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• Recent results on Poincaré map give discrete compactness

for the p version of discrete differential forms.
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Maxwell eigenvalues

Ampère and Faraday’s laws: find resonance frequencies ω ∈ R
(with ω 6= 0) and electromagnetic fields (E,H) 6= (0, 0) such
that

curl E = iωµH in Ω

curlH = −iωεE in Ω

E× n = 0 on ∂Ω

H · n = 0 on ∂Ω

ω 6= 0 gives divergence conditions

div εE = 0 in Ω

divµH = 0 on Ω

It is then standard to eliminate one field and to obtain the
curl curl problem
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Eliminate H and take u = E (λ = ω2)


curl(µ−1 curl u) = λεu in Ω

div(εu) = 0 in Ω

u× n = 0 on ∂Ω

Well-known and intensively studied problem. Special (edge)
finite elements required for its approximation. We review
classical analysis for the h version which covers basically all
known families of edge finite elements.
The ultimate goal of more recent work is to analyze the
convergence for the p and hp version of FEM.

For ease of presentation, we take µ = ε = 1 and simple
topology from now on.
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Standard formulation

The standard variational formulation reads

u ∈ H0(curl) :

(curl u, curl v) = λ(u, v) ∀v ∈ H0(curl)

(u, gradφ) = 0 ∀φ ∈ H1
0

The most commonly used variational formulation in based on
the replacement of the divergence free constraint by the
condition λ 6= 0

u ∈ H0(curl) :

(curl u, curl v) = λ(u, v) ∀v ∈ H0(curl)

The kernel λ = 0 corresponds to the infinite dimensional space
grad H1

0 .
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Mixed formulations

<Kikuchi ’89>

Divergence free constraint imposed via Lagrange multiplier ψ

u ∈ H0(curl), ψ ∈ H1
0 :{

(curl u, curl v) + (gradψ, v) = λ(u, v) ∀v ∈ H0(curl)

(gradφ,u) = 0 ∀φ ∈ H1
0

<B–Fernandes–Gastaldi–Perugia ’99>
Second mixed formulation (H0(div0) = curl(H0(curl)))

σ ∈ H0(curl), z ∈ H0(div0) :{
(σ, τ ) + (curl τ , z) = 0 ∀τ ∈ H0(curl)

(curlσ,w) = −λ(z,w) ∀w ∈ H0(div0)
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Eigenvalues in mixed form

The equivalence with mixed formulations allowed us to apply
general theory of eigenvalue approximation in mixed form.

<B.–Brezzi–Gastaldi ’97>

The main tool for the analysis (exploited for the h version) is
the construction of a Fortin operator that converges to the
identity in norm: Fortid property.

<B.–Fernandes–Gastaldi–Perugia ’99>
<B. ’00–’01>

Discrete Compactness Property may also be used.
<Kikuchi ’89>

<Monk–Demkowicz ’00>
<Caorsi–Fernandes–Raffetto ’00>

The two approaches are indeed equivalent
<B. ’07>
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Mixed conditions for Kikuchi formulation
[ELKER] Ellipticity in the discrete kernel

There exists α > 0 such that

(curl vk , curl vk) ≥ α‖vk‖2
L2 ∀vk ∈ Kd

k

[WA1] Weak approximability of Q = H1+s
0

There exists ω1(k) tending to zero such that

sup
vk∈Kd

k

(vk , gradψ)

‖vk‖curl
≤ ω1(k)‖ψ‖H1 ∀ψ ∈ Q

[SA1] Strong approximability of V0 = Hs
0(curl) ∩H(div0)

There exists ω2(k) tending to zero such that for every u ∈ V0

there exists uI ∈ Kd
k such that

‖u− uI‖curl ≤ ω2(k)‖u‖V0
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Kikuchi resolvent operators: continuous. . .{
(curl u, curl v) + (grad p, v) = (f, v) ∀v ∈ H0(curl)

