabla(u_1-u_h)\|^2,$$

as well as $\|\nabla(u_1-u_h)\|^2 - \lambda_1 \alpha_h^2 \leq \lambda_h - \lambda_1.$

Key arguments of the proof

there holds

$$\lambda_h - \lambda_1 = \|\nabla (u_h - u_1)\|^2 - \lambda_1 \|u_1 - u_h\|^2$$

drop the second term or estimate it with ||u₁ - u_h|| ≤ α_h
use ||∇v||² = ∑_{k≥1} λ_k(v, u_k)² for v = u₁ - u_h:

$$\|\nabla(u_{1}-u_{h})\|^{2} - \lambda_{1} \|u_{1}-u_{h}\|^{2} \ge (\lambda_{2}-\lambda_{1}) \|u_{1}-u_{h}\|^{2} - \frac{\lambda_{2}-\lambda_{1}}{\omega_{1}}$$

Theorem (Eigenvalue error – eigenvector error equivalence)

Under the above assumptions, there holds

$$\frac{1}{2}\left(1-\frac{\lambda_1}{\lambda_2}\right)\left(1-\frac{\alpha_h^2}{4}\right)\|\nabla(u_1-u_h)\|^2 \leq \lambda_h-\lambda_1 \leq \|\nabla(u_1-u_h)\|^2,$$

as well as $\|\nabla(u_1-u_h)\|^2 - \lambda_1 \alpha_h^2 \leq \lambda_h - \lambda_1.$

Key arguments of the proof

• there holds

$$\lambda_h - \lambda_1 = \|\nabla (u_h - u_1)\|^2 - \lambda_1 \|u_1 - u_h\|^2$$

• drop the second term or estimate it with $||u_1 - u_h|| \le \alpha_h$ • use $||\nabla v||^2 = \sum_{k\ge 1} \lambda_k (v, u_k)^2$ for $v = u_1 - u_h$: $||\nabla (u_1 - u_h)||^2 - \lambda_1 ||u_1 - u_h||^2 \ge (\lambda_2 - \lambda_1) ||u_1 - u_h||^2 - \frac{\lambda_2 - \lambda_1}{u_1 - u_2 - \lambda_1} ||u_1 - u_h||^2$

Theorem (Eigenvalue error – eigenvector error equivalence)

Under the above assumptions, there holds

$$\frac{1}{2}\left(1-\frac{\lambda_1}{\lambda_2}\right)\left(1-\frac{\alpha_h^2}{4}\right)\|\nabla(u_1-u_h)\|^2 \leq \lambda_h-\lambda_1 \leq \|\nabla(u_1-u_h)\|^2,$$

as well as $\|\nabla(u_1-u_h)\|^2 - \lambda_1 \alpha_h^2 \leq \lambda_h - \lambda_1.$

Key arguments of the proof

there holds

$$\lambda_h - \lambda_1 = \|\nabla (u_h - u_1)\|^2 - \lambda_1 \|u_1 - u_h\|^2$$

• drop the second term or estimate it with $||u_1 - u_h|| \le \alpha_h$ • use $||\nabla v||^2 = \sum_{k\ge 1} \lambda_k (v, u_k)^2$ for $v = u_1 - u_h$: $||\nabla (u_1 - u_h)||^2 - \lambda_1 ||u_1 - u_h||^2 \ge (\lambda_2 - \lambda_1) ||u_1 - u_h||^2 - \frac{\lambda_2 - \lambda_1}{u_1 - u_h} ||u_1 - u_h||^2$

Theorem (Eigenvector error – dual norm of the residual equivalence)

Under the above assumptions, there holds

$$\left(\frac{\|\nabla(u_1 - u_h)\|^2}{\lambda_1} + 1\right)^{-1} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1}^2$$

$$\leq \|\nabla(u_1 - u_h)\|^2 \leq \left(1 - \frac{\lambda_h}{\lambda_2}\right)^{-2} \left(1 - \frac{\alpha_h^2}{4}\right)^{-1} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1}^2,$$

$$\|\nabla(u_1-u_h)\|^2 \leq \|\operatorname{Res}(u_h,\lambda_h)\|_{-1}^2 + 2\lambda_h \alpha_h^2.$$

Theorem (Eigenvector error – dual norm of the residual equivalence)

Under the above assumptions, there holds

$$\left(\frac{\|\nabla(u_1 - u_h)\|^2}{\lambda_1} + 1\right)^{-1} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1}^2$$

$$\leq \|\nabla(u_1 - u_h)\|^2 \leq \left(1 - \frac{\lambda_h}{\lambda_2}\right)^{-2} \left(1 - \frac{\alpha_h^2}{4}\right)^{-1} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1}^2,$$

as well as

$$\|\nabla(u_1-u_h)\|^2 \leq \|\operatorname{Res}(u_h,\lambda_h)\|_{-1}^2 + 2\lambda_h \alpha_h^2.$$

Outline

Introduction

- 2 Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 14 / 37

How to bound the dual residual norm?

Dual norm of the residual

Equivalences Estimates Application Numerics Extension C

$$\begin{aligned} \|\operatorname{Res}(u_h,\lambda_h)\|_{-1} &= \sup_{v \in V, \, \|\nabla v\| = 1} \langle \operatorname{Res}(u_h,\lambda_h), v \rangle_{V',V} \\ &= \sup_{v \in V, \, \|\nabla v\| = 1} \{\lambda_h(u_h,v) - (\nabla u_h,\nabla v)\} \end{aligned}$$

Generic Residual

Residual and eigenvalue bounds

Guaranteed upper bound: $\sigma_h \in H(\operatorname{div}, \Omega)$ with $\nabla \cdot \sigma_h = \lambda_h u_h$

$$\|\operatorname{Res}(u_h,\lambda_h)\|_{-1} = \sup_{v \in V, \|\nabla v\|=1} \{ (\nabla \cdot \sigma_h, v) - (\nabla u_h, \nabla v) \}$$
$$= \sup_{v \in V, \|\nabla v\|=1} \{ -(\nabla u_h + \sigma_h, \nabla v) \} \leq \|\nabla u_h + \sigma_h\|$$

Guaranteed lower bound: $r_h \in V = H_0^1(\Omega)$ $\sup_{v \in V, \|\nabla v\|=1} \langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V',V} \ge \frac{\langle \operatorname{Res}(u_h, \lambda_h), r_h \rangle_{V',V}}{\|\nabla r_h\|}$ How to bound the dual residual norm?

