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HydrOcean and NEXTFLOW Software

Created in 2007 by Erwan Jacquin

Main objectives : naval, offshore, sailing and marine
energies

Strong collaboration with LHEEA

About twenty employees, essentially engineers and PhD

Working with DCNS, Total, Michelin (for instance)



SPH-Flow code
Based on the SPH method

Developped in collaboration with LHEEA

Meshless Lagrangian method

Explicit scheme, weakly compressible flows

free surface flows



Navier-Stokes equations
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with
gravity source term
viscosity tensor ¯̄⌧

Pressure law in the form: p = ⇢� �B



Particule reformulations (basic idea)

Reformulation of a function

⇧(f)(x) = (f ⇤ �)(x) =
Z

Rd
f(y)�(x� y) dy = f(x)



The kernel

1 even function
2 compact support
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Approximate particule reformulation
Approximate reformulation of a fonction

⇧(f)(x) = (f ⇤ �)(x) =
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Approximate reformulation of a gradient
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Particule approximation method
Based on quadrature formulae
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Improvements
Derivation improvement: exact for constant functions
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Associated weak formulation
Discret scalar product: hf, gi
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 this formulation is conservative:
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Problèmes de cette formulation
Global consistance, but lost of the local consistance with the
strong operator



Consequences



PEPS AMIES

SPHINX
SPH Improvement for Numerical approXimations

Objectives

To get a consistant weak operateur useful for industrial
applications
obtention d’un opérateur faible localement consistant

Suggested approach

To modify the weak operator to be consistant and to preserve
the duality relation strong / weak operator



A new weak operator

Based on the Lacôme approach: weak formulation with a
variable h
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From weak to strong to get a approximate gradient
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where ⇠strong is consistent with rW
The definition of ⇠strong is long and contains rh



Modified formulation

Modification of the strong formulation to preserve the derivation
of constant functions
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Collaboration continuation:
Well-balanced SPH-scheme for shallow-water

1D model
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Reformulation of the model
Main idea

Notations: H = h+ Z and X = h/H

Consider the free surface H instead of h in the numerical
flux function
Initial data for the lake at rest: H = cste and u = 0

Main reformulation8
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SPH discretization

To rewrite the scheme for the shallow-water equations using the
reformulation
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Source term discretization

To get a well-balanced and conservative scheme, we adopt the
following consistent source term discretization:
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Main result
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The scheme defined by the SPH hybridization and source
term discretization preserves the lake at rest, for any
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ij

and X̃
i

consistent with X.
The scheme is conservative
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Thank you for your attention