(grad q,u) = 0 ∀q ∈ H1
0

T Ki ∈ L(L2): T Ki (f) = u

. . . and discrete one{
(curl uk , curl v) + (grad pk , v) = (f, v) ∀v ∈ Vk

(grad q,uk) = 0 ∀q ∈ Qk

T Ki
k ∈ L(L2): T Ki

k (f) = uk
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<B.–Brezzi–Gastaldi ’97>

Theorem

If the ellipticity in the discrete kernel [ELKER], the weak
approximability of Q [WA1], and the strong approximability of
V0 [SA1] are satisfied, then the following convergence in norm
holds true

‖T Ki − T Ki
k ‖L(L2) → 0

Remark

Convergence in norm allows us to use the classical
Babuška–Osborn theory for eigenmode convergence
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Mixed conditions for second formulation

[WA2] Weak approximability of Z 0 = Hs
0(curl) ∩H(div0)

There exists ω3(k) tending to zero such that

(curl τ k , z) ≤ ω3(k)‖τ k‖L2‖z‖Z0 ∀τ k ∈ K c
k , ∀z ∈ Z 0

[SA2] Strong approximability of Z 0 = Hs
0(curl) ∩H(div0)

There exists ω4(k) tending to zero such that for every z ∈ Z 0

there exists zI ∈ K c
k such that

‖z− zI‖L2 ≤ ω4(k)‖z‖Z0
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Fortin operator

Πk : V 0 → Vk such that ∀σ ∈ V 0{
(curl(σ − Πkσ),wk) = 0 ∀wk ∈ Zk

‖Πkσ‖curl ≤ C‖σ‖V 0

[FORTID] Fortid property

There exists ω5(k) tending to zero such that

‖σ − Πkσ‖L2 ≤ ω5(k)‖σ‖V 0 ∀σ ∈ V 0
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Alternative resolvent operators: continuous. . .{
(σ, τ ) + (curl τ , z) = 0 ∀τ ∈ H0(curl)

(curlσ,w) = −(g,w) ∀w ∈ curl(H0(curl))

T M2 ∈ L(L2): T M2(g) = z

. . . and discrete one{
(σk , τ ) + (curl τ , zk) = 0 ∀τ ∈ Vk

(curlσk ,w) = −(g,w) ∀w ∈ Zk

T M2
k ∈ L(L2): T M2

k (g) = zk
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<B.–Brezzi–Gastaldi ’97>

Theorem

If the weak approximability of Z 0 [WA2] and the strong
approximability of Z 0 [SA2] are satisfied, and if there exists a
Fortin operator satisfying the Fortid property [FORTID], then
the following convergence in norm holds true

‖T M2 − T M2
k ‖L(L2) → 0
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Compactness properties

The space H0(curl) ∩H(div0) is compactly embedded in L2

Compactness can be rephrased as

Given a sequence {un} ⊂ H0(curl) such that

(un, gradφ) = 0 ∀φ ∈ H1
0 , ∀n

If {un} is uniformly bounded in H0(curl), ‖ curl un‖L2 ≤ 1,
then there exits a subsequence (still denoted {un}) and u ∈ L2

such that
‖un − u‖L2 → 0
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Discrete compactness property
Discrete analogue for the spaces Vk ⊂ H0(curl) and Qk ⊂ H1

0 .

Given a sequence {uk} ⊂ Vk discretely divergence free, i.e.,

(uk , gradφk) = 0 ∀φk ∈ Qk , ∀k

If {uk} is uniformly bounded in H0(curl), ‖ curl uk‖L2 ≤ 1,
then there exits a subsequence (still denoted {uk}) and u ∈ L2

such that
‖uk − u‖L2 → 0

Strong DCP

We say that the SDCP is satisfied if u is divergence free
divu = 0. This is true, for instance, if Qk is a good
approximation to H1

0 .
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Commuting diagram property
<Douglas–Roberts ’82>

<Bossavit ’88>
<Arnold ’02>

Q ⊂ H1
0 , V ⊂ H0(curl), U ⊂ H0(div), S ⊂ L2/R

0→ Q
grad−−→ V

curl−−→ U
div−−→ S → 0

↓ ΠQ
k ↓ ΠV

k ↓ ΠU
k ↓ ΠS

k

0→ Qk
grad−−→ Vk

curl−−→ Uk
div−−→ Sk → 0

• Kikuchi formulation uses Q and V

• Alternative formulation uses V and U

• U and S are used for Darcy flow or mixed Laplacian
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Equivalence
<B. ’07>

