A nonconforming Virtual Element Method for a biharmonic problem on polygonal meshes

Marco Verani

MOX, Department of Mathematics, Politecnico di Milano

Joint work with: P. F. Antonietti (MOX Politecnico di Milano, Italy) G. Manzini (Los Alamos, USA)

IHP Workshop Advanced numerical methods, Paris, 3-7 October, 2016

Outline

Continuous problem

- On-conforming VEM spaces
- Oiscrete VEM problem
- Oumerical results
- Onclusions

(3)

- Many different methods to solve PDEs on polygonal meshes: Virtual Elements, Hybrid High-Order and Discontinuous Galerkin methods, Mimetic Finite Differences, Mixed/Hybrid Finite Volumes, ...
- Here we focus on the Virtual Element Method (VEM)

< ∃ > < ∃

- Many different methods to solve PDEs on polygonal meshes: Virtual Elements, Hybrid High-Order and Discontinuous Galerkin methods, Mimetic Finite Differences, Mixed/Hybrid Finite Volumes, ...
- Here we focus on the Virtual Element Method (VEM)

Idea of VEM: The explicit knowledge of the basis functions on polygons is not needed to assemble the algebraic problem (only DOFS needed)

- Many different methods to solve PDEs on polygonal meshes: Virtual Elements, Hybrid High-Order and Discontinuous Galerkin methods, Mimetic Finite Differences, Mixed/Hybrid Finite Volumes, ...
- Here we focus on the Virtual Element Method (VEM)

Idea of VEM: The explicit knowledge of the basis functions on polygons is not needed to assemble the algebraic problem (only DOFS needed)

- C¹-conforming VEM for Biharmonic Problem:[Brezzi, Marini, 2013], [Chinosi, Marini, 2016]
- *C*⁰-nonconforming VEM for Biharmonic Problem: [Zhao, Chen, Zhang, 2016]

→ ∃ > < ∃ >

- Many different methods to solve PDEs on polygonal meshes: Virtual Elements, Hybrid High-Order and Discontinuous Galerkin methods, Mimetic Finite Differences, Mixed/Hybrid Finite Volumes, ...
- Here we focus on the Virtual Element Method (VEM)

Idea of VEM: The explicit knowledge of the basis functions on polygons is not needed to assemble the algebraic problem (only DOFS needed)

- C¹-conforming VEM for Biharmonic Problem:[Brezzi, Marini, 2013], [Chinosi, Marini, 2016]
- *C*⁰-nonconforming VEM for Biharmonic Problem: [Zhao, Chen, Zhang, 2016]

FV: [Eymard,Gallouet, Herbin, Linke, 2012], HHO: [Chave, Di Pietro, Marche, Pigeonneau, 2016]

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Many different methods to solve PDEs on polygonal meshes: Virtual Elements, Hybrid High-Order and Discontinuous Galerkin methods, Mimetic Finite Differences, Mixed/Hybrid Finite Volumes, ...
- Here we focus on the Virtual Element Method (VEM)

Idea of VEM: The explicit knowledge of the basis functions on polygons is not needed to assemble the algebraic problem (only DOFS needed)

- C¹-conforming VEM for Biharmonic Problem:[Brezzi, Marini, 2013], [Chinosi, Marini, 2016]
- *C*⁰-nonconforming VEM for Biharmonic Problem: [Zhao, Chen, Zhang, 2016]

Goal: Design a "weaker" nonconforming Virtual Element Method (VEM) for the discretization of the biharmonic problem on polygonal meshes.

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

The continuous problem

Let $\Omega \subset \mathbb{R}^2$ convex polygonal domain and $f \in L^2(\Omega)$

$$D\Delta^2 u = f \quad \text{in } \Omega$$
$$u = \partial_n u = 0 \quad \text{on } \Gamma = \partial \Omega$$

 $D = \frac{Et^3}{12(1-\nu^2)}$ bending rigidity, t thickness, E Young modulus, v Poisson's ratio.

• • = • • = •

The continuous problem

Let $\Omega \subset \mathbb{R}^2$ convex polygonal domain and $f \in L^2(\Omega)$

$$D\Delta^2 u = f \quad \text{in } \Omega$$
$$u = \partial_n u = 0 \quad \text{on } \Gamma = \partial \Omega$$

 $D = \frac{Et^3}{12(1-\nu^2)}$ bending rigidity, *t* thickness, *E* Young modulus, *v* Poisson's ratio.