Dual norm of the residual

Equivalences Estimates Application Numerics Extension C

$$\begin{aligned} \|\operatorname{Res}(u_h,\lambda_h)\|_{-1} &= \sup_{v \in V, \, \|\nabla v\| = 1} \langle \operatorname{Res}(u_h,\lambda_h), v \rangle_{V',V} \\ &= \sup_{v \in V, \, \|\nabla v\| = 1} \{\lambda_h(u_h,v) - (\nabla u_h,\nabla v)\} \end{aligned}$$

Guaranteed upper bound: $\sigma_h \in H(\operatorname{div}, \Omega)$ with $\nabla \cdot \sigma_h = \lambda_h u_h$

$$\|\operatorname{Res}(u_h,\lambda_h)\|_{-1} = \sup_{v \in V, \|\nabla v\|=1} \{ (\nabla \cdot \sigma_h, v) - (\nabla u_h, \nabla v) \}$$

=
$$\sup_{v \in V, \|\nabla v\|=1} \{ -(\nabla u_h + \sigma_h, \nabla v) \} \leq \|\nabla u_h + \sigma_h\|$$

Guaranteed lower bound: $r_h \in V = H_0^1(\Omega)$ $\sup_{v \in V, \|\nabla v\|=1} \langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V',V} \ge \frac{\langle \operatorname{Res}(u_h, \lambda_h), r_h \rangle_{V',V}}{\|\nabla r_h\|}$

Generic Residual Residual and eigenvalue bounds

How to bound the dual residual norm?

Dual norm of the residual

Equivalences Estimates Application Numerics Extension C

$$\begin{aligned} \|\operatorname{Res}(u_h,\lambda_h)\|_{-1} &= \sup_{v \in V, \, \|\nabla v\| = 1} \langle \operatorname{Res}(u_h,\lambda_h), v \rangle_{V',V} \\ &= \sup_{v \in V, \, \|\nabla v\| = 1} \{\lambda_h(u_h,v) - (\nabla u_h,\nabla v)\} \end{aligned}$$

Guaranteed upper bound: $\sigma_h \in H(\operatorname{div}, \Omega)$ with $\nabla \cdot \sigma_h = \lambda_h u_h$

$$\|\operatorname{Res}(u_h,\lambda_h)\|_{-1} = \sup_{v \in V, \|\nabla v\|=1} \{ (\nabla \cdot \sigma_h, v) - (\nabla u_h, \nabla v) \}$$

=
$$\sup_{v \in V, \|\nabla v\|=1} \{ -(\nabla u_h + \sigma_h, \nabla v) \} \leq \|\nabla u_h + \sigma_h\|$$

Guaranteed lower bound:
$$r_h \in V = H_0^1(\Omega)$$

$$\sup_{v \in V, \|\nabla v\|=1} \langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V', V} \geq \frac{\langle \operatorname{Res}(u_h, \lambda_h), r_h \rangle_{V', V}}{\|\nabla r_h\|}$$

Generic Residual Residual and eigenvalue bounds

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

Equilibrated flux construction

Ideal equilibrated flux reconstruction $(-\nabla u_h \notin \mathbf{H}(\operatorname{div}, \Omega))$

$$\sigma_h := \arg\min_{\mathbf{v}_h \in \mathbf{V}_h, \, \nabla \cdot \mathbf{v}_h = \lambda_h u_h} \| \nabla u_h + \mathbf{v}_h \|$$

• $V_h \subset H(\operatorname{div}, \Omega) \Rightarrow$ global minimization, too expensive

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 16 / 37

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

Equilibrated flux construction

Ideal equilibrated flux reconstruction $(-\nabla u_h \notin \mathbf{H}(\operatorname{div}, \Omega))$

$$\sigma_h := \arg\min_{\mathbf{v}_h \in \mathbf{V}_h, \, \nabla \cdot \mathbf{v}_h = \lambda_h u_h} \| \nabla u_h + \mathbf{v}_h \|$$

• $V_h \subset H(\operatorname{div}, \Omega) \Rightarrow$ global minimization, too expensive

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Generic

Definition (Mixed local Neumann problems: equilibrated flux)

For all $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_h^{\mathbf{a}} \in \mathbf{V}_h^{\mathbf{a}}$ by solving

Equivalences Estimates Application Numerics Extension C

$$\sigma_h^{\mathbf{a}} := \arg \min_{\substack{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \\ \nabla \cdot \mathbf{v}_h = \prod_{\mathcal{Q}_h} (\psi_{\mathbf{a}} \lambda_h u_h - \nabla u_h \cdot \nabla \psi_{\mathbf{a}})}} \| \psi_{\mathbf{a}} \nabla u_h + \mathbf{v}_h \|_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_h,$$

and set $\sigma_h := \sum_{\mathbf{a} \in \mathcal{V}_h} \sigma_h^{\mathbf{a}} \Rightarrow \sigma_h \in \mathsf{H}(\mathrm{div}, \Omega), \nabla \cdot \sigma_h = \lambda_h u_h.$

Definition (Conforming local Neumann problems: lifted residual)

For each $\mathbf{a} \in \mathcal{V}_h$, define $r_h^{\mathbf{a}} \in X_h^{\mathbf{a}} \subset H^1(\omega_{\mathbf{a}})$ by

$$(\nabla r_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = \langle \operatorname{Res}(u_h, \lambda_h), \psi_{\mathbf{a}} v_h \rangle_{V', V} \qquad \forall v_h \in X_h^{\mathbf{a}}.$$

Then set

$$r_h := \sum_{\mathbf{a}\in\mathcal{V}_h} \psi_{\mathbf{a}} r_h^{\mathbf{a}} \in V.$$

Babuška & Strouboulis (2001), Repin (2008)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Residual Residual and eigenvalue bounds

Generic

Definition (Mixed local Neumann problems: equilibrated flux)

For all $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_h^{\mathbf{a}} \in \mathbf{V}_h^{\mathbf{a}}$ by solving

Estimates Application Numerics Extension C

$$\sigma_h^{\mathbf{a}} := \arg \min_{\substack{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \\ \nabla \cdot \mathbf{v}_h = \Pi_{\mathcal{Q}_h}(\psi_{\mathbf{a}} \lambda_h u_h - \nabla u_h \cdot \nabla \psi_{\mathbf{a}})}} \|\psi_{\mathbf{a}} \nabla u_h + \mathbf{v}_h\|_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_h,$$

and set
$$\sigma_h := \sum_{\mathbf{a} \in \mathcal{V}_h} \sigma_h^{\mathbf{a}} \Rightarrow \sigma_h \in \mathbf{H}(\operatorname{div}, \Omega), \ \nabla \cdot \sigma_h = \lambda_h u_h.$$

