
Babuška–Osborn theory



If λ is a nonvanishing eigenvalue of T , then the ascent multiplicity
α of λ− T is the smallest integer such that
ker(λ− T )α = ker(λ− T )α+1

The terminology comes from the fact that there exists also a
similar definition for the descent multiplicity which makes use of
the range instead of the kernel; for compact operators ascent and
descent multiplicities coincide
The dimension of ker(λ− T )α is called algebraic multiplicity of λ
and the element of ker(λ− T )α are the generalized eigenvectors of
T associated with λ
A generalized vector is of order k if it is in ker(λ− T )k and not in
ker(λ− T )k−1

The generalized eigenvectors of order 1 are called eigenvectors of
T associated with λ and are the elements of ker(λ− T )
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The dimension of ker(λ− T ) (that is the number of linearly
independent eigenvectors) is called geometric multiplicity of λ,
which is always less than or equal to the algebraic multiplicity

If T is selfadjoint, which will be the case for all examples discussed
here, then the ascent multiplicity of each eigenvalue is equal to
one; this implies that all generalized eigenvectors are eigenvectors
and that the geometric and the algebraic multiplicities coincide
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Babuška–Osborn theory

Theorem
Let us assume that the convergence in norm is satisfied. For any
compact set K ⊂ ρ(T ), there exists h0 > 0 such that for all h < h0

it holds K ⊂ ρ(Th) (absence of spurious modes). If λ is a nonzero
eigenvalue of T with algebraic multiplicity equal to m, then there
are m eigenvalues λ1,h, λ2,h, . . . , λm,h of Th, repeated according to
their algebraic multiplicities, such that each λi ,h converges to λ as
h goes to 0.
Moreover, the gap between the direct sum of the generalized
eigenspaces associated with λ1,h, λ2,h, . . . , λm,h and the generalized
eigenspace associated to λ tends to zero as h goes to 0.



Estimating the rate of convergence

The first theorem concerns the approximation of eigenvectors.

Theorem
Let µ be a nonzero eigenvalue of T , E = E (µ)X its generalized
eigenspace, and Eh = Eh(µ)X. Then

δ̂(E ,Eh) ≤ C‖(T − Th)|E‖L(X ).

Corollary (standard elliptic case)

Let λ be an eigenvalue, E = E (λ−1)V1 its generalized eigenspace
and Eh = Eh(λ−1)V1. Then

δ̂(E ,Eh) ≤ C sup
u∈E
‖u‖=1

inf
v∈V1,h

‖u − v‖V1 .



The same theorem written without the gap.

Theorem
Let u(k) be a unit eigenfunction associated with an eigenvalue λ(k)

of multiplicity m, such that λ(k) = · · · = λ(k+m−1) and denote by

u
(k)
h , . . . , u

(k+m−1)
h the eigenfunctions associated with the m

discrete eigenvalues converging to λ(k). Then, there exists

w
(k)
h ∈ span{u(k)

h , . . . , u
(k+m−1)
h } such that

‖u(k) − w
(k)
h ‖V ≤ C sup

u∈E
‖u‖=1

inf
v∈Vh

‖u − v‖V ,

where E denotes the eigenspace associated with λ(k).



In the case of multiple eigenvalues it has been observed that is is
convenient to introduce the arithmetic mean of the approximating
eigenvalues

Theorem
Let µ be a nonzero eigenvalue of T with algebraic multiplicity
equal to m and denote by µ̂h the arithmetic mean of the m discrete
eigenvalues of Th converging towards µ. Denote by φ1, . . . φm a
basis of generalized eigenvectors in E = E (µ)X a and by φ∗1, . . . φ

∗
m

a dual basis of generalized eigenvectors in E ∗ = E ∗(µ)X. Then

|µ− µ̂h| ≤
1

m

m∑
i=1

|((T − Th)φi , φ
∗
i )|

+ C‖(T − Th)|E‖L(X )‖(T ∗ − T ∗h )|E∗‖L(X ).



Corollary

Let λ be an eigenvalue and denote by λ̂h the arithmetic mean of
the m discrete eigenvalues converging towards λ. Then

|λ− λ̂h| ≤ C sup
u∈E
‖u‖=1

inf
v∈V1,h

‖u − v‖V1 sup
u∈E∗
‖u‖=1

inf
v∈V2,h

‖u − v‖V2 ,

where E is the space of generalized eigenfunctions associated with
λ and E ∗ is the space of generalized adjoint eigenfunctions
associated with λ (see the adjoint problem).



The estimate of the error in the eigenvalues involves the ascent
multiplicity α.

Theorem
Let φ1, . . . , φm be a basis of the generalized eigenspace
E = E (µ)X of T and φ∗1, . . . , φ

∗
m a dual basis. Then, for

i = 1, . . .m,

|µ− µi ,h|α ≤C
{ m∑

j ,k=1

|((T − Th)φj , φ
∗
k)|

+ ‖(T − Th)|E‖L(X )‖(T ∗ − T ∗h )|E∗‖L(X )

}
,

where µ1,h, . . . , µm,h denote the m discrete eigenvalues (repeated
according to their algebraic multiplicity) converging to µ and E ∗ is
the space of generalized eigenvectors of T ∗ associated with µ.



