h-P discontinuous Galerkin finite element method for electronic structure calculations

Carlo Marcati joint work with Yvon Maday

Laboratoire Jacques-Louis Lions, UPMC, France

Advanced numerical methods: recent developments, analysis, and applications IHP quarter on Numerical Methods for PDEs Paris, France

Carlo Marcati (LJLL)

h-P dG FE for electronic structure calculations

Paris, October 3, 2016 1 / 20

We combine results from

- Numerical approximation of elliptic problems in non smooth domains
- Approximation of non linear eigenvalue problems

and apply them to the models used in quantum chemistry.

Outline of the presentation:

- 1. Motivation: models for electronic structure calculations
- 2. Analysis on a model problem: convergence, regularity
- 3. Asymptotics of the solution and design of an optimal h-P space from a priori estimates.

イロト 不得 とくほ とくほう

We combine results from

- Numerical approximation of elliptic problems in non smooth domains
- Approximation of non linear eigenvalue problems

and apply them to the models used in quantum chemistry.

Outline of the presentation:

- 1. Motivation: models for electronic structure calculations
- 2. Analysis on a model problem: convergence, regularity
- 3. Asymptotics of the solution and design of an optimal h-P space from a priori estimates.

We combine results from

- Numerical approximation of elliptic problems in non smooth domains
- Approximation of non linear eigenvalue problems

and apply them to the models used in quantum chemistry.

Outline of the presentation:

- 1. Motivation: models for electronic structure calculations
- 2. Analysis on a model problem: convergence, regularity
- 3. Asymptotics of the solution and design of an optimal h-P space from a priori estimates.

We combine results from

- Numerical approximation of elliptic problems in non smooth domains
- Approximation of non linear eigenvalue problems

and apply them to the models used in quantum chemistry.

Outline of the presentation:

- 1. Motivation: models for electronic structure calculations
- 2. Analysis on a model problem: convergence, regularity
- 3. Asymptotics of the solution and design of an optimal h-P space from a priori estimates.

Ground, stationary state of the Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\Psi=-\frac{\hbar^{2}}{2m}\nabla^{2}\Psi+V\Psi$$

 Ψ is a function of 1 + 3(N + M) variables (*N* electrons, *M* nuclei).

Born-Oppenheimer approximation: 3(N + M) to 3N

Full-electron: the potential V has a singularity at the nuclear positions

Non linear models for electron exchange and correlation: from 3N to 3. For example,

- Hartree-Fock (and post Hartree-Fock) methods,
- methods based on density functional theory.

Ground, stationary state of the Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\Psi=-\frac{\hbar^{2}}{2m}\nabla^{2}\Psi+V\Psi$$

 Ψ is a function of 1 + 3(N + M) variables (*N* electrons, *M* nuclei).

Born-Oppenheimer approximation: 3(N + M) to 3N

Full-electron: the potential V has a singularity at the nuclear positions

Non linear models for electron exchange and correlation: from 3N to 3. For example,

- Hartree-Fock (and post Hartree-Fock) methods,
- methods based on density functional theory.

イロト 不得 とくほ とくほう

Ground, stationary state of the Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\Psi=-\frac{\hbar^{2}}{2m}\nabla^{2}\Psi+V\Psi$$

 Ψ is a function of 1 + 3(N + M) variables (*N* electrons, *M* nuclei).

Born-Oppenheimer approximation: 3(N + M) to 3N

Full-electron: the potential V has a singularity at the nuclear positions

Non linear models for electron exchange and correlation: from 3N to 3. For example,

- Hartree-Fock (and post Hartree-Fock) methods,
- methods based on density functional theory.

Ground, stationary state of the Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\Psi=-\frac{\hbar^{2}}{2m}\nabla^{2}\Psi+V\Psi$$

 Ψ is a function of 1 + 3(N + M) variables (*N* electrons, *M* nuclei).