Definition (Conforming local Neumann problems: lifted residual)

For each $\mathbf{a} \in \mathcal{V}_h$, define $r_h^{\mathbf{a}} \in X_h^{\mathbf{a}} \subset H^1(\omega_{\mathbf{a}})$ by

$$(\nabla r_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = \langle \operatorname{Res}(u_h, \lambda_h), \psi_{\mathbf{a}} v_h \rangle_{V', V} \qquad \forall v_h \in X_h^{\mathbf{a}}.$$

Then set

Equivalences

$$r_h := \sum_{\mathbf{a}\in\mathcal{V}_h} \psi_{\mathbf{a}} r_h^{\mathbf{a}} \in V.$$

Babuška & Strouboulis (2001), Repin (2008)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Residual Residual and eigenvalue bounds

Generic

Definition (Mixed local Neumann problems: equilibrated flux)

For all $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_h^{\mathbf{a}} \in \mathbf{V}_h^{\mathbf{a}}$ by solving

Estimates Application Numerics Extension C

$$\sigma_h^{\mathbf{a}} := \arg \min_{\substack{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \\ \nabla \cdot \mathbf{v}_h = \prod_{\mathcal{Q}_h} (\psi_{\mathbf{a}} \lambda_h u_h - \nabla u_h \cdot \nabla \psi_{\mathbf{a}})} \| \psi_{\mathbf{a}} \nabla u_h + \mathbf{v}_h \|_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_h,$$

and set $\sigma_h := \sum_{\mathbf{a} \in \mathcal{V}_h} \sigma_h^{\mathbf{a}} \Rightarrow \sigma_h \in \mathbf{H}(\operatorname{div}, \Omega), \, \nabla \cdot \sigma_h = \lambda_h u_h.$

Definition (Conforming local Neumann problems: lifted residual)

For each $\mathbf{a} \in \mathcal{V}_h$, define $r_h^{\mathbf{a}} \in X_h^{\mathbf{a}} \subset H^1(\omega_{\mathbf{a}})$ by

$$(\nabla r_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = \langle \operatorname{Res}(u_h, \lambda_h), \psi_{\mathbf{a}} v_h \rangle_{V', V} \qquad \forall v_h \in X_h^{\mathbf{a}}.$$

Then set

Equivalences

$$r_h := \sum_{\mathbf{a}\in\mathcal{V}_h} \psi_{\mathbf{a}} r_h^{\mathbf{a}} \in V.$$

Babuška & Strouboulis (2001), Repin (2008)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Residual Residual and eigenvalue bounds

Definition (Mixed local Neumann problems: equilibrated flux)

For all $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_h^{\mathbf{a}} \in \mathbf{V}_h^{\mathbf{a}}$ by solving

Estimates Application Numerics Extension C

$$\sigma_h^{\mathbf{a}} := \arg \min_{\substack{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \\ \nabla \cdot \mathbf{v}_h = \prod_{\mathcal{Q}_h} (\psi_{\mathbf{a}} \lambda_h u_h - \nabla u_h \cdot \nabla \psi_{\mathbf{a}})} \| \psi_{\mathbf{a}} \nabla u_h + \mathbf{v}_h \|_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_h,$$

and set $\sigma_h := \sum_{\mathbf{a} \in \mathcal{V}_h} \sigma_h^{\mathbf{a}} \Rightarrow \sigma_h \in \mathbf{H}(\operatorname{div}, \Omega), \, \nabla \cdot \sigma_h = \lambda_h u_h.$

Definition (Conforming local Neumann problems: lifted residual)

For each $\mathbf{a} \in \mathcal{V}_h$, define $r_h^{\mathbf{a}} \in X_h^{\mathbf{a}} \subset H^1(\omega_{\mathbf{a}})$ by

$$(\nabla r_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = \langle \operatorname{Res}(u_h, \lambda_h), \psi_{\mathbf{a}} v_h \rangle_{V', V} \qquad \forall v_h \in X_h^{\mathbf{a}}.$$

Then set

Equivalences

$$r_h := \sum_{\mathbf{a} \in \mathcal{V}_h} \psi_{\mathbf{a}} r_h^{\mathbf{a}} \in \mathbf{V}.$$

Inna

Babuška & Strouboulis (2001), Repin (2008)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 17 / 37

Generic Residual Residual and eigenvalue bounds

Numerical assumptions

Assumption B (Galerkin orthogonality of the residual to ψ_a)

There holds, for all $\mathbf{a} \in \mathcal{V}_{h}^{\text{int}}$,

 $\lambda_h(u_h, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} - (\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = \langle \operatorname{Res}(u_h, \lambda_h), \psi_{\mathbf{a}} \rangle_{V', V} = \mathbf{0}.$

 $u_h \in \mathbb{P}_p(\mathcal{T}_h)$, p > 1, and spaces $\mathbf{V}_h \times Q_h$ are of degree p + 1.

Numerical assumptions

Assumption B (Galerkin orthogonality of the residual to ψ_{a})

There holds, for all $\mathbf{a} \in \mathcal{V}_{b}^{\text{int}}$,

 $\lambda_h(u_h, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} - (\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = \langle \operatorname{Res}(u_h, \lambda_h), \psi_{\mathbf{a}} \rangle_{V', V} = \mathbf{0}.$

Assumption C (Shape regularity & piecewise polynomial form)

The meshes \mathcal{T}_h are shape regular. There holds

 $u_h \in \mathbb{P}_p(\mathcal{T}_h), p \geq 1$, and spaces $\mathbf{V}_h \times Q_h$ are of degree p + 1.