Given Vk ⊂ H0(curl), construct Qk and Zk such that
grad Qk ⊂ Vk , curl Vk ⊂ Zk

• Zk = curl Vk

• The kernel of curl in Vk consists of gradient. Take Qk as
set of potentials vanishing on the boundary ∂Ω

Theorem

The following three sets of conditions are equivalent

i) ELKER, WA1, SA1

ii) WA2, SA2, FORTID

iii) SDCP and standard approximation property: for any
v ∈ V0 there exists vI

k ∈ Vk such that

‖v − vI
k‖curl → 0
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Finite elements
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h version (2D)
<Falk–Osborn ’80>

The analysis for the h version of edge elements is fairly easy in
the two dimensional case.

• The two dimensional curl operator is isomorphic to the
div operator (and curl corresponds to grad)

• Edge elements are isomorphic to Raviart–Thomas elements

• The RT interpolant is a Fortin operator

∫
K

wh div(σ − ΠhΣ) =−
∫

K
grad wh · (σ − ΠhΣ)+∫

∂K
wh(σ − ΠhΣ) · n = 0
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h version (3D)

While the RT interpolant is still a Fortin operator, the edge
interpolant is not.

Moreover, standard estimates for mixed approximations don’t
help (we need uniform convergence!)

σ ∈ H0(curl), z ∈ H0(div0) :{
(σ, τ ) + (curl τ , z) = 0 ∀τ ∈ H0(curl)

(curlσ,w) = −(g,w) ∀w ∈ H0(div0)

‖σ − σh‖H(curl) + ‖z− zh‖L2 ≤ C inf
τ h,wh

(‖σ − τ h‖
O(1)

+ ‖z−wh‖
O(h)

)

Estimate for ‖z− zh‖L2 not involving curlσ needed.
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A better estimate can be obtained, for instance, with the help
of Fortin operator

‖σ − σh‖L2 ≤ C

(
‖σ − Πhσ‖L2 + (1/

√
α) inf

wh

‖z−wh‖L2

)
‖z− zh‖L2 ≤ C

(
inf
wh

‖z−wh‖L2 + ‖σ − σh‖L2

)
Proof

The result then follows from the Fortid property

‖σ − Πhσ‖L2 ≤ Chs‖σ‖Hs
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of Fortin operator

‖σ − σh‖L2 ≤ C

(
‖σ − Πhσ‖L2 + (1/

√
α) inf

wh

‖z−wh‖L2

)
‖z− zh‖L2 ≤ C

(
inf
wh

‖z−wh‖L2 + ‖σ − σh‖L2

)
Proof

The result then follows from the Fortid property

‖σ − Πhσ‖L2 ≤ Chs‖σ‖Hs
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Fortid for edge elements

<B. ’00>

A Fortin operator can be easily constructed by using the inf-sup
condition for edge elements.
The uniform estimate follows from the commuting diagram and
a particular bound for the edge interpolant

‖σ − σI‖L2 ≤ Chs‖σ‖Hs when curlσ is discrete

Remark

The last estimate needs to be generalized to p and hp versions
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p and hp versions

Some preliminary steps towards hp DCP

• Numerical evidence of p convergence <Monk ’94>

• Convergence proof of hp DCP for 2D triangular meshes
modulo a conjectured L2 estimate

<B.–Costabel–Demkowicz ’03>

• Rigorous proof of hp DCP for 2D rectangular meshes
(allowing for 1-irregular hanging nodes)

<B.–Costabel–Dauge–Demkowicz ’06>

Existing proof does not extend to more general situations
(triangles or 3D)
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Differential forms