Weak formulation: Find $u \in V = \{v \in H^2(\Omega) : v = \partial_n u = 0 \text{ on } \Gamma\}$ s.t.

$$a(u,v) = F(v) \qquad \forall v \in V$$

where

$$\mathsf{a}(u,v) = D \int_{\Omega} \nu \Delta u \Delta v + (1-\nu)(u_{,ij}v_{,ij}) dx \qquad F(v) = \int_{\Omega} f v dx.$$

• • = • • = •

The continuous problem

Let $\Omega \subset \mathbb{R}^2$ convex polygonal domain and $f \in L^2(\Omega)$

$$D\Delta^2 u = f \quad \text{in } \Omega$$
$$u = \partial_n u = 0 \quad \text{on } \Gamma = \partial \Omega$$

 $D = \frac{Et^3}{12(1-\nu^2)}$ bending rigidity, *t* thickness, *E* Young modulus, *v* Poisson's ratio.

Weak formulation: Find $u \in V = \{v \in H^2(\Omega) : v = \partial_n u = 0 \text{ on } \Gamma\}$ s.t. $a(u, v) = F(v) \quad \forall v \in V$

where

$$a(u,v) = D \int_{\Omega} \nu \Delta u \Delta v + (1-\nu)(u_{,ij}v_{,ij}) dx$$
 $F(v) = \int_{\Omega} f v dx.$

Setting $\|\cdot\|_{V} := |\cdot|_{2,\Omega}$ there exist $\alpha, M > 0$ such that

$$\begin{aligned} \mathbf{a}(\mathbf{v},\mathbf{v}) &\geq \alpha \|\mathbf{v}\|_{V}^{2} \quad \forall \mathbf{v} \in V \\ |\mathbf{a}(u,\mathbf{v})| &\leq M \|u\|_{V} \|\mathbf{v}\|_{V} \quad \forall u, \mathbf{v} \in V \end{aligned}$$

Hence, there exists a unique solution $u \in V$.

M. Verani (MOX - PoliMi)

Let $\sigma_{ij}(u) = \lambda(u_{,11} + u_{,22})\delta_{ij} + \mu u_{,ij}$ with Lamé parameters $\lambda = D\nu$, $\mu = D(1 - \nu)$. We set:

$$M_{nn}(u) = \sum_{i,j} \sigma_{ij} n_i n_j$$
$$M_{nt}(u) = \sum_{ij} \sigma_{ij} n_i t_j$$
$$T(u) = \sigma_{ij,j} n_i + M_{nt,t}$$

(normal bending moment)

イロト イポト イヨト イヨト

(twisting moment)

(normal shear force).

Let $K \subset \mathbb{R}^2$ be a polygonal domain and set

$$a^{K}(u,v) := D \int_{K} \nu \Delta u \Delta v + (1-\nu)(u_{,ij}v_{,ij}) dx.$$

(日) (同) (三) (三)

Let $K \subset \mathbb{R}^2$ be a polygonal domain and set

$$a^{\mathcal{K}}(u,v) := D \int_{\mathcal{K}} \nu \Delta u \Delta v + (1-\nu)(u_{,ij}v_{,ij}) dx.$$

Integrations by parts yield the following useful equalities

$$\begin{aligned} a^{K}(u,v) &= D\left\{\int_{K} \Delta^{2} uv dx + \int_{\partial K} (\Delta u - (1-\nu)u_{,tt})v_{,n} ds \\ &- \int_{\partial K} (\partial_{n}(\Delta u)v - (1-\nu)u_{,nt}v_{,t}) ds\right\} \\ &= D\left\{\int_{K} \Delta^{2} uv dx + \int_{\partial K} M_{nn}(u)\partial_{n}v - \int_{\partial K} T(u)v ds \\ &- \sum_{e \in \partial K} (M_{nt}(u), vn_{\partial e})_{\partial e}\right\}. \end{aligned}$$

where ∂e is the boundary of the edge e, $n_{\partial e}$ is the outwards normal to ∂e .