Dual norm of the residual equivalences

Theorem (Dual norm of the residual equivalences)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ verifying Assumption B be arbitrary. Then

 $\frac{\langle \operatorname{Res}(u_h,\lambda_h),r_h\rangle_{V',V}}{\|\nabla r_h\|} \leq \|\operatorname{Res}(u_h,\lambda_h)\|_{-1} \leq \|\nabla u_h + \sigma_h\|.$

• $C_{\rm st}$ and $C_{\rm cont PE}$ independent of the polynomial degree p • we can compute upper bounds on $C_{\rm st}$ and $C_{\rm cont PF}$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 19/37

Dual norm of the residual equivalences

Theorem (Dual norm of the residual equivalences)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ verifying Assumption B be arbitrary. Then

 $\frac{\langle \operatorname{Res}(u_h,\lambda_h),r_h\rangle_{V',V}}{\|\nabla r_h\|} \leq \|\operatorname{Res}(u_h,\lambda_h)\|_{-1} \leq \|\nabla u_h + \sigma_h\|.$

Moreover, under Assumption C, there holds

 $\|\nabla u_h + \boldsymbol{\sigma}_h\| \leq (d+1)C_{\mathrm{st}}C_{\mathrm{cont},\mathrm{PF}}\|\mathrm{Res}(u_h,\lambda_h)\|_{-1}.$

*C*_{st} and *C*_{cont,PF} independent of the polynomial degree *p*we can compute upper bounds on *C*_{st} and *C*_{cont,PF}

Ern & Vohralík (2015)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 19 / 37

Dual norm of the residual equivalences

Theorem (Dual norm of the residual equivalences)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ verifying Assumption B be arbitrary. Then

$$\frac{\langle \operatorname{Res}(u_h,\lambda_h),r_h\rangle_{V',V}}{\|\nabla r_h\|} \leq \|\operatorname{Res}(u_h,\lambda_h)\|_{-1} \leq \|\nabla u_h + \sigma_h\|.$$

Moreover, under Assumption C, there holds

 $\|\nabla u_h + \boldsymbol{\sigma}_h\| \leq (d+1)C_{\mathrm{st}}C_{\mathrm{cont},\mathrm{PF}}\|\mathrm{Res}(u_h,\lambda_h)\|_{-1}.$

*C*_{st} and *C*_{cont,PF} independent of the polynomial degree *p*we can compute upper bounds on *C*_{st} and *C*_{cont,PF}

Ern & Vohralík (2015)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 19 / 37

Outline

Introduction

2 Laplace eigenvalue problem equivalences

- Generic equivalences
- Dual norm of the residual equivalences
- Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 19 / 37

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

Bounds on the Riesz representation of the residual

Lemma (Poincaré–Friedrichs bound on $|| z_{(h)} ||$)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ be arbitrary. There holds $\|\mathbf{z}_{(h)}\| \leq \frac{1}{\sqrt{\lambda_1}} \|\nabla \mathbf{z}_{(h)}\|.$

Bounds on the Riesz representation of the residual

Lemma (Poincaré–Friedrichs bound on $|| z_{(h)} ||$)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ be arbitrary. There holds

$$\|\boldsymbol{z}_{(h)}\| \leq \frac{1}{\sqrt{\lambda_1}} \|\operatorname{Res}(\boldsymbol{u}_h, \boldsymbol{\lambda}_h)\|_{-1}.$$

$$\|\boldsymbol{z}_{(h)}\| \leq C_{\mathrm{I}}C_{\mathrm{S}}h^{\delta}\|\mathrm{Res}(\boldsymbol{u}_h,\lambda_h)\|_{-1}.$$

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

Bounds on the Riesz representation of the residual

<u>Lemma (Poincaré–Friedrichs</u> bound on $||z_{(h)}||$)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ be arbitrary. There holds

$$\|\boldsymbol{z}_{(h)}\| \leq \frac{1}{\sqrt{\lambda_1}} \|\operatorname{Res}(\boldsymbol{u}_h, \lambda_h)\|_{-1}.$$

Lemma (Elliptic regularity bound on $\|z_{(h)}\|$)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ satisfy Assumption B and let the solution $\zeta_{(h)}$ of $(\nabla \zeta_{(h)}, \nabla \mathbf{v}) = (\mathbf{z}_{(h)}, \mathbf{v})$ $\forall v \in V$

belong to
$$H^{1+\delta}(\Omega)$$
, $0 < \delta \leq 1$, with

$$\inf_{\boldsymbol{v}_h \in \boldsymbol{V}_h} \|\nabla(\zeta_{(h)} - \boldsymbol{v}_h)\| \leq C_{\mathrm{I}} h^{\delta} |\zeta_{(h)}|_{H^{1+\delta}(\Omega)},$$

$$|\zeta_{(h)}|_{H^{1+\delta}(\Omega)} \leq C_{\mathrm{S}} \|\boldsymbol{z}_{(h)}\|.$$

Then

$$\|\boldsymbol{\boldsymbol{\varepsilon}}_{(h)}\| \leq C_{\mathrm{I}}C_{\mathrm{S}}\boldsymbol{h}^{\delta}\|\mathrm{Res}(\boldsymbol{u}_{h},\lambda_{h})\|_{-1}.$$

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

How to guarantee $\lambda_h < \lambda_2$?

Option 1: estimates of eigenvalues via domain inclusion

$$egin{array}{lll} \Omega\subset\Omega^+&\Rightarrow&\lambda_k\geq\lambda_k(\Omega^+),\ \Omega\supset\Omega^-&\Rightarrow&\lambda_k\leq\lambda_k(\Omega^-), \end{array} rac{\forall k\geq1}{}
onumber \end{array}$$

Option 2: computational estimates

- Carstensen and Gedicke (2014)
- Liu (2015)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Sign condition and practical $L^2(\Omega)$ bound

Lemma (Sign condition and practical $L^2(\Omega)$ bound (no elliptic regularity))

Let
$$\lambda_h < \underline{\lambda_2} \le \lambda_2$$
 and $(u_h, 1) > 0$. Let

$$\overline{\alpha}_h := \sqrt{2} \left(1 - \frac{\lambda_h}{\underline{\lambda_2}} \right)^{-1} \underline{\lambda_2}^{-\frac{1}{2}} \|\nabla u_h + \sigma_h\| \leq \min \left\{ \sqrt{2}, |\Omega|^{-\frac{1}{2}} (u_h, 1) \right\}.$$

Then $(u_1, u_h) \ge 0$ and $||u_1 - u_h|| \le \overline{\alpha}_h$.