Born-Oppenheimer approximation: 3(N + M) to 3N

Full-electron: the potential *V* has a singularity at the nuclear positions

Non linear models for electron exchange and correlation: from 3N to 3. For example,

- Hartree-Fock (and post Hartree-Fock) methods,
- methods based on density functional theory.

イロト 不得 とくほ とくほ とうほう

Motivation: the Hartree-Fock approximation

Hartree-Fock: \mathcal{F} the self adjoint operator

$$\mathcal{F}\psi = -\frac{1}{2}\Delta\psi + V\psi + \left(\rho_{\Phi}\star\frac{1}{|x|}\right)\psi - \int_{\mathbb{R}^3}\frac{\tau_{\Phi}(x,y)}{|x-y|}\psi(y)dy.$$

of the eigenvalue problem

$$\mathcal{F}\varphi_i = \varepsilon_i \varphi_i \qquad i = 1, \dots, N$$

[Flad et al., 2008] showed that around the nuclei the solutions belong to (a subset of) the countably normed spaces

$$\mathcal{K}^{\infty}_{\gamma}(\Omega) = \left\{ u \in \mathcal{D}'(\Omega) : \ r_c^{|\alpha| - \gamma} \partial^{\alpha} u \in L^2(\Omega), \ |\alpha| = s, \ \forall s \in \mathbb{N} \right\}.$$

with r_c giving the distance to the nearest nucleus.

Classical finite element and spectral approximations

The eigenfunctions are thus not regular in the Sobolev spaces $H^k(\Omega) = W^{k,2}(\Omega)$.

The convergence rate of "classical" finite element and spectral methods is bounded by the regularity of the solution in Sobolev spaces.

Classical finite element and spectral methods

If $u \in H^{s+1}(\Omega)$, the following approximation results hold:

• for finite element methods of degree *r* and element size *h*:

$$||u - u_h||_{H^1(\Omega)} \lesssim h^{\min(r,s)} |u|_{H^{r+1}(\Omega)};$$

• for spectral methods of degree *p*:

$$||u - u_{\delta}||_{H^{1}(\Omega)} \lesssim p^{-s} ||u||_{H^{s+1}(\Omega)};$$

< p

The discontinuous h-P finite elements method

Finite element space:

$$X_{\delta} = \{ v \in L^2(\Omega) : v_{|_S} \in \mathbb{Q}_{k_S}(S), \forall S \in \mathcal{T} \}.$$

The mesh is geometrically refined by a factor σ towards the center (where the singularity lies), while the polynomial degree usually decreases with a slope *s*.

Graded mesh, uniform slope:

At the refinement step ℓ , the elements in \mathcal{I}^{ℓ} will have edges of length σ^{ℓ} , while in the outermost element the polynomial degree will be $k_0 + \lfloor s\ell \rfloor$

The discontinuous h-P finite elements method

Finite element space:

$$X_{\delta} = \{ v \in L^2(\Omega) : v_{|_S} \in \mathbb{Q}_{k_S}(S), \forall S \in \mathcal{T} \}.$$

The mesh is geometrically refined by a factor σ towards the center (where the singularity lies), while the polynomial degree usually decreases with a slope *s*.

Graded mesh, uniform slope:

At the refinement step ℓ , the elements in \mathcal{I}^{ℓ} will have edges of length σ^{ℓ} , while in the outermost element the polynomial degree will be $k_0 + \lfloor s\ell \rfloor$

The discontinuous approach

The bilinear form associated with the Laplace operator

 $d(u,v) = (\nabla u, \nabla v)_{\Omega},$

is replaced by

- The set \mathcal{E} is the set of all d 1 dimensional inter-element boundaries
- $\{\!\!\{\cdot\}\!\!\}$ and $[\!\![\cdot]\!]$ are average and jump operators respectively.