→ Ξ →

Towards nonconforming VEM discretization

• \mathcal{T}_h decomposition of Ω into polygons K

- *h_K* is the diameter of *K*, i.e., the maximum distance between any two vertices of *K*.
- On \mathcal{T}_h we make the following assumptions (for analysis only):

there exists a fixed number $\rho_0 > 0$ independent of \mathcal{T}_h , such that for every element K (with diameter h_k) it holds

K is star-shaped with respect to all the points of a ball of radius ρ₀hκ
 every edge e ∈ 𝔅_h has length |e| ≥ ρ₀hκ

Low-order nonconforming VEM

Local nonconforming VEM space:

 $V_{h,2}^{K} = \{v_h \in H^2(K) : \Delta^2 v_h = 0, M_{nn}(v_h)_{|e} \in \mathbb{P}^0(e), T(v_h)_{|e} = 0 \quad \forall e \in \partial K \}$

(日) (同) (三) (三)

Low-order nonconforming VEM

Local nonconforming VEM space:

$$V_{h,2}^{K} = \{v_h \in H^2(K) : \Delta^2 v_h = 0, M_{nn}(v_h)_{|e} \in \mathbb{P}^0(e), T(v_h)_{|e} = 0 \quad \forall e \in \partial K \}$$

The DOFs of $V_{h,2}^{K}$ are chosen as follows:

(d1) $v_h(\nu_i)$ for any vertex ν_i of K;

(d2) $\int_{e} \partial_n v_h ds$ for any edge *e* of ∂K .

Low-order nonconforming VEM

Local nonconforming VEM space:

$$V_{h,2}^{K} = \{v_h \in H^2(K) : \Delta^2 v_h = 0, M_{nn}(v_h)_{|e} \in \mathbb{P}^0(e), T(v_h)_{|e} = 0 \quad \forall e \in \partial K \}$$

The DOFs of $V_{h,2}^{K}$ are chosen as follows: (d1) $v_h(v_i)$ for any vertex v_i of K; (d2) $\int_e \partial_n v_h ds$ for any edge e of ∂K .

Remarks:

- Dofs (d1)-(d2) are unisolvent for $V_{h,2}^K$
- $\mathbb{P}^2(K) \subset V_{h,2}^K$.
- In case of a triangular mesh, we recover Morley's DOFs.
- The solution of the biharmonic problem appearing in the definition of $V_{h,2}^{K}$ is uniquely defined up to a linear function (which is however filtered by fixing, e.g., the values of the function in three non-aligned vertexes).

We now prove that dofs (d1)-(d2) are unisolvent for V_h^K .

.

(4回) (4回) (4回)

We now prove that dofs (d1)-(d2) are unisolvent for V_h^K . Employing integration by parts, for any $v_h \in V_h^K$ there holds (D = 1 for simplicity)

$$a^{K}(v_{h}, v_{h}) = \int_{K} \Delta^{2} v_{h} v_{h} dx - \sum_{e \in \partial K} (M_{nt}(v_{h}), v_{h} n_{\partial e})_{\partial e} + \int_{\partial K} M_{nn}(v_{h}) \partial_{n} v_{h} ds$$

• = • •

We now prove that dofs (d1)-(d2) are unisolvent for V_h^K . Employing integration by parts, for any $v_h \in V_h^K$ there holds (D = 1 for simplicity)

$$a^{K}(v_{h},v_{h}) = \int_{K} \Delta^{2} v_{h} v_{h} dx - \sum_{e \in \partial K} (M_{nt}(v_{h}),v_{h} n_{\partial e})_{\partial e} + \int_{\partial K} M_{nn}(v_{h}) \partial_{n} v_{h} ds$$

Observing that $\Delta^2 v_h = 0$ and $M_{nn}(v_h)$ is constant on each edge, by setting to zero the degrees of freedom, we get $a^K(v_h, v_h) = 0$.

We now prove that dofs (d1)-(d2) are unisolvent for V_h^K . Employing integration by parts, for any $v_h \in V_h^K$ there holds (D = 1 for simplicity)

$$a^{K}(v_{h}, v_{h}) = \int_{K} \Delta^{2} v_{h} v_{h} dx - \sum_{e \in \partial K} (M_{nt}(v_{h}), v_{h} n_{\partial e})_{\partial e} + \int_{\partial K} M_{nn}(v_{h}) \partial_{n} v_{h} ds$$

Observing that $\Delta^2 v_h = 0$ and $M_{nn}(v_h)$ is constant on each edge, by setting to zero the degrees of freedom, we get $a^K(v_h, v_h) = 0$.

