

ACCOUNTING FOR BLOOD COMPLEXITIES IN HEMODYNAMICS: ISSUES AND APPLICATIONS

Franck NICOUD*

University of Montpellier – IMAG - CNRS UMR 5149

* with C. Chnafa, E. Gibaud, S. Mendez, J. Siguenza

CHALLENGES IN MACROSCOPIC BLOOD FLOWS

- HIGHLY COMPLEX AND MULTI-SCALE GEOMETRY
- PULSED BOUNDARY CONDITIONS
- TIME DEPENDENT FLOW DOMAIN / FSI
- TRANSITIONAL REGIME, NEITHER LAMINAR NOR TURBULENT
- COMPLEX AND MOSTLY UNKNOWN RHEOLOGY (SHEAR THINNING, SUSPENSION-LIKE COMPLEX EFFECTS LIKE WEISSENBERG, FREE CELL LAYER, ...
- THROMBOSIS, HEMOLYSIS, BIOCHEMISTRY, ...
- MULTIPHYSICS
- UNCERTAINTIES IN GEOMETRY AND MATERIALS

BLOOD

WHO WE ARE

- Software dedicated to the simulation of blood flows
- Developed since 2010 by a team of 6-8 people
- **Objective**: Reliable enough to support the **optimization** of blood-wetted devices
- Methods for both macroscopic (TAH, valves, ...) and microscopic (cytometry) applications

OUTLINE OF THE TALK

- NUMERICAL STRATEGY FOR FLUID-STRUCTURE INTERACTION
- MACROSCOPIC HEMODYNAMICS
 - $\circ\,$ Aortic valve dynamics
 - \circ Human left heart
- SINGLE CELL FLOW
 - $\circ\,$ Red blood cell modelling
 - Application to cell counting and sizing

FRONT TRACKING IMMERSED BOUNDARY METHOD

Peskin (2002); Pinelli et al. (2011); Sigüenza et al., J. Comp. Physics, 2016

Fluid-structure Interaction

Flow induced vibration of an elastic beam behind a cylinder Results in agreement with Turek et al., 2010

LMGC90 : collaboration with D. Ambard, F. Dubois, F. Jourdan et R. Mozul (LMGC, Montpellier) **YALES2BIO**: blood flows dedicated solver developed at IMAG, University of Montpellier

Sigüenza et al., J. Comp. Physics, 2016

November 21-23, 2016

OUTLINE OF THE TALK

- NUMERICAL STRATEGY FOR FLUID-STRUCTURE INTERACTION
- MACROSCOPIC HEMODYNAMICS
 - Aortic valve dynamics
 - Human left heart
- SINGLE CELL FLOW
 - $\circ\,$ Red blood cell modelling
 - Application to cell counting and sizing

AN "AORTIC" VALVE EXPERIMENT

Pott et al., ESAO, 2015

November 21-23, 2016

FSI SIMULATION OF THE AORTIC VALVE

J. Siguenza (IMAG - Montpellier)

AORTIC VALVE DYNAMICS

STREAMWISE VELOCITY

EXPERIMENT (PIV)

CVEAME lab – D. Pott

FSI SIMULATION IMAG lab – J. Sigüenza

PHASE-AVERAGED STREAMWISE VELOCITY

INTRA-CARDIAC TRANSITIONAL FLOWS

- Used together with ALE, LES was successfully applied to a human left heart
- Cycle-to-cycle fluctuations and turbulence were also found at some phases of the cardiac cycle, especially at late diastole
- Phase averaged solutions in agreement with advanced medical imaging data

Phase-averaged LES

Eriksson et al., 2012

Chnafa et al., Comp & Fluids, 2014; Chnafa et al., ABME, 2016

November 21-23, 2016

IHP - Workshop Industry and Mathematics

MIND THE STEP: BLOOD IS A COMPLEX FLUID !

- COMPOSITION
 - Plasma (55%)
 - Red blood cells (\approx 45%)
 - White blood cells, Platlets
- 4-5 MILLIONS OF CELLS / mm³...
- ITS EFFECTIVE VISCOSITY DEPENDS ON THE RED BLOOD CELLS CONCENTRATION

Plasma (55%)

White blood cells and platelets (<1%)

Red blood cells (45%)

• THE HEMATOCRIT FIELD AND EFFECTIVE BLOOD **RHEOLOGY** DEPENDS ON THE RED

BLOOD CELLS DEFORMABILITY

Lanotte et al., PNAS, 2016

OUTLINE OF THE TALK

- NUMERICAL STRATEGY FOR FLUID-STRUCTURE INTERACTION
- MACROSCOPIC HEMODYNAMICS
 - Aortic valve dynamics
 - \circ Human left heart
- SINGLE CELL FLOW
 - Red blood cell modelling
 - Application to cell counting and sizing

RED BLOOD CELLS

Cytoplasm (Newtonian fluid)

Mohandas, 2008.

