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h-P discontinuous finite elements for electronic structure

calculations

We combine results from
e Numerical approximation of elliptic problems in non smooth domains
* Approximation of non linear eigenvalue problems

and apply them to the models used in quantum chemistry.
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We combine results from
e Numerical approximation of elliptic problems in non smooth domains
* Approximation of non linear eigenvalue problems

and apply them to the models used in quantum chemistry.

Outline of the presentation:
1. Motivation: models for electronic structure calculations
2. Analysis on a model problem: convergence, regularity

3. Asymptotics of the solution and design of an optimal h-P space from a
priori estimates.
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Motivation The Schrédinger equation

Motivation: the Schrodinger equation

Ground, stationary state of the Schrodinger equation

d K2
ih—U = —— V20U + VU
! ot 2m +

U is a function of 1 + 3(IN + M) variables (N electrons, M nuclei).
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Motivation The Schrédinger equation

Motivation: the Schrodinger equation

Ground, stationary state of the Schrodinger equation

) h?
ih—V = —— VU + VU
‘ ot 2m +

U is a function of 1 + 3(IN + M) variables (N electrons, M nuclei).
Born-Oppenheimer approximation: 3(N + M) to 3N

Full-electron: the potential V' has a singularity at the nuclear positions

Non linear models for electron exchange and correlation: from 3V to 3. For
example,

* Hartree-Fock (and post Hartree-Fock) methods,
* methods based on density functional theory.
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Motivation Models in computational quantum chemistry

Motivation: the Hartree-Fock approximation

Hartree-Fock: F the self adjoint operator

f¢=—;A¢+V¢+(p¢*;)w—/R

s |z =yl
of the eigenvalue problem
.F(pize’:“i(pi iZl,...,N

[Flad et al., 2008] showed that around the nuclei the solutions belong to (a
subset of) the countably normed spaces

K2 () = {u €D (Q): rlol=79%u € L3(Q), |a| = s, Vs € N} :

Y

with r, giving the distance to the nearest nucleus.
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Motivation Drawbacks of classic methods

Classical finite element and spectral approximations

The eigenfunctions are thus not regular in the Sobolev spaces
HE(Q) = Wk2(Q).

The convergence rate of “classical” finite element and spectral methods is
bounded by the regularity of the solution in Sobolev spaces.

Classical finite element and spectral methods

If u € H¥T1(Q), the following approximation results hold:
e for finite element methods of degree r and element size h:

min(r,s)

|l —un|laro) Sh |ul g1 ()3

e for spectral methods of degree p:

v —usllar) S P llull s+ (a);
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The discontinuous h-P finite elements method Space and mesh

The discontinuous h-P finite elements method

Finite element space:

k=4lk=4

k=5 X(;:{’UEL2(Q)Z’U|S EQkS(S),VSET}

k=3k=4

The mesh is geometrically refined by a factor o
towards the center (where the singularity lies),
while the polynomial degree usually decreases

with a slope s.

Graded mesh, uniform slope:
At the refinement step ¢, the elements in Z* will have edges of length o¢, while
in the outermost element the polynomial degree will be ko + | s¢]
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The discontinuous h-P finite elements method Discontinuous Galerkin

The discontinuous approach

The bilinear form associated with the Laplace operator

d(u,v) = (Vu, Vv)q,

is replaced by
ds(us,vs) = Y (Vus, Vos)s — > ({Vus}, [vs])e — Y ({Vos}, [us])e
SeT ee& ee&
consistency adjoint consistency
kZ
+ 3 ag ([usl, oD
ec& ¢
stability

¢ The set € is the set of all d — 1 dimensional inter-element boundaries
* {-}} and [-] are average and jump operators respectively.
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The discontinuous h-P finite elements method Approximation

Approximation results in the discontinuous h-P space

Mesh dependent norms:

k2
el = D lulldgs) + D <Ll

SeT ecé
h
2 _
ullpe = llullde + Y. Y FSIIWII% D7 Bel T helVull o
KeDteclk °© Kedl el

“Weighted analytic” space

A, = {v € X, [vls < CAkk!}
with [v[3, = 30, = [7E770%0[|?, . distance from the nearest singularity in C.
Y
Exponentially convergent approximation