Coercivity gives $v_h = 0$ (note that setting to zero the nodal values of v_h filters the linear polynomials)

The global non-conforming low-order VEM space is defined as

$$\begin{split} V_{h,2} &:= \left\{ v_h : v_h|_{\mathcal{K}} \in V_{h,2}^{\mathcal{K}}, v_h \text{ continuous at internal vertexes}, \\ & \int_e [\partial_n v_h] ds = 0 \ \forall e \in \mathcal{E}_h^i, \\ & \int_e \partial_n v_h ds = 0 \ \forall e \in \mathcal{E}_h^{\Gamma}, v_h(\nu_i) = 0 \ \forall \nu_i \in \mathcal{V}_h^{\Gamma} \right\}, \end{split}$$

where $[\cdot]$ is the usual jump operator.

• = • •

The global non-conforming low-order VEM space is defined as

$$\begin{split} V_{h,2} &:= \left\{ v_h : v_h|_K \in V_{h,2}^K, v_h \text{ continuous at internal vertexes}, \\ & \int_e [\partial_n v_h] ds = 0 \ \forall e \in \mathcal{E}_h^i, \\ & \int_e \partial_n v_h ds = 0 \ \forall e \in \mathcal{E}_h^{\Gamma}, v_h(\nu_i) = 0 \ \forall \nu_i \in \mathcal{V}_h^{\Gamma} \right\}, \end{split}$$

where $[\cdot]$ is the usual jump operator.

Note that functions in V_h are not continuous.

< ∃ > <

High-order nonconforming VEM

For $\ell > 2$, the local VEM space is defined as follows:

$$V_{h,\ell}^{\mathcal{K}} = \{ v_h \in H^2(\mathcal{K}) : \Delta^2 v_h \in \mathbb{P}^{\ell-4}(\mathcal{K}), M_{nn}(v_h)_{|e} \in \mathbb{P}^{\ell-2}(e), \\ T(v_h) \in \mathbb{P}^{\ell-3}(e) \ \forall e \in \partial \mathcal{K} \}$$

< 書 ▶ <

High-order nonconforming VEM

For $\ell > 2$, the local VEM space is defined as follows:

$$V_{h,\ell}^{\mathcal{K}} = \{ v_h \in H^2(\mathcal{K}) : \Delta^2 v_h \in \mathbb{P}^{\ell-4}(\mathcal{K}), M_{nn}(v_h)_{|e} \in \mathbb{P}^{\ell-2}(e), \\ T(v_h) \in \mathbb{P}^{\ell-3}(e) \ \forall e \in \partial \mathcal{K} \}$$

The local DOFs are chosen as follows:

(D1)
$$v_h(\nu_i)$$
 for any vertex ν_i of K ;
(D2) $\frac{1}{|K|} \int_K v_h p ds$ for any $p \in \mathbb{P}^{\ell-4}(K)$;
(D3) $\int_e \partial_n v_h q ds$ for any $q \in \mathbb{P}^{\ell-2}(e)$ and any edge e of ∂K ;
(D4) $\frac{1}{|e|} \int_e v_h q ds$ for any $q \in \mathbb{P}^{\ell-3}(e)$ and any edge e of ∂K .

< ∃ > <

High-order nonconforming VEM

For $\ell > 2$, the local VEM space is defined as follows:

$$V_{h,\ell}^{\mathcal{K}} = \{ v_h \in H^2(\mathcal{K}) : \Delta^2 v_h \in \mathbb{P}^{\ell-4}(\mathcal{K}), M_{nn}(v_h)_{|e} \in \mathbb{P}^{\ell-2}(e), \\ T(v_h) \in \mathbb{P}^{\ell-3}(e) \ \forall e \in \partial \mathcal{K} \}$$

The local DOFs are chosen as follows:

(D1)
$$v_h(\nu_i)$$
 for any vertex ν_i of K ;
(D2) $\frac{1}{|K|} \int_K v_h p ds$ for any $p \in \mathbb{P}^{\ell-4}(K)$;
(D3) $\int_e \partial_n v_h q ds$ for any $q \in \mathbb{P}^{\ell-2}(e)$ and any edge e of ∂K ;
(D4) $\frac{1}{|e|} \int_e v_h q ds$ for any $q \in \mathbb{P}^{\ell-3}(e)$ and any edge e of ∂K .

Remarks:

- Dofs (D1)-(D4) are unisolvent for $V_{h,\ell}^K$;
- $\mathbb{P}^{\ell}(K) \subset V_{h,\ell}^{K}$.