Carlo Marcati (LJLL)

The discontinuous h-P finite elements method Approx

Approximation

Approximation results in the discontinuous h-P space

Mesh dependent norms:

$$\|u\|_{\mathrm{DG}}^{2} = \sum_{S \in \mathcal{T}} \|u\|_{H^{1}(S)}^{2} + \sum_{e \in \mathcal{E}} \frac{k_{e}^{2}}{h_{e}} \|[\![u]\!]\|_{e}^{2}$$
$$\|\|u\|_{\mathrm{DG}}^{2} = \|u\|_{\mathrm{DG}}^{2} + \sum_{K \in \mathfrak{D}^{\ell}} \sum_{e \in \mathcal{E}_{K}} \frac{h_{e}}{k_{e}^{2}} \|\nabla u\|_{e}^{2} + \sum_{K \in \mathfrak{I}^{\ell}} \sum_{e \in \mathcal{E}_{K}} k_{e}^{2} |e|^{-1} h_{e} \|\nabla u\|_{L^{1}(e)}^{2}$$

"Weighted analytic" space

$$\mathcal{A}_{\gamma} = \left\{ v \in X, \, |v|_{\mathcal{K}^{k}_{\gamma}} \le CA^{k}k! \right\}$$

with $|v|_{\mathcal{K}^k_{\gamma}}^2 = \sum_{|\alpha|=k} \|r_c^{k-\gamma} \partial^{\alpha} v\|^2$, r_c distance from the nearest singularity in \mathcal{C} .

Exponentially convergent approximation

[Schötzau et al., 2013] showed that for a function $u \in A_{\gamma}$ and a space X_{δ} with N degrees of freedom,

$$\inf_{v_{\delta} \in X_{\delta}} \left\| u - v_{\delta} \right\|_{\mathrm{DG}} \lesssim \exp(-bN^{1/(d+1)}).$$

Carlo Marcati (LJLL)

Non linear eigenvalue problems with singular potential Model problem

The Gross-Pitaevskii (aka nonlinear Schrödinger) equation

In a periodic domain $\Omega = (\mathbb{R}/L)^d$ we consider the problem of minimizing the energy

$$E(v) = \frac{1}{2} \underbrace{\int_{\Omega} |\nabla v|^2}_{d(v,v)} + \frac{1}{2} \int_{\Omega} Vv^2 + \frac{1}{2} \int_{\Omega} F(v^2)$$

under the constraint ||v|| = 1. The unique minimizer u satisfies for $\lambda \in \mathbb{R}$

$$_{X'}\langle A^u u - \lambda u, v \rangle_X = 0 \quad \forall v \in X$$

where

$$_{X'}\langle A^uv,w\rangle_X = d(u,v) + \int_{\Omega} Vuv + \int_{\Omega} F'(u^2)vw.$$

The discrete counterparts are

$$\begin{split} \langle A^{u_{\delta}}_{\delta} u_{\delta} - \lambda_{\delta} u_{\delta}, v_{\delta} \rangle &= 0 \quad \forall v_{\delta} \in X_{\delta} \\ \langle A^{u_{\delta}}_{\delta} v_{\delta}, w_{\delta} \rangle &= d_{\delta} (v_{\delta}, w_{\delta}) + \int_{\Omega} V v_{\delta} w_{\delta} + \int_{\Omega} F'(u_{\delta}^2) v_{\delta} w_{\delta}. \end{split}$$

Carlo Marcati (LJLL)

h-P dG FE for electronic structure calculations

Paris, October 3, 2016 9 / 20

イロン 不得 とくほ とくほう 一日

Non linear eigenvalue problems with singular potential

Regularity

Non homogeneous weighted Sobolev spaces

Non homogeneous weighted Sobolev space $\mathcal{J}^s_{\gamma}(\Omega)$

Normed by

$$\|u\|_{\mathcal{J}^{s}_{\gamma}(\Omega)}^{2} = \sum_{|\alpha| \leq s} \|r^{s-\gamma} \partial^{\alpha} u\|_{L^{2}(\Omega)}^{2}$$

equivalent to the "step-weighted" norm: $\rho \in (-d/2, s - \gamma], s > \gamma - d/2$

$$\|u\|_{\mathcal{J}^s_{\gamma}(\Omega)}^2 = \sum_{|\alpha| \le s} \|r^{\max(|\alpha| - \gamma, \rho)} \partial^{\alpha} u\|_{L^2(\Omega)}^2$$