[Schotzau et al., 2013] showed that for a function u € A, and a space X; with
N degrees of freedom,

inf [fu = vl S exp(—bNY/(@D),
vs€EXs
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Non linear eigenvalue problems with singular potential Model problem

The Gross-Pitaevskii (aka nonlinear Schrodinger) equation

In a periodic domain 2 = (R/L)? we consider the problem of minimizing the

energy
1 1 1
E(v):a/ﬂ vv\2+§/ﬂvu2+§/QF(u2)
N—_——

|
d(v,v)
under the constraint ||v|| = 1. The unique minimizer u satisfies for A € R
x (A" — Au,v)x =0 YoeX
where

x (A%, w)x = d(u,v) + [ Vauw —|—/ F'(u*)vw.
Q Q

The discrete counterparts are

<A?’SU5 — )\5U5,U§> =0 Vs € Xs

<Ag61)5,w5> = d(s(’l}g,wg) +/ Vousws —I—/ F’(u?)vgw(;.
Q Q
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Non linear eigenvalue problems with singular potential Regularity

Non homogeneous weighted Sobolev spaces

Non homogeneous weighted Sobolev space J(€2)

Normed by
||u||?7¢(sz) = Z ||7’8773au”2L2(n)

la|<s
equivalent to the “step-weighted” norm: p € (—d/2,s — ], s > v—d/2

lalZs @y = D Il Uel=70 9% 2, g

| <s

In our case,

IIUH?@(m = ull}pgy + Y rme(e=rogay)3, o
2<|al<s

such that J7"+1(Q) C J7*(€2) and

B.(Q,C) = {v € H'(Q), ulgx < CA k! for k > 2} .
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Non linear eigenvalue problems with singular potential Regularity

Regularity

For the nonlinear Schrodinger equation:

Regularity of the solution

If u € X is the solution to the eigenvalue problem for a potential
Ve A%, (Q,C) and under some hypotheses on the nonlinear term,

u € B,(92,C),

withy =3/2 +¢.

v

Note that singular potentials are allowed, and those give rise to solutions with
cusp-like singularities.
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Non linear eigenvalue problems with singular potential Regularity

Regularity

For the nonlinear Schrodinger equation:

Regularity of the solution

If u € X is the solution to the eigenvalue problem for a potential
Ve A%, (Q,C) and under some hypotheses on the nonlinear term,

u € B,(92,C),

withy =3/2 +¢.

v

Note that singular potentials are allowed, and those give rise to solutions with
cusp-like singularities.
Sketch of the proof:
* PO ul < IO Al 4 [P0, A] 0%l + 1[0, r1**] 0l with
6] = 2.
* Equation on the first term, then bounds on the three terms.

* Decomposition in singular part and regular part for the nonlinear term. O
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Analysis of the error A priori estimates

Convergence

Convergence of the approximation

Let (u, A) be the solution to the eigenvalue problem and let (us, As) be the h-P
discontinuous approximations. Then, under proper hypotheses on F,

u— <C inf ||u-—
|lu — us||pa < ,nf llv — vsllpg

and

A5 = Al < C (Ilu = uslibe + lu—uslz2) -
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Analysis of the error A priori estimates

Convergence

Convergence of the approximation

Let (u, A) be the solution to the eigenvalue problem and let (us, As) be the h-P
discontinuous approximations. Then, under proper hypotheses on F,

uU—1u <C inf ||u-—
Ju—usllbe < C_inf flu = vsllng

and

A5 = Al < C (Ilu = uslibe + lu—uslz2) -

Similar results in [Cances et al., 2010] in the simpler case of a continuous
approximation.

In this case the approximation is not conforming, i.e., X5 ¢ X, thus As 2 \.
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Analysis of the error A priori estimates

Sketch of the proof: "coercivity", "stability" and convergence

To prove the convergence result, we introduce the solution (u}, A}) to the
linear problem
(Afus — Asus,vs) =0 Yos € Xs.