<Arnold–Falk–Winther ’06-’09>

We consider a complex of differential forms, Ω ⊂ Rn

0 −→ Λ0(Ω)
d0−→ Λ1(Ω)

d1−→ · · · dn−1−−−→ Λn(Ω) −→ 0

We define V ` = H0(d`,Ω), so that we have the complex

0 −→ V 0 d0−→ V 1 d1−→ · · · dn−1−−−→ V n(Ω) −→ 0

and, given finite element approximation spaces V `
p ⊂ V `, we

consider the discrete differential complex

0 −→ V 0
p

d0−→ V 1
p

d1−→ · · · dn−1−−−→ V n
p (Ω) −→ 0
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Identification table

Differential form Proxy representation

d = 2 d = 3

` = 0
d0 grad grad
tr∂Ωφ φ|∂Ω φ|∂Ω

H0(d0,Ω) H1
0 (Ω) H1

0 (Ω)

` = 1

d1 curl curl
tr∂Ωu (u× n)|∂Ω (u× n)|∂Ω

H0(d1,Ω) H0(curl) H0(curl)
δ1 div div

` = 2

d2 0 div
tr∂Ωq 0 (q · n)|∂Ω

H0(d2,Ω) L2
0(Ω) H0(div)

δ2
−−→
curl curl
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Eigenvalue problem

The abstract counterpart of Maxwell’s eigenvalue problem is
the following general formulation related to Hodge–Laplace
problem

u ∈ H0(d`,Ω) :

(d`u, d`v) = λ(u, v) ∀v ∈ H0(d`,Ω)

The corresponding discretization reads

up ∈ V `
p :

(d`up, d`v) = λp(up, v) ∀v ∈ V `
p

Remark

For ` = 0 we have the standard eigenvalue problem for Laplace
operator.
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Kikuchi mixed formulation

Kikuchi-like formulation for differential forms

u ∈ H0(d`,Ω), ψ ∈ H0(d`−1,Ω) :{
(d`u, d`v) + (d`−1ψ, v) = λ(u, v) ∀v ∈ H0(d`,Ω)

(d`−1φ, u) = 0 ∀φ ∈ H0(d`−1,Ω)

Inclusion d`−1(H0(d`−1,Ω)) ⊂ H0(d`,Ω) implies ψ = 0.

We need to write the appropriate discrete compactness
property in order to prove eigenvalue convergence.

<B. ’07>
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DCP for differential forms
We start from the commuting diagram (for a fixed `)

S(Ω,Λ`−1)
d`−1−−−−→ X (Ω,Λ`)

π`−1
p

y yπ`
p

V `−1
p

d`−1−−−−→ V `
p

Given {up} with up ∈ V `
p and satisfying

(up, d`−1φ) = 0 ∀φ ∈ V `−1
p ∀p,

if {up} is bounded uniformly in H0(d`,Ω), ‖d`up‖L2 ≤ 1, then
there exists a subsequence (denoted by {up}) and
u ∈ L2(Ω,Λ`) such that

‖up − u‖L2 → 0
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DCP and eigenvalue convergence

Using the arguments of <B. – [CMAME] ’07 >, it is possible
to show that SDCP and standard approximation properties
imply the eigenvalue convergence.

Analysis relies on:

• compactness result <Picard ’84>

• equivalence with Kikuchi formulation

• eigenvalue convergence for mixed problems
<B.–Brezzi–Gastaldi ’00>
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Proof for the p version of DCP
<B.–Costabel–Dauge–Demkowicz–Hiptmair ’09>

The proof relies on a Poincaré map which respects polynomials
<Costabel–McIntosh ’08>

The main assumptions are the following ones

1 Regularity and compactness
H0(d`,Ω) ∩ H(δ`0,Ω) ↪→ X (Ω,Λ`)

2 Locality of projectors π`−1
p and π`p and commuting diagram

3 Local approximation property
‖d`−1(φ− π`−1

p,K φ)‖L2(K ,Λ`−1) ≤ ε`−1(p)‖φ‖S(K ,Λ`−1)