In our case,

$$\|u\|_{\mathcal{J}^{s}_{\gamma}(\Omega)}^{2} = \|u\|_{H^{1}(\Omega)}^{2} + \sum_{2 \le |\alpha| \le s} \|r^{\max(|\alpha| - \gamma, \rho)} \partial^{\alpha} u\|_{L^{2}(\Omega)}^{2}$$

such that $J^{m+1}_{\gamma}(\Omega) \subset J^m_{\gamma}(\Omega)$ and

$$\mathcal{B}_{\gamma}(\Omega,\mathcal{C}) = \left\{ v \in H^1(\Omega), \, |u|_{\mathcal{K}^k_{\gamma}} \leq CA^k k! \text{ for } k \geq 2 \right\}, \quad \text{for } k \geq 2$$

Carlo Marcati (LILL)

h-P dG FE for electronic structure calculations

Paris, October 3, 2016 10/20

Regularity

For the nonlinear Schrödinger equation:

Regularity of the solution

If $u \in X$ is the solution to the eigenvalue problem for a potential $V \in \mathcal{A}^{\infty}_{-2+\varepsilon}(\Omega, \mathcal{C})$ and under some hypotheses on the nonlinear term,

$$u \in \mathcal{B}_{\gamma}(\Omega, \mathcal{C}),$$

with $\gamma = 3/2 + \varepsilon$.

Note that singular potentials are allowed, and those give rise to solutions with cusp-like singularities.

Sketch of the proof:

- $||r|^{\alpha|+2}\partial^{\alpha+\beta}u|| \le ||r|^{\alpha|+2}\partial^{\alpha}\Delta u|| + ||[r|^{\alpha|+2},\Delta]\partial^{\alpha}u|| + ||[\partial^{\beta},r|^{\alpha|+2}]\partial^{\alpha}u||$, with $|\beta|=2$.
- Equation on the first term, then bounds on the three terms.
- Decomposition in singular part and regular part for the nonlinear term.

Carlo Marcati (LJLL)

h-P dG FE for electronic structure calculations

Regularity

For the nonlinear Schrödinger equation:

Regularity of the solution

If $u \in X$ is the solution to the eigenvalue problem for a potential $V \in \mathcal{A}^{\infty}_{-2+\epsilon}(\Omega, \mathcal{C})$ and under some hypotheses on the nonlinear term,

$$u \in \mathcal{B}_{\gamma}(\Omega, \mathcal{C}),$$

with $\gamma = 3/2 + \varepsilon$.

Note that singular potentials are allowed, and those give rise to solutions with cusp-like singularities.

Sketch of the proof:

- $\|r^{|\alpha|+2}\partial^{\alpha+\beta}u\| \leq \|r^{|\alpha|+2}\partial^{\alpha}\Delta u\| + \|[r^{|\alpha|+2},\Delta]\partial^{\alpha}u\| + \|[\partial^{\beta},r^{|\alpha|+2}]\partial^{\alpha}u\|$, with $|\beta| = 2$.
- Equation on the first term, then bounds on the three terms.
- Decomposition in singular part and regular part for the nonlinear term.

Convergence of the approximation

Let (u, λ) be the solution to the eigenvalue problem and let $(u_{\delta}, \lambda_{\delta})$ be the h-P discontinuous approximations. Then, under proper hypotheses on *F*,

$$\|u - u_{\delta}\|_{\mathrm{DG}} \le C \inf_{v_{\delta} \in X_{\delta}} \|\|u - v_{\delta}\|\|_{\mathrm{DG}}$$

and

$$|\lambda_{\delta} - \lambda| \le C \left(\|u - u_{\delta}\|_{\mathrm{DG}}^2 + \|u - u_{\delta}\|_{L^2} \right).$$

Similar results in [Cancès et al., 2010] in the simpler case of a continuous approximation.