Corollary

With the analogous notation as in the previous theorem, for
i = 1, . . . ,m we have

|λ− λi ,h|α ≤ C sup
u∈E
‖u‖=1

inf
v∈V1,h

‖u − v‖V1 sup
u∈E∗
‖u‖=1

inf
v∈V2,h

‖u − v‖V2 ,

where E is the space of generalized eigenfunctions associated with
λ and E ∗ is the space of generalized adjoint eigenfunctions
associated with λ (see the adjoint problem).



Application to non-conforming Crouzeix–Raviart

1. Prove the convergence

2. Estimate error in the eigenvalues

3. Estimate error in the eigenfunctions (L2 and energy norm)



Estimating the eigenfunctions in L2

Immediate from uniform convergence in L(L2)



Estimating the eigenvalues

Need to estimate ((T − Th)u, v) where u and v are eigenfunctions
associated with λ

((T − Th)u, v) = ah((T − Th)u,Tv) + ah(Thu, (T − Th)v)

= ah((T − Th)u, (T − Th)v)

+ ah((T − Th)u,Thv) + ah(Thu, (T − Th)v)

First term is clearly O(h2)
Second and third terms are similar to each other



ah((T − Th)u,Thv) = ah(Tu,Thv)− (u,Thv)

=
∑
K∈Th

∫
∂K

(∇Tu · n)Thv

∑
e∈Eh

∫
e

(
(∇Tu · ne)− Pe(∇Tu · ne)

)
(Thv − PeThv) =

∑
e∈Eh

∫
e

(
(∇Tu · ne)− Pe(∇Tu · ne)

)(
(Thv − PeThv)− (Tv − PeTv)

)



|ah((T − Th)u,Thv)|

≤
∑
e∈Eh

‖(I − Pe)(∇Tu · ne)‖L2(e)‖(I − Pe)(Tv − Thv)‖L2(e)

∑
e∈Eh

‖(I − Pe)(∇Tu · ne)‖L2(e) ≤ Ch1/2
∑
K∈Th

‖Tu‖H2(K)

∑
e∈Eh

‖(I − Pe)(Tv − Thv)‖L2(e) ≤ Ch1/2‖(T − Th)v‖h

≤ Ch3/2‖v‖L2(Ω)



Estimating the eigenfunctions in the energy norm

u − uh = λTu − λhThuh

= (λ− λh)Tu + λh(T − Th)u + λhTh(u − uh),

‖u−uh‖h ≤ |λ−λh|‖Tu‖H1(Ω) +λh‖(T−Th)u‖h+λh‖Th(u−uh)‖h

Third term can be bounded by:

C‖Th(u−uh)‖2
h ≤ ah(Th(u−uh),Th(u−uh)) = (u−uh,Th(u−uh))



Improved theory for multiple eigenvalues
General elliptic case
(Knyazev–Osborn)



Improved estimates (notation)

{ui , . . . , uj} ∈ H1
0 (Ω) eigenfunctions of the continuous problem

Ei ,...,j = span{ui , . . . , uj}
{ui ,h, . . . , uj ,h} ∈ Vh eigenfunctions of the discrete problem

Ei ,...,j ,h = span{ui ,h, . . . , uj ,h}

Elliptic projection onto Ei ,...,j

a(u − Pi ,...,ju, v) = 0 ∀u ∈ H1
0 (Ω), ∀v ∈ Ei ,...,j

Discrete elliptic projection onto Ei ,...,j ,h

ah(u − Pi ,...,j ,hu, v) = 0 ∀u ∈ H1
0 (Ω), ∀v ∈ Ei ,...,j ,h

Discrete elliptic projection onto Vh

ah(u − Phu, v) = 0 ∀u ∈ H1
0 (Ω), ∀v ∈ Vh
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Improved estimates

Theorem (Osborn–Knyazev)

Assume that λp (p > 1) has multiplicity m > 1 so that

λp−1 < λp = · · · = λp+m−1 < λp+m

Then, for i = p, . . . , p + m − 1 we have

0 ≤
λi ,h − λp
λi ,h

≤ ‖(I − Ph + P1,...,p−1,h)Pp,...,i‖2
L(V )

≤

(
1 + max

j=1,...,p−1

λ2
j ,hλ

2
p

|λj ,h − λp|2
‖(I − Ph)TP1,...,p−1,h‖2

L(V )

)
‖(I − Ph)Pp,...,i‖2

L(V )

I Pp,...,i : projection onto any (i − p + 1)-dimensional subspace
of the eigenspace associated with λp
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The theory explained

λ1 < λ2 = λ3 < λ4 (p = m = 2)
For i = 2

λ2,h − λ2

λ2,h
≤

(
1 +

λ2
1,hλ

2
2

|λ1,h − λ2|2
‖(I − Ph)TP1,h‖2

L(V )

)
‖(I − Ph)P2‖2

L(V )

For i = 3

λ3,h − λ3

λ3,h
≤

(
1 +

λ2
1,hλ

2
2

|λ1,h − λ2|2
‖(I − Ph)TP1,h‖2

L(V )

)
‖(I − Ph)P2,3‖2

L(V )