Tomaiuolo et al. 2009

Abkarian et Viallat, 2015

- RED BLOOD CELLS MAY BE SEEN AS DEFLATED BALLOONS SURROUNDED BY PLASMA
- THEIR COMPLEX DYNAMICS STRONGLY IMPACT THE EFFECTIVE RHEOLOGY OF BLOOD
 Lanotte et al., PNAS, 2016

November 21-23, 2016

IHP - Workshop Industry and Mathematics

RED BLOOD CELLS MEMBRANE MODELING

- THE LIPID BILAYER
 - is quasi-incompressible (4% area before rupture) - Mohandas 2008
 - resists to bending Seifert 1997
- THE CYTOSKELETON MAINLY RESISTS TO SHEAR -Lenormand et al. 2001
- THE MEMBRANE IS MODELLED AS AN INTERFACE WITH APPROPRIATE ENERGY FORMS

Membrane component	Mechanical resistance	Energy modeling
Lipid bilayer	Bending	$\varepsilon_b = \frac{\kappa_b}{2} \int_{S} (2H - c_0)^2 dS \qquad (H: \text{ mean curvature - Helfrich 1973})$
	Area-dilatation	$W_{SKALAK} = \frac{E_s}{4} \left[\left(\lambda_1^2 + \lambda_2^2 - 2 \right)^2 + 2 \left(\lambda_1^2 + \lambda_2^2 - \lambda_1^2 \lambda_2^2 - 1 \right) + C \left(\lambda_1^2 \lambda_2^2 - 1 \right)^2 \right]$ (\lambda_1 and \lambda_2 principal stretches - Skalak et al. 1973)
Cytoskeleton	Shear	

RBC DYNAMICS IN A SHEAR FLOW

Lanotte et al., PNAS, 2016

MORE VALIDATION TEST CASES IN : Mendez et al., JCP, 2014; Martins Afonso et al., JFM, 2014, Sigüenza et al., JCP, 2016

November 21-23, 2016

INDUSTRIAL APPLICATION: COUNTING AND SIZING

INDUSTRIAL APPLICATION: CYTOMETER

The measurement relies on two major assumptions:

- **Counting:** 1 pulse = 1 red blood cell
- Sizing: Pulse amplitude proportional to cell volume

INDUSTRIAL APPLICATION: CYTOMETER

2 identical cells at 2 different initial locations

GIBAUD, PHD THESIS, 2015

Pulse characteristics are not related only to cell volume

COLLABORATORS

- IMAG LAB @ UNIVERSITY OF MONTPELLIER CARDIOVASCULAR BIOMECHANICS
 - S. Mendez, J. Siguenza, V. Zmijanovic, E. Gibaud, A. Larroque, T. Puiseux, P. Taraconat
 - C. Chnafa (now at University of Toronto)
- LMGC LAB @ UNIVERSITY OF MONTPELLIER BIOMECHANICS AND SOFT TISSUES
 - F. Jourdan, D. Ambard, R. Mozul, F. Dubois
- UNIVERSITY HOSPITALS @ TOULOUSE AND MONTPELLIER RADIOLOGY / CARDIOLOGY / IMAGE REGISTRATION
 - H. Rousseau, I. Schuster, R. Moreno
- CBS LAB @ UNIVERSITY OF MONTPELLIER BIOPHYSICS AND BLOOD RHEOLOGY
 - o M. Abkarian, L. Lanotte
- IFPEN IN PARIS EXPERIMENTAL DATA
 - H. Bata Toda
- HELMHOLTZ INSTITUTE IN AACHEN EXPERIMENTAL DATA
 - D. Pott, S. Sonntag
- INDUSTRIAL COLLABORATORS FUNDING AND VERY CHALLENGING QUESTIONS
 - Horiba Medical, Carmat SA, ALARA Expertise, Sim&Cure

Thank you for your attention

Preliminary application to the Carmat TAH

www.math.univ-montp2.fr/~yales2bio

We thank for financial support:

November 21-23, 2016

IHP - Workshop Industry and Mathematics

CARMAT