In this case the approximation is not conforming, i.e., $X_{\delta} \not\subset X$, thus $\lambda_{\delta} \not\geq \lambda$.

Carlo Marcati (LJLL)

h-P dG FE for electronic structure calculations

Paris, October 3, 2016 12 / 20

Convergence of the approximation

Let (u, λ) be the solution to the eigenvalue problem and let $(u_{\delta}, \lambda_{\delta})$ be the h-P discontinuous approximations. Then, under proper hypotheses on *F*,

$$\|u - u_{\delta}\|_{\mathrm{DG}} \le C \inf_{v_{\delta} \in X_{\delta}} \|\|u - v_{\delta}\|\|_{\mathrm{DG}}$$

and

$$|\lambda_{\delta} - \lambda| \le C \left(\|u - u_{\delta}\|_{\mathrm{DG}}^2 + \|u - u_{\delta}\|_{L^2} \right).$$

Similar results in [Cancès et al., 2010] in the simpler case of a continuous approximation.

In this case the approximation is not conforming, i.e., $X_{\delta} \not\subset X$, thus $\lambda_{\delta} \not\geq \lambda$.

Sketch of the proof: "coercivity", "stability" and convergence

To prove the convergence result, we introduce the solution $(u_{\delta}^*, \lambda_{\delta}^*)$ to the linear problem

$$\langle A^u_\delta u^*_\delta - \lambda^*_\delta u^*_\delta, v_\delta \rangle = 0 \quad \forall v_\delta \in X_\delta.$$

The convergence of these eigenvalue and eigenspace towards the exact one has been proven in [Antonietti et al., 2006]. It is then possible to prove the inequalities

$$\begin{aligned} \langle (A^{u}_{\delta} - \lambda^{*}_{\delta}) v_{\delta}, v_{\delta} \rangle &\geq 0 & \forall v_{\delta} \in X_{\delta} \\ & |\langle (A^{u}_{\delta} - \lambda^{*}_{\delta}) v, v_{\delta} \rangle| \lesssim ||v|||_{\mathrm{DG}} ||v_{\delta}||_{\mathrm{DG}} & \forall v \in X(\delta), v_{\delta} \in X_{\delta} \\ \langle (A^{u}_{\delta} - \lambda^{*}_{\delta}) (u_{\delta} - u^{*}_{\delta}), (u_{\delta} - u^{*}_{\delta}) \rangle \gtrsim ||u_{\delta} - u^{*}_{\delta}||_{\mathrm{DG}}^{2} \\ & \langle (E''_{\delta}(u) - \lambda^{*}_{\delta}) v_{\delta}, v_{\delta} \rangle \gtrsim ||v_{\delta}||_{\mathrm{DG}}^{2} & \forall v \in X(\delta), v_{\delta} \in X_{\delta} \\ & |\langle (E''_{\delta}(u) - \lambda^{*}_{\delta}) v, v_{\delta} \rangle| \lesssim ||v|||_{\mathrm{DG}} ||v_{\delta}||_{\mathrm{DG}} & \forall v \in X(\delta), v_{\delta} \in X_{\delta}. \end{aligned}$$

which then lead to the proof of convergence.

Sketch of the proof: "coercivity", "stability" and convergence

To prove the convergence result, we introduce the solution $(u^*_{\delta}, \lambda^*_{\delta})$ to the linear problem

$$\langle A^u_\delta u^*_\delta - \lambda^*_\delta u^*_\delta, v_\delta \rangle = 0 \quad \forall v_\delta \in X_\delta.$$