4 Poincaré map κj : C∞(K ,Λj)→ C∞(K ,Λj−1) for
j = `, `+ 1 such that d`−1 ◦ κ` + κ`+1 ◦ d` = Id` and
κ`+1 ◦ d` : V `

p (K )→ V `
p (K ) with

κ` ∈ L(X (K ,Λ`),S(K ,Λ`−1)) and
κ`+1 ∈ L(L2(K ,Λ`+1),X (K ,Λ`))
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The proof relies on a Poincaré map which respects polynomials
<Costabel–McIntosh ’08>

The main assumptions are the following ones

1 Regularity and compactness
H0(d`,Ω) ∩ H(δ`0,Ω) ↪→ X (Ω,Λ`)

2 Locality of projectors π`−1
p and π`p and commuting diagram

3 Local approximation property
‖d`−1(φ− π`−1

p,K φ)‖L2(K ,Λ`−1) ≤ ε`−1(p)‖φ‖S(K ,Λ`−1)
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Main theorem

Theorem (B.–Costabel–Dauge–Demkowicz–Hiptmair ’09)

If hypotheses 1+2+3+4 are satisfied, then the Discrete
Compactness Property holds true.

Remark

Approximation properties indeed imply that the Strong Discrete
Compactness Property is valid.
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Sketch of the proof I
We are given {up}, with up ∈ V `

p , such that
(up, dl−1φ) = 0 ∀φ, ‖d`up‖L2(Ω,Λ`) ≤ 1.
We perform the continuous Hodge decomposition of {up}

ũp = up + d`−1ψ̃p ψ̃p ∈ H0(d`−1,Ω)

(ũp, d`−1φ) = 0 ∀φ ∈ H0(d`−1,Ω)

Hence ũp ∈ X (Ω,Λ`). From the compactness of X (Ω,Λ`) in
L2(Ω,Λ`), {ũp} has a subsequence strongly convergent to
u ∈ L2(Ω,Λ`). We will show that the same subsequence of
{up} converges to u in L2(Ω,Λ`).

We use Nédélec trick

‖ũp − up‖2
L2(Ω,Λ`) = (ũp − up, ũp − π`pũp + π`pũp − up)

= (ũp − up, ũp − π`pũp + d`−1π
`−1
p ψ̃p)

= (ũp − up, ũp − π`pũp)
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Sketch of the proof II

‖ũp − up‖L2(Ω,Λ`) ≤ ‖ũp − π`pũp‖L2(Ω,Λ`)

The final result follows from the approximation assumption and
the Poincaré map

Lemma

If u ∈ X (Ω,Λ`) satisfies d`u ∈ d`V
`
p , then

‖u − π`pu‖L2(Ω,Λ`) ≤ Cε`−1(p)‖u‖X (Ω,Λ`)

In order to prove the last estimate, we can work on a single
element K (locality assumption).
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Sketch of the proof III

Poincaré map gives u = d`−1κ`u + κ`+1d`u and
‖κ`+1d`u‖X (K ,Λ`) ≤ C‖d`u‖L2(K ,Λ`)

We set ψ = κ`u, so that ‖ψ‖S(K ,Λ`−1) ≤ C‖u‖X (K ,Λ`)

From u = d`−1ψ + κ`+1d`u we obtain

(Id − π`p,K )u = d`−1(Id − π`−1
p,K )ψ + (Id − π`p,K )κ`+1d`u

= d`−1(Id − π`−1
p,K )ψ

Hence

(Id − π`p,K )u ≤ ε`−1(p)‖ψ‖S(K ,Λ`−1) ≤ Cε`−1(p)‖u‖X (K ,Λ`)
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Summary and additional results

• The numerical analysis of edge finite element
approximation of Maxwell’s eigenvalues has been a
challenging problem for more than a decade

• The use of nodal finite element is known to produce
unreliable results

• Enforcing the divergence free condition with nodal
elements and by a penalty procedure may be problematic

• Analysis for the h version of edge elements is complete

• Exterior calculus is a powerful tool for the analysis of our
problem

• Analysis for the p version of edge elements is covered by
the much more general theory of DCP for differential forms

• Extension to nonconstant coefficients and nontrivial
topologies
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Conclusions

What is covered by our theory. . .