< ∃ > < ∃

The global non-conforming VEM space is defined as

$$\begin{split} V_{h,\ell} &:= \left\{ v_h : v_h|_{\mathcal{K}} \in V_h^{\mathcal{K}}, v_h \text{ continuous at internal vertexes,} \\ v_h(\nu_i) &= 0 \ \forall \nu_i \in \mathcal{V}_h^{\Gamma} \\ \int_e [\partial_n v_h] q ds &= 0 \ \forall q \in \mathbb{P}^{\ell-2}(e), \int_e [v_h] p ds = 0 \ \forall p \in \mathbb{P}^{\ell-3}(e) \ \forall e \in \mathcal{E}_h^i; \\ \int_e \partial_n v_h q ds &= 0 \ \forall q \in \mathbb{P}^{\ell-2}(e), \int_e v_h p ds &= 0 \ \forall p \in \mathbb{P}^{\ell-3}(e) \ \forall e \in \mathcal{E}_h^{\Gamma} \right\} \end{split}$$

.∃ >

Local discrete bilinear form

We build a discrete local bilinear form $a_h^K(\cdot, \cdot) : V_{h,\ell}^K \times V_{h,\ell}^K \to \mathbb{R}$ such that

• (ℓ -consistency) $\forall p \in \mathbb{P}^{\ell}(K) \; \forall v_h \in V_{h,\ell}^K$

$$a_h^K(p,v_h)=a^K(p,v_h)$$

 (stability) There exist positive constants α_{*}, α^{*} independent of h and K such that

$$\alpha_* a^{K}(v_h, v_h) \leq a^{K}_h(v_h, v_h) \leq \alpha^* a^{K}(v_h, v_h) \qquad \forall v_h \in V_{h,\ell}^K.$$

• (computability) $\forall u_h, v_h \in V_{h,\ell}^K$ the local bilinear form

 $a_h^K(u_h,v_h)$

is computable using only the DOFs of $V_{h,\ell}^{K}$.

- 本間 と く ヨ と く ヨ と 二 ヨ

Discrete VEM problem

Assemble in the usual way the global discrete bilinear form $a_h(\cdot, \cdot)$, i.e.

$$a_h(\cdot,\cdot) = \sum_{K\in\mathcal{T}_h} a_h^K(\cdot,\cdot).$$

The VEM discrete problem reads as follows: find $u_h \in V_{h,\ell}$ such that

$$a_h(u_h,v_h)=\langle f_h,v_h
angle$$

for any $v_h \in V_{h,\ell}$, where $\langle f_h, v_h \rangle \simeq F(v_h)$.

→ 3 → 4 3

Theorem (Antonietti, Manzini, V. 2016)

Under regularity assumptions on the mesh, there exists a unique solution $u_h \in V_{h,\ell}$. Moreover, it holds

$$|u-u_h|_{2,h} \lesssim h^{\ell-1} + \sup_{v_h \in V_{h,\ell}} \frac{\langle f-f_h, v_h \rangle}{|v_h|_{2,h}} + \sup_{v_h \in V_{h,\ell}} \frac{\mathcal{N}(u, v_h)}{|v_h|_{2,h}}$$

where

$$\begin{split} \mathcal{N}(u,v_h) &:= D\sum_{K\in\mathcal{T}_h} \left\{ \int_{\partial K} (\Delta u - (1-\nu)u_{,tt}) v_{h,n} ds \\ &- \int_{\partial K} \left(\partial_n (\Delta u) v_h - (1-\nu)u_{,nt} v_{h,t} \right) ds \right\}. \end{split}$$

(日) (周) (三) (三)

Corollary

Under regularity assumption on the mesh, the unique solution $u_h \in V_{h,\ell}$ satisfies the following error estimate, for $\ell \ge 2$

$$|u-u_h|_{2,h} \lesssim h^{\ell-1}.$$

• • = • • = •

Numerical results

- Exact solution: $u(x, y) = x^2(1-x)^2y^2(1-y)^2$
- Examples of employed polygonal meshes

(日) (同) (三) (三)

8 DOFs for each polygon

n	# dofs	Resid	$\mathcal{E}_{abs}\left(u_{h} ight)$	$\mathcal{E}_{rel}\left(u_{h} ight)$	Rate
0	9.60010^1	3.82310^{-18}	6.67110^{-2}	9.36410^{-1}	
1	3.41010^2	4.66310^{-18}	3.89710^{-2}	4.96910^{-1}	0.999
2	1.28110^3	7.00710^{-18}	2.05310^{-2}	2.55910^{-1}	1.002
3	4.96110^3	1.63610^{-17}	1.03810^{-2}	1.28710^{-1}	1.015
4	1.95210^4	3.69410^{-17}	5.22410^{-3}	6.46710^{-2}	1.004
5	7.74410^4	7.05210^{-17}	2.61610^{-3}	3.23710^{-2}	1.004
6	3.08510^5	1.77110^{-16}	1.30910^{-3}	1.62010^{-2}	1