The convergence of these eigenvalue and eigenspace towards the exact one has been proven in [Antonietti et al., 2006]. It is then possible to prove the inequalities

$$\begin{aligned} \langle (A^{u}_{\delta} - \lambda^{*}_{\delta}) v_{\delta}, v_{\delta} \rangle &\geq 0 & \forall v_{\delta} \in X_{\delta} \\ &|\langle (A^{u}_{\delta} - \lambda^{*}_{\delta}) v, v_{\delta} \rangle| \lesssim \|\|v\|_{\mathrm{DG}} \|v_{\delta}\|_{\mathrm{DG}} & \forall v \in X(\delta), v_{\delta} \in X_{\delta} \\ \langle (A^{u}_{\delta} - \lambda^{*}_{\delta}) (u_{\delta} - u^{*}_{\delta}) \rangle &\gtrsim \|u_{\delta} - u^{*}_{\delta}\|^{2}_{\mathrm{DG}} \\ &\langle (E^{\prime\prime}_{\delta}(u) - \lambda^{*}_{\delta}) v_{\delta}, v_{\delta} \rangle \gtrsim \|v_{\delta}\|^{2}_{\mathrm{DG}} & \forall v \in X(\delta), v_{\delta} \in X_{\delta} \\ &|\langle (E^{\prime\prime}_{\delta}(u) - \lambda^{*}_{\delta}) v, v_{\delta} \rangle| \lesssim \|v\|_{\mathrm{DG}} \|v_{\delta}\|_{\mathrm{DG}} & \forall v \in X(\delta), v_{\delta} \in X_{\delta}. \end{aligned}$$

which then lead to the proof of convergence.

Results visualized

Numerical experiments

In the one dimensional case, with periodic domain $\Omega = [-1,1]/2\mathbb{Z}$ and the singularity at the center, with potential $V(x) = -|x|^{-3/4}$,

Carlo Marcati (LJLL)

h-P dG FE for electronic structure calculations

Paris, October 3, 2016 15 / 20

Asymptotics of the solution: iterative scheme

Iterative scheme:

$$-\Delta u_{n+1} - \frac{1}{|x|^{2-\varepsilon}}u_{n+1} + u_n^2 u_{n+1} - bP_{u_n}u_{n+1} = \lambda_{n+1}u_{n+1}$$

where

- ε > 0,
- P_{u_n} is the projector on u_n ,
- *b* > 0 is a shift parameter that enforces convergence.

Then

- $||u_n||_{H^1(\Omega)}$ is bounded, and
- $\sum_{n \in \mathbf{N}} \|u_{n+1} u_n\|$ is bounded.

 u_n converges towards a solution of the nonlinear Gross-Pitaevskii equation, with $f(u^2) = u^2$.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Asymptotics and a priori optimization of the space

Asymptotics of the solution: Mellin transform

Iterative scheme:

$$-\Delta u_{n+1} - \frac{1}{|x|^{2-\varepsilon}}u_{n+1} + u_n^2 u_{n+1} - bP_{u_n}u_{n+1} = \lambda_{n+1}u_{n+1}.$$

Using the Mellin transform

$$\hat{u}(z) = (\mathcal{M}u)(z) = \int_0^\infty r^{z-1} u(r) dr \qquad \left(\mathcal{M}^{-1}\hat{u}\right)(r) = \int_{\Re z = \beta} r^{-z} \hat{u}(z) dz$$

and an hypothesis on u_n , we get

$$z(z+1)\hat{u}(z) \simeq \hat{u}(z+\varepsilon) + \lambda \hat{u}(z+2) + \sum_{j \in \mathbf{N}} \sum_{k=0}^{\lfloor j/2 \rfloor} a_{jk} \hat{u}(z+2+j-k\gamma).$$

The opposites of the poles of the Mellin transform are the exponents of the asymptotic expansion: for $r \to 0$ and $\omega \in S_{n-1}$,

$$u(r,\omega) \sim (C + r^{\varepsilon} + \dots) Y_{\ell,m}(\omega)$$

Carlo Marcati (LJLL)

h-P dG FE for electronic structure calculations

Paris, October 3, 2016 17 / 20

One dimensional error analysis

[Gui and Babuška, 1986] showed that for $u \sim x^{\alpha}$ ($x \rightarrow 0$), with scaling factor σ and polynomial increase s

$$\|u - \Pi(u)\| \simeq C(\sigma) \left(\sum_{i=2}^{m} \frac{\sigma^{(2\alpha-1)(1-i)}r^{2(1+s(i-1))}}{(1+s(i-1))^{2\alpha}}\right)^{1/2}$$

where one part is bigger in the element at the singularity and the other tends to be bigger in outer elements.