Outline

Introduction

- Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - 7 Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 22 / 37

Outline

Introduction

- Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- A posteriori estimates
 Eigenvalues
 - Eigenvectors
- Application to conforming finite elements
- 5 Numerical experiments
- 6 Extension to nonconforming discretizations
 - 7 Conclusions and future directions

Theorem (Eigenvalue bounds)

Let $0 < \underline{\lambda_2} \le \lambda_2$, $0 < \underline{\lambda_1} \le \lambda_1$, $\lambda_h < \underline{\lambda_2}$, and $(u_h, 1) > 0$. Let Assumptions A and B hold, and construct σ_h and r_h . Then

Theorem (Eigenvalue bounds)

Let $0 < \underline{\lambda_2} \le \lambda_2$, $0 < \underline{\lambda_1} \le \lambda_1$, $\lambda_h < \underline{\lambda_2}$, and $(u_h, 1) > 0$. Let Assumptions A and B hold, and construct σ_h and r_h . Then

$$\tilde{\eta} \leq \sqrt{\lambda_h - \lambda_1} \leq \eta,$$

Theorem (Eigenvalue bounds)

Let $0 < \underline{\lambda_2} \le \lambda_2$, $0 < \underline{\lambda_1} \le \lambda_1$, $\lambda_h < \underline{\lambda_2}$, and $(u_h, 1) > 0$. Let Assumptions A and B hold, and construct σ_h and r_h . Then

$$\tilde{\eta} \leq \sqrt{\lambda_h - \lambda_1} \leq \eta,$$

where

$$\eta^{2} := \underbrace{\left(1 - \frac{\lambda_{h}}{\underline{\lambda_{2}}}\right)^{-2}}_{\eta^{2}} \underbrace{\left(1 - \frac{\overline{\alpha}_{h}^{2}}{4}\right)^{-1}}_{\overline{2}} \|\nabla u_{h} + \sigma_{h}\|^{2},$$
$$\tilde{\eta}^{2} := \frac{1}{2} \left(1 - \frac{\lambda_{h}}{\underline{\lambda_{2}}}\right) \left(1 - \frac{\overline{\alpha}_{h}^{2}}{4}\right) \frac{\lambda_{1}}{\overline{2}} \left(\sqrt{1 + \frac{4}{\underline{\lambda_{1}}} \frac{\langle \operatorname{Res}(u_{h}, \lambda_{h}), \mathbf{r}_{h} \rangle_{V', V}^{2}}}_{\|\nabla \mathbf{r}_{h}\|^{2}} - 1\right).$$

Theorem (Eigenvalue bounds)

Let $0 < \underline{\lambda_2} \le \lambda_2$, $0 < \underline{\lambda_1} \le \lambda_1$, $\lambda_h < \underline{\lambda_2}$, and $(u_h, 1) > 0$. Let Assumptions A and B hold, and construct σ_h and r_h . Then

$$\tilde{\eta} \leq \sqrt{\lambda_h - \lambda_1} \leq \eta,$$

where

$$\eta^{2} := \underbrace{\left(1 - \frac{\lambda_{h}}{\underline{\lambda_{2}}}\right)^{-2}}_{\eta^{2}} \underbrace{\left(1 - \frac{\overline{\alpha}_{h}^{2}}{\underline{\lambda_{2}}}\right)^{-1}}_{\overline{2}} \|\nabla u_{h} + \sigma_{h}\|^{2},$$
$$\tilde{\eta}^{2} := \frac{1}{2} \left(1 - \frac{\lambda_{h}}{\underline{\lambda_{2}}}\right) \left(1 - \frac{\overline{\alpha}_{h}^{2}}{\underline{\lambda_{1}}}\right) \frac{\lambda_{1}}{\overline{2}} \left(\sqrt{1 + \frac{4}{\underline{\lambda_{1}}} \frac{\langle \operatorname{Res}(u_{h}, \lambda_{h}), r_{h} \rangle_{V', V}^{2}}}_{\|\nabla r_{h}\|^{2}} - 1\right).$$

Theorem (Eigenvalue bounds)

Let $0 < \underline{\lambda_2} \le \lambda_2$, $0 < \underline{\lambda_1} \le \lambda_1$, $\lambda_h < \underline{\lambda_2}$, and $(u_h, 1) > 0$. Let Assumptions A and B hold, and construct σ_h and r_h . Then

$$\tilde{\eta} \leq \sqrt{\lambda_h - \lambda_1} \leq \eta,$$

where

$$\eta^{2} := \underbrace{\left(1 - \frac{\lambda_{h}}{\underline{\lambda_{2}}}\right)^{-2}}_{\eta^{2}} \underbrace{\left(1 - \frac{\overline{\alpha}_{h}^{2}}{\underline{\lambda_{2}}}\right)^{-1}}_{\overline{2}} \|\nabla u_{h} + \sigma_{h}\|^{2},$$
$$\tilde{\eta}^{2} := \frac{1}{2} \left(1 - \frac{\lambda_{h}}{\underline{\lambda_{2}}}\right) \left(1 - \frac{\overline{\alpha}_{h}^{2}}{\underline{\lambda_{1}}}\right) \frac{\lambda_{1}}{\overline{2}} \left(\sqrt{1 + \frac{4}{\underline{\lambda_{1}}} \frac{\langle \operatorname{Res}(u_{h}, \lambda_{h}), r_{h} \rangle_{V', V}^{2}}}_{\|\nabla r_{h}\|^{2}} - 1\right).$$

Outline

Introduction

- 2 Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- A posteriori estimates
 - Eigenvalues
 - Eigenvectors
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - 7 Conclusions and future directions

Equivalences Estimates Application Numerics Extension C Eigenvalues Eigenvectors

Guaranteed bounds for the first eigenvector

Theorem (Eigenvector bounds)

Under the assumptions of the eigenvalue theorem,

 $\|\nabla(u_1-u_h)\|\leq \eta.$

Moreover, under Assumption C,

Equivalences Estimates Application Numerics Extension C Eigenvalues Eigenvectors

Guaranteed bounds for the first eigenvector

Theorem (Eigenvector bounds)

Under the assumptions of the eigenvalue theorem,

 $\|\nabla(u_1-u_h)\|\leq \eta.$

Moreover, under Assumption C,

Comments

Eigenvalue bounds

- guaranteed
- optimally convergent
- improvement of the upper bound

Eigenvector bounds

• efficient and polynomial-degree robust

•
$$\|\nabla u_h + \sigma_h\|^2 = \sum_{K \in \mathcal{T}_h} \|\nabla u_h + \sigma_h\|_K^2 \Rightarrow$$
 adaptivity-ready