The convergence of these eigenvalue and eigenspace towards the exact one
has been proven in [Antonietti et al., 2006].
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Analysis of the error A priori estimates

Sketch of the proof: "coercivity", "stability" and convergence

To prove the convergence result, we introduce the solution (u}, A}) to the

linear problem

(A§ui — Ajus,v5) =0 VYous € Xs.

The convergence of these eigenvalue and eigenspace towards the exact one
has been proven in [Antonietti et al., 2006]. It is then possible to prove the

inequalities
((A§ — A3)vs,v5) >0
[{(AF = A5) v 05| S llvlllpg llvslipe
(A5 = A5) (us — u5), (us — u5)) 2 |lus — u5lpa
(B (u) = A5) vs,v8) 2 lvsll
[{(E5 (u) = A5) v, v8)] S Mlvlllpg llvsllpe

which then lead to the proof of convergence.
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Yus € X5
Yo € X(0),vs € X5

Yus € X5
Yo € X(6),vs € Xs.
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Analysis of the error  Numerical experiments

Results visualized

eigenfunction_0

3,74e-14 2 |
2
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Analysis of the error Numerical experiments

Numerical experiments

In the one dimensional case, with periodic domain Q = [—1,1]/2Z and the
singularity at the center, with potential V (z) = —|z|~3/4,

~1 0 1
we get the convergence results
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Asymptotics and a priori optimization of the space

Asymptotics of the solution: iterative scheme

Iterative scheme:

1

—AUppq — |I|T_sun+1 + UiunJrl —bPy, Unt1 = Apg1Unt1

where
e >0,
e P,, is the projector on u,,,
* b > 0is a shift parameter that enforces convergence.

Then
* ||tunl 1 () is bounded, and
* > nen ltnt1 — uy| is bounded.

u,, converges towards a solution of the nonlinear Gross-Pitaevskii equation,
with f(u?) = u?.
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Asymptotics and a priori optimization of the space

Asymptotics of the solution: Mellin tr.

Iterative scheme:

1
2
_AunJrl - WT_EUTL+1 + UpUnt1 — bPununJrl = An+1un+1~

Using the Mellin transform

a(z) = (Mu) (2) = /O Ty (M) () = /ER ROl

and an hypothesis on u,,, we get

Li/2]
2z +1)i(z) = alz+e) + Mz +2)+ > Y ajpti(z+2+ 5 — ky).
jEN k=0

The opposites of the poles of the Mellin transform are the exponents of the
asymptotic expansion: for r -+ 0and w € S,,_1,

u(r,w) ~ (C+7r°+...) Y m(w)
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Asymptotics and a priori optimization of the space

One dimensional error analysis

[Gui and Babuska, 1986] showed that for v ~ 2% (x — 0), with scaling factor ¢
and polynomial increase s

o . ) 1/2
m (2a—1)(1—1%)n.2(1+s(i—1))
o T
lu = T(u)|| ~ C(o) | > : ;
P (1+s(i—1))2%

where one part is bigger in the element at the singularity and the other tends
to be bigger in outer elements.

Exponental coefficient

u/(x) ~ x*~!: maximal rate of convergence for
different spaces.

Carlo Marcati (LJLL) h-P dG FE for electronic structure calculations Paris, October 3, 2016 18 /20



Asymptotics and a priori optimization of the space

Slope optimization: different potentials

Behaviour for different values of v in

1
—Au— —u+u® = .
||

Exponential coefficient estimate, o = 0.17

Figure:  for the DG norm of the error. Dashed line: “theory”; continuous line:
numerical results.

As long as the error is concentrated near the singularity, we have a good

estimator for the rate of convergence.
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Conclusions

Conclusions and perspectives

* The approximate eigenfunctions and eigenvalues converge with
exponential rate to the exact solution.
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Conclusions
Conclusions and perspectives

* The approximate eigenfunctions and eigenvalues converge with
exponential rate to the exact solution.

* The analysis may be applied to the Gross-Pitaevskii and the
Thomas-Fermi-von Weizsidcker models, but should be extended to more
complex models.

* Given the asymptotics of the solution to the problem considered, the
mesh and finite dimensional space can be optimized a priori and
estimates for the convergence rate can be derived, mainly where the error
near the singularity is bigger.
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