• Basically all known edge element families for Maxwell’s
equations in two and three space dimensions (simplices,
parallelepipeds, prisms,. . . )

• Raviart–Thomas elements for mixed Laplacian

• Standard Laplacian

. . . and what is not

• General quadrilateral and hexahedral elements
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P = L2-projection

‖Πhσ − σh‖2
L2 = (Πhσ − σ,Πhσ − σh) + (σ − σh,Πhσ − σh)

= (Πhσ − σ,Πhσ − σh)− (curl(Πhσ − σh), z− Pz)

≤ ‖Πhσ − σ‖‖Πhσ − σh‖+ ‖ curl(Πhσ − σh)‖‖z− Pz‖
≤ ‖Πhσ − σh‖

(
‖Πhσ − σ‖+ (1/

√
α)‖z− Pz‖

)
‖Pz− zh‖L2 ≤ C sup

τ h

(Pz− zh, curl τ h)

‖τ h‖curl

≤ C sup
τ h

(Pz− z, curl τ h) + (z− zh, curl τ h)

‖τ h‖curl

≤ C

(
‖Pz− z‖+ sup

τ h

−(σ − σh, τ h)

‖τ h‖curl

)
≤ C (‖Pz− z‖+ ‖σ − σh‖)

Back
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Nodal finite elements

<B.–Fernandes–Gastaldi–Perugia ’99>

Nodal elements on unstructured meshes produce awful results
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<B.–Brezzi–Gastaldi ’97>

Nodal elements on structured meshes produce dangerous results

Mode n = 8 n = 16 n = 32

(1,0) 1 1.00428 1.00107 1.00027
(0,1) 1 1.00428 1.00107 1.00027
(1,1) 2 2.01711 2.00428 2.00107
(2,0) 4 4.06804 4.01710 4.00428
(0,2) 4 4.06804 4.01710 4.00428
(2,1) 5 5.10634 5.02674 5.00669
(1,2) 5 5.10634 5.02674 5.00669

?? 6 5.92293 5.98074 5.99518
(2,2) 8 8.27128 8.06845 8.01713
(3,0) 9 9.34085 9.08640 9.02166
(0,3) 9 9.34085 9.08640 9.02166

# zeros 63 255 1023
Back
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Penalty formulation

Penalty formulation works on convex domains only!

(curl u, curl v) + s(divu, div v) = λ(u, v) ∀v

Due to the fact that H1 ∩H0(curl) is a closed subspace of
H0(curl) ∩H(div)

It is possible to use a weighted formulation which weakens the
constraint in the proximity of reentrant corners

<Costabel-Dauge ’02>
Back



hp edge FE’s

Daniele Boffi

Maxwell
eigenvalues

Exterior
calculus

Conclusions

Penalty formulation

Penalty formulation works on convex domains only!

(curl u, curl v) + s(divu, div v) = λ(u, v) ∀v

Due to the fact that H1 ∩H0(curl) is a closed subspace of
H0(curl) ∩H(div)

It is possible to use a weighted formulation which weakens the
constraint in the proximity of reentrant corners

<Costabel-Dauge ’02>
Back



hp edge FE’s

Daniele Boffi

Maxwell
eigenvalues

Exterior
calculus

Conclusions

More realistic situations

The case of variable coefficients (different materials) can be
handled with the tools of <Caorsi–Fernandes–Raffetto ’01>

The case of nontrivial topologies gives rise to a de Rham
complex which is no longer exact. The cohomology is however
finite (a finite dimensional space of harmonic forms shows up),
so that the DCP proof still remains valid

Back
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Quadrilateral finite elements

<Arnold–B.–Falk ’02-’05>

Quadrilateral finite elements have particular requirements for
optimal approximation.
For Maxwell’s eigenvalues, in 2D edge elements do not work:
additional degrees of freedom have to be added (ABF element)

<Arnold–B.–Falk ’05, Gardini ’05>

Reduced integration technique restores optimal convergence
<B.–Kikuchi–Schöberl ’06>

Mimetic techniques can also be adopted to modify standard
edge elements

<B.–Gastaldi ’09>

Three-dimensional analysis still in progress
Back
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