→ Ξ →

э

16 DOFs for each polygon

n	#dofs	Resid	$\mathcal{E}_{abs}\left(u_{h} ight)$	$\mathcal{E}_{rel}\left(u_{h} ight)$	Rate
0	2.16010^2	5.02210^{-18}	2.25310^{-2}	$2.807 10^{-1}$	
1	7.81010^2	9.85010^{-18}	7.41910^{-3}	9.18510^{-2}	1.738
2	2.96110^3	2.35010^{-17}	2.00810^{-3}	2.48510^{-2}	1.961
3	1.15210^4	4.61010^{-17}	5.21410^{-4}	6.45210^{-3}	1.985
4	4.54410^4	1.02810^{-16}	1.32210^{-4}	1.63610^{-3}	2
5	1.80510^5	2.12210^{-16}	3.33010^{-5}	4.12110^{-4}	1.998
6	7.19410^5	5.76610^{-16}	8.34110^{-6}	1.03210^{-4}	2.002

★ ∃ >

-

< A

25 DOFs for each polygon

n	# dofs	Resid	$\mathcal{E}_{abs}\left(u_{h} ight)$	$\mathcal{E}_{rel}\left(u_{h} ight)$	Rate
0	3.61010^2	5.30110^{-18}	3.58910^{-3}	4.44110^{-2}	
1	1.32110^3	5.05410^{-17}	6.77610^{-4}	8.38510^{-3}	2.570
2	5.04110^3	2.44510^{-17}	1.12510^{-4}	1.39210^{-3}	2.681
3	1.11610^4	5.48510^{-17}	3.69310^{-5}	4.56910^{-4}	2.802
4	1.96810^4	5.24010^{-17}	1.63810^{-5}	2.02710^{-4}	2.865
5	3.06010^4	8.50610^{-17}	8.63310^{-6}	1.06810^{-4}	2.902
6	4.39210^4	7.66010^{-17}	5.08910^{-6}	6.29710^{-5}	2.925
7	5.96410^4	1.07610^{-16}	3.24510^{-6}	4.01610^{-5}	2.940

<ロト </p>

35 DOFs for each polygon

n	#dofs	Resid	$\mathcal{E}_{abs}\left(u_{h} ight)$	$\mathcal{E}_{rel}\left(u_{h} ight)$	Rate
0	5.31010^2	2.11510^{-18}	$1.605 10^{-3}$	1.98510^{-2}	
1	1.96110^3	5.42810^{-17}	1.37210^{-4}	1.69810^{-3}	3.764
2	7.52110^3	$1.077 10^{-17}$	8.90410^{-6}	1.10210^{-4}	4.069
3	1.66810^4	8.36110^{-17}	1.76510^{-6}	2.18410^{-5}	4.063
4	2.94410^4	2.37410^{-17}	5.59510^{-7}	6.92410^{-6}	4.044
5	4.58010^4	1.14610^{-16}	2.29610^{-7}	2.84210^{-6}	4.030
6	6.57610^4	3.49110^{-17}	1.10910^{-7}	1.37310^{-6}	4.023
7	8.93210^4	1.64810^{-16}	6.14210^{-8}	7.60010^{-7}	3.860

< ≥ > < ≥

- ∢ ⊢⊒ →

Conclusions

We presented:

- Nonconforming VEM based discretization for a biharmonic problem on polygonal meshes
- Energy norm a priori error estimates
- Numerical results

Future work:

• Build an efficient preconditioner

3 1 4

References

- P.F. Antonietti, G. Manzini, M. Verani, The fully nonconforming Virtual Element Method for biharmonic problems, arXiv:1611.08736.
- J. Zhao, S. Chen, B. Zhang, The nonconforming virtual element method for plate bending problems. Math. Models Methods Appl. Sci. (2016).
- C. Chinosi, L.D. Marini, Virtual Element Methods for fourth order problems: *L*² estimates, Comput. Math. Appl., (2016).
- F. Brezzi, L.D. Marini, Virtual Element Method for plate bending problems, Comput. Methods Appl. Mech. Engrg., (2013).

(3)