• maximal overestimation guaranteed

Three settings

- no applicability condition (fine mesh, approximate solution)
- improvements for explicit, a posteriori verifiable conditions

multiplicative factor goes to one under elliptic required

Comments

Eigenvalue bounds

- guaranteed
- optimally convergent
- improvement of the upper bound

Eigenvector bounds

• efficient and polynomial-degree robust

•
$$\|\nabla u_h + \sigma_h\|^2 = \sum_{K \in \mathcal{T}_h} \|\nabla u_h + \sigma_h\|_K^2 \Rightarrow$$
adaptivity-ready

• maximal overestimation guaranteed

Three settings

- no applicability condition (fine mesh, approximate solution)
- improvements for explicit, a posteriori verifiable conditions

multiplicative factor goes to one under elliptic feature

Comments

Eigenvalue bounds

- guaranteed
- optimally convergent
- improvement of the upper bound

Eigenvector bounds

• efficient and polynomial-degree robust

•
$$\|\nabla u_h + \sigma_h\|^2 = \sum_{K \in \mathcal{T}_h} \|\nabla u_h + \sigma_h\|_K^2 \Rightarrow$$
adaptivity-ready

maximal overestimation guaranteed

Three settings

- no applicability condition (fine mesh, approximate solution)
- improvements for explicit, a posteriori verifiable conditions
- multiplicative factor goes to one under elliptic regularity...

Outline

Introduction

- 2 Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors

Application to conforming finite elements

- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 25 / 37

Application to conforming finite elements

Finite element method

Find $(u_h, \lambda_h) \in V_h \times \mathbb{R}^+$ with $||u_h|| = 1$ and $(u_h, 1) > 0$, where $V_h := \mathbb{P}_p(\mathcal{T}_h) \cap V$, $p \ge 1$, such that,

$$(\nabla u_h, \nabla v_h) = \lambda_h(u_h, v_h) \qquad \forall v_h \in V_h.$$

Assumptions verification

•
$$V_h \subset V$$

•
$$||u_h|| = 1$$
 and $(u_h, 1) > 0$ by definition

• $\|\nabla u_h\|^2 = \lambda_h$ follows upon taking $v_h = u_h$ (\Rightarrow Assumption A)

- Assumption B follows upon taking $v_h = \psi_a \in V_h$
- Assumption C satisfied

Application to conforming finite elements

Finite element method

Find $(u_h, \lambda_h) \in V_h \times \mathbb{R}^+$ with $||u_h|| = 1$ and $(u_h, 1) > 0$, where $V_h := \mathbb{P}_p(\mathcal{T}_h) \cap V$, $p \ge 1$, such that,

$$(\nabla u_h, \nabla v_h) = \lambda_h(u_h, v_h) \quad \forall v_h \in V_h.$$

Assumptions verification

•
$$V_h \subset V$$

- $||u_h|| = 1$ and $(u_h, 1) > 0$ by definition
- $\|\nabla u_h\|^2 = \lambda_h$ follows upon taking $v_h = u_h$ (\Rightarrow Assumption A)
- Assumption B follows upon taking $v_h = \psi_a \in V_h$
- Assumption C satisfied

Outline

Introduction

- 2 Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
- Application to conforming finite elements
- 5 Numerical experiments
- 6 Extension to nonconforming discretizations
 - Conclusions and future directions

Unit square

Setting

Parameters

(

(

• convex domain: $C_{\rm S}=$ 1, $\delta=$ 1, $C_{\rm I}\approx 1/\sqrt{8}$

•
$$\underline{\lambda_1} = 1.5\pi^2$$
, $\underline{\lambda_2} = 4.5\pi^2$

Effectivity indices

• recall
$$\tilde{\eta}^2 \leq \lambda_h - \lambda_1 \leq \eta^2$$

 $I_{\lambda,\text{eff}}^{\text{lb}} := \frac{\lambda_h - \lambda_1}{\tilde{\eta}^2}, \qquad I_{\lambda,\text{eff}}^{\text{ub}} := \frac{\eta^2}{\lambda_h - \lambda_1}$
• recall $\|\nabla(u_1 - u_h)\| \leq \eta$

$$I_{u,\text{eff}}^{\text{ub}} := \frac{\eta}{\|\nabla(u_1 - u_h)\|}$$

erc

I Equivalences Estimates Application Numerics Extension C

Eigenvalue and eigenvector errors and estimators

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 28 / 37

Eigenvalue and eigenvector errors and estimators

N	h	ndof	λ_1	λ_h	$\lambda_h - \eta^2$	$\lambda_h - \tilde{\eta}^2$	$I^{ m lb}_{\lambda, m eff}$	$I^{\mathrm{ub}}_{\lambda,\mathrm{eff}}$	$E_{\lambda,\mathrm{rel}}$	$I_{u, \rm eff}^{\rm ub}$
10	0.1414	121	19.7392	20.2284	19.5054	19.8667	1.35	1.48	1.84E-02	1.21
20	0.0707	441	19.7392	19.8611	19.7164	19.7486	1.08	1.19	1.63E-03	1.09
40	0.0354	1,681	19.7392	19.7696	19.7356	19.7401	1.03	1.12	2.28E-04	1.06
80	0.0177	6,561	19.7392	19.7468	19.7384	19.7393	1.02	1.10	4.56E-05	1.05
160	0.0088	25,921	19.7392	19.7411	19.7390	19.7392	1.02	1.10	1.01E-05	1.05
				Structu	ured me	shes				
N	h	ndof	λ_1	λ_h	$\lambda_h - \eta^2$	$\lambda_h - \tilde{\eta}^2$	$I^{ m lb}_{\lambda, m eff}$	$I^{ m ub}_{\lambda, m eff}$	$E_{\lambda,\mathrm{rel}}$	$I_{u, \rm eff}^{\rm ub}$
N 10	<i>h</i> 0.1698	ndof 143	λ ₁ 19.7392	λ _h 20.0336	$\frac{\lambda_h - \eta^2}{18.8265}$	$\lambda_h - \tilde{\eta}^2$	$I^{ m lb}_{\lambda, m eff}$ –	$I_{\lambda, \mathrm{eff}}^{\mathrm{ub}}$ 4.10	$E_{\lambda,\mathrm{rel}}$ –	<i>I</i> ^{ub} _{<i>u</i>,eff} 2.02
N 10 20	<i>h</i> 0.1698 0.0776	ndof 143 523	λ ₁ 19.7392 19.7392	λ _h 20.0336 19.8139	$\lambda_h - \eta^2$ 18.8265 19.6820	$\lambda_h - \tilde{\eta}^2$ - 19.7682	<i>I</i> ^{lb} _{λ,eff} - 1.63	$I_{\lambda, eff}^{ub}$ 4.10 1.77	<i>E</i> _{λ,rel} – 4.37E-03	<i>I</i> ^{ub} _{<i>u</i>,eff} 2.02 1.33
N 10 20 40	<i>h</i> 0.1698 0.0776 0.0413	ndof 143 523 1,975	λ ₁ 19.7392 19.7392 19.7392	λ _h 20.0336 19.8139 19.7573	$\lambda_h - \eta^2$ 18.8265 19.6820 19.7342	$\lambda_h - \tilde{\eta}^2$ - 19.7682 19.7416	<i>I</i> ^{lb} _{λ,eff} – 1.63 1.15	<i>I</i> ^{ub} _{λ,eff} 4.10 1.77 1.28	<i>E</i> _{λ,rel} – 4.37E-03 3.75E-04	<i>I</i> ^{ub} _{<i>u</i>,eff} 2.02 1.33 1.13
N 10 20 40 80	<i>h</i> 0.1698 0.0776 0.0413 0.0230	ndof 143 523 1,975 7,704	λ_1 19.7392 19.7392 19.7392 19.7392	λ _h 20.0336 19.8139 19.7573 19.7436	$\lambda_h - \eta^2$ 18.8265 19.6820 19.7342 19.7386	$\lambda_h - \tilde{\eta}^2$ - 19.7682 19.7416 19.7395	<i>I</i> ^{lb} _{λ,eff} – 1.63 1.15 1.07	$I^{\rm ub}_{\lambda,{\rm eff}}$ 4.10 1.77 1.28 1.14	<i>E</i> _{λ,rel} - 4.37E-03 3.75E-04 4.56E-05	<i>I</i> ^{ub} _{<i>u</i>,eff} 2.02 1.33 1.13 1.07