 $u'(x) \sim x^{\alpha-1}$: maximal rate of convergence for different spaces.

イロト イポト イヨト イヨト

Carlo Marcati (LJLL)

h-P dG FE for electronic structure calculations

Paris, October 3, 2016 18 / 20

Asymptotics and a priori optimization of the space

Slope optimization: different potentials

Behaviour for different values of γ in

$$-\Delta u - \frac{1}{|x|^{\gamma}}u + u^3 = \lambda u.$$

Figure: κ for the DG norm of the error. Dashed line: "theory"; continuous line: numerical results.

Carlo Marcati (LJLL)

h-P dG FE for electronic structure calculations

Paris, October 3, 2016 19 / 20

Conclusions and perspectives

- The approximate eigenfunctions and eigenvalues converge with exponential rate to the exact solution.
- The analysis may be applied to the Gross-Pitaevskii and the Thomas-Fermi-von Weizsäcker models, but should be extended to more complex models.
- Given the asymptotics of the solution to the problem considered, the mesh and finite dimensional space can be optimized *a priori* and estimates for the convergence rate can be derived, mainly where the error near the singularity is bigger.

(日) (四) (日) (日) (日)

Conclusions and perspectives

- The approximate eigenfunctions and eigenvalues converge with exponential rate to the exact solution.
- The analysis may be applied to the Gross-Pitaevskii and the Thomas-Fermi-von Weizsäcker models, but should be extended to more complex models.
- Given the asymptotics of the solution to the problem considered, the mesh and finite dimensional space can be optimized *a priori* and estimates for the convergence rate can be derived, mainly where the error near the singularity is bigger.

(日) (四) (日) (日) (日)

Conclusions and perspectives

- The approximate eigenfunctions and eigenvalues converge with exponential rate to the exact solution.
- The analysis may be applied to the Gross-Pitaevskii and the Thomas-Fermi-von Weizsäcker models, but should be extended to more complex models.
- Given the asymptotics of the solution to the problem considered, the mesh and finite dimensional space can be optimized *a priori* and estimates for the convergence rate can be derived, mainly where the error near the singularity is bigger.

(日) (四) (日) (日) (日)

Thank you for your attention

Bibliography

Essential bibliography I

 Antonietti, P. F., Buffa, A., and Perugia, I. (2006).
Discontinuous Galerkin approximation of the Laplace eigenproblem.
Computer Methods in Applied Mechanics and Engineering, 195(25-28):3483–3503.

Cancès, E., Chakir, R., and Maday, Y. (2010). Numerical Analysis of Nonlinear Eigenvalue Problems. *Journal of Scientific Computing*, 45(1-3):90–117.

Flad, H., Schneider, R., and Schulze, B.-W. (2008). Asymptotic regularity of solutions to Hartree–Fock equations with Coulomb potential.

Mathematical Methods in the applied sciences, (June):2172–2201.

Gui, W. and Babuška, I. (1986). The h, p and h-p versions of the finite element method in 1 dimension.

Numerische Mathematik, 49(6):613–657.

Essential bibliography II

Maday, Y. (2014).

 $h\mathchar`-P$ finite element approximation for full-potential electronic structure calculations.

In *Partial differential equations: theory, control and approximation,* pages 349–377. Springer, Dordrecht.

 Schötzau, D., Schwab, C., and Wihler, T. P. (2013).
\$hp\$-DGFEM for Second Order Elliptic Problems in Polyhedra II: Exponential Convergence.

SIAM Journal on Numerical Analysis, 51(4):2005–2035.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >