hp edge FE's
Daniele Boffi
Maxwell
eigenvalues

Exterior
calculus

Conclusions

Eigenvalue approximation in mixed form and
the hp version of edge finite elements

Daniele Boffi