Unstructured meshes

L-shaped domain

Setting

- $\Omega := (-1, 1)^2 \setminus [0, 1] \times [-1, 0]$
- $\lambda_1 \approx 9.6397238440$

Parameters

•
$$\frac{\lambda_1}{(-1,1)^2} = \frac{\pi^2}{2}$$
 and $\frac{\lambda_2}{2} = \frac{5\pi^2}{4}$ by inclusion into the square

Eigenvalue and eigenvector errors and estimators

Unstructured meshes

Adaptively refined meshes

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 31 / 37

Eigenvalue and eigenvector errors and estimators

N	h	ndof	λ_1	λ_h	$\lambda_h - \delta_h$	$\eta^2 \lambda_h$	$-\tilde{\eta}^2$	$I^{ m lb}_{\lambda, m eff}$	$I^{ m ub}_{\lambda, m eff}$	$E_{\lambda,\mathrm{rel}}$	$I_{u,\mathrm{eff}}^{\mathrm{ub}}$
25	0.1263	556	9.6397	9.763	7 8.382	25 9.	7473	7.57	11.14	1.51e-0	01 3.35
50	0.0634	2286	9.6397	9.678	3 9.290	04 9.	6726	6.77	10.06	4.03e-0	02 3.19
100	0.0397	8691	9.6397	9.653	6 9.51	73 9.	6515	6.61	9.84	1.40e-0	02 3.17
200	0.0185	34206	9.6397	9.644	8 9.594	46 9.	6440	6.59	9.85	5.14e-0	03 3.20
400	0.0094	136062	9.6397	9.641	6 9.622	26 9.	6413	6.68	9.96	1.94e-0	03 3.33
				Uns	tructur	ed n	nesh	es			
	Level	ndof	λ_1	λ_h	$\lambda_h - \eta^2$	$\lambda_h -$	${\tilde \eta}^2~I^{\rm ll}_\lambda$, _{eff} I	ub λ ,eff	$E_{\lambda,\mathrm{rel}}$	$I_{u,\mathrm{eff}}^{\mathrm{ub}}$
	10	140 9	.6397 9	.9700	6.3175	9.92	260 7.	50 1	1.06 4	.44e-01	3.31
	15	561 9	.6397 9	.7207	9.0035	9.70	75 6.	17 8	8.86 7	.53e-02	2.98
	20	2188 9	.6397 9	.6601	9.4887	9.65	66 5.	88 8	3.43 1	.75e-02	2.88
	25	8513 9	.6397 9	.6449	9.6019	9.64	40 5.	77 8	8.31 4	.37e-03	2.75
	30	24925 9	.6397 9	.6415	9.6266	9.64	12 <mark>5</mark> .	73 8	8.26 1	.51e-03	2.51
			Ā	Adapti	velv re	fine	d me	shes	3		

erc

Outline

Introduction

- Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
- Application to conforming finite elements
- 5 Numerical experiments
- 6 Extension to nonconforming discretizations
 - Conclusions and future directions

Equivalences Estimates Application Numerics Extension C

Nonconforming discretizations

Nonconforming setting

- $u_h \notin V$, $||u_h|| \neq 1$
- $\|\nabla u_h\|^2 \neq \lambda_h$

Main tool

• conforming eigenvector reconstruction

$$s_h^{\mathbf{a}} := \arg\min_{\mathbf{v}_h \in W_h^{\mathbf{a}} \in \mathcal{H}_0^{\mathbf{1}}(\omega_{\mathbf{a}})} \| \nabla (\psi_{\mathbf{a}} u_h - v_h) \|_{\omega_{\mathbf{a}}}, \qquad s_h := \sum_{\mathbf{a} \in \mathcal{V}_h} s_h^{\mathbf{a}}$$

Unified framework

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin elements
- mixed finite elements

Equivalences Estimates Application Numerics Extension C

Nonconforming discretizations

Nonconforming setting

- $u_h \notin V$, $||u_h|| \neq 1$
- $\|\nabla u_h\|^2 \neq \lambda_h$

Main tool

conforming eigenvector reconstruction

$$s_h^{\mathbf{a}} := \arg\min_{\mathbf{v}_h \in W_h^{\mathbf{a}} \subset \mathcal{H}_0^1(\omega_{\mathbf{a}})} \| \nabla (\psi_{\mathbf{a}} u_h - \mathbf{v}_h) \|_{\omega_{\mathbf{a}}}, \qquad s_h := \sum_{\mathbf{a} \in \mathcal{V}_h} s_h^{\mathbf{a}}$$

Unified framework

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin elements
- mixed finite elements

Equivalences Estimates Application Numerics Extension C

Nonconforming discretizations

Nonconforming setting

- $u_h \notin V$, $||u_h|| \neq 1$
- $\|\nabla u_h\|^2 \neq \lambda_h$

Main tool

conforming eigenvector reconstruction

$$s_h^{\mathbf{a}} := \arg\min_{\mathbf{v}_h \in \mathcal{W}_h^{\mathbf{a}} \subset \mathcal{H}_0^{\mathbf{1}}(\omega_{\mathbf{a}})} \| \nabla (\psi_{\mathbf{a}} u_h - v_h) \|_{\omega_{\mathbf{a}}}, \qquad s_h := \sum_{\mathbf{a} \in \mathcal{V}_h} s_h^{\mathbf{a}}$$

Unified framework

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin elements
- mixed finite elements

SIPG: square

Ν	h	ndof	λ_1	λ_h	$\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2} - \eta^2$	$\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2}$	$E_{\lambda,\mathrm{rel}}$	$I_{u, \rm eff}^{\rm ub}$
10	0.1414	600	19.7392	20.0333	19.1803	20.0101	4.23e-02	1.93
20	0.0707	2400	19.7392	19.8169	19.6907	19.8099	6.03e-03	1.50
40	0.0354	9600	19.7392	19.7591	19.7324	19.7572	1.26e-03	1.37
80	0.0177	38400	19.7392	19.7442	19.7378	19.7438	2.99e-04	1.34
160	0.0088	153600	19.7392	19.7405	19.7389	19.7403	7.09e-05	1.33
			S	Structure	d meshes			
N	h	ndof	λ_1	λ_h	$\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2} - \eta^2$	$\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2}$	$E_{\lambda,\mathrm{rel}}$	$I_{u, \rm eff}^{\rm ub}$
N 10	<i>h</i> 0.1698	ndof 732	λ ₁ 19.7392	λ _h 19.9432	$\frac{\ \nabla s_{h}\ ^{2}}{\ s_{h}\ ^{2}} - \eta^{2}$ 17.8788	$\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2}$ 19.9501	$E_{\lambda, rel}$ 1.10e-01	<i>I</i> ^{ub} _{<i>u</i>,eff} 3.26
N 10 20	<i>h</i> 0.1698 0.0776	ndof 732 2892	λ ₁ 19.7392 19.7392	λ _h 19.9432 19.7928	$\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2} - \eta^2 \\ 17.8788 \\ 19.6264$	$\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2}$ 19.9501 19.7939	$E_{\lambda, rel}$ 1.10e-01 8.50e-03	<i>I</i> ^{ub} _{<i>u</i>,eff} 3.26 1.91
N 10 20 40	<i>h</i> 0.1698 0.0776 0.0413	ndof 732 2892 11364	λ ₁ 19.7392 19.7392 19.7392	λ _h 19.9432 19.7928 19.7526	$\frac{\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2} - \eta^2}{17.8788}$ 19.6264 19.7295	$\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2}$ 19.9501 19.7939 19.7529	<i>E</i> _{λ,rel} 1.10e-01 8.50e-03 1.18e-03	<i>I</i> ^{ub} _{<i>u</i>,eff} 3.26 1.91 1.47
N 10 20 40 80	<i>h</i> 0.1698 0.0776 0.0413 0.0230	ndof 732 2892 11364 45258	λ_1 19.7392 19.7392 19.7392 19.7392	λ_h 19.9432 19.7928 19.7526 19.7425	$\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2} - \eta^2$ 17.8788 19.6264 19.7295 19.7381	$\frac{\ \nabla s_{h}\ ^{2}}{\ s_{h}\ ^{2}}$ 19.9501 19.7939 19.7529 19.7426	<i>E</i> _{λ,rel} 1.10e-01 8.50e-03 1.18e-03 2.28e-04	<i>I</i> ^{ub} _{<i>u</i>,eff} 3.26 1.91 1.47 1.31

Unstructured meshes

SIPG: L-shape

Ν	h	ndof	λ_1	λ_h	$\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2} - \eta^2$	$\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2}$	$E_{\lambda,\mathrm{rel}}$	$I_{u, \rm eff}^{\rm ub}$
5	0.7165	90	9.6397	10.7897	-128.5909	11.0700	-2.38e+00	9.32
10	0.3041	492	9.6397	9.9085	-3.4330	9.9928	4.09e+00	6.36
20	0.1670	2058	9.6397	9.7044	8.3596	9.7448	1.53e-01	3.97
40	0.0839	8136	9.6397	9.6576	9.2512	9.6729	4.46e-02	3.90
80	0.0459	33078	9.6397	9.6447	9.5110	9.6506	1.46e-02	3.92
160	0.0234	129342	9.6397	9.6413	9.5929	9.6436	5.27e-03	3.92

Unstructured meshes

Level	ndof	λ_1	λ_h	$\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2} - \eta^2$	$\frac{\ \nabla s_h\ ^2}{\ s_h\ ^2}$	$E_{\lambda,\mathrm{rel}}$	$I_{U, \rm eff}^{\rm ub}$
5	186	9.6397	10.2136	-30.6026	10.3629	-4.05e+00	7.19
10	777	9.6397	9.8154	7.2388	9.8388	3.04e-01	3.75
15	3453	9.6397	9.6865	9.1572	9.6902	5.66e-02	3.38
20	14706	9.6397	9.6509	9.5335	9.6517	1.23e-02	3.23
25	61137	9.6397	9.6425	9.6144	9.6426	2.93e-03	3.00
		Íniormati	iques mathématiques				

Outline

Introduction

- Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

Conclusions and future directions

Conclusions

- guaranteed upper and lower bounds for the first eigenvalue
- guaranteed and polynomial-degree robust bounds for the associated eigenvector
- general framework

Ongoing work

• extension to nonlinear eigenvalue problems

Conclusions and future directions

Conclusions

- guaranteed upper and lower bounds for the first eigenvalue
- guaranteed and polynomial-degree robust bounds for the associated eigenvector
- general framework

Ongoing work

extension to nonlinear eigenvalue problems

Bibliography

- ERN A., VOHRALÍK M., Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, *SIAM J. Numer. Anal.*, **53** (2015), 1058–1081.
- CANCÈS E., DUSSON G., MADAY Y., STAMM B., VOHRALÍK M., Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations, HAL Preprint 01194364.
- CANCÈS E., DUSSON G., MADAY Y., STAMM B., VOHRALÍK M., Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework, to be submitted.

Thank you for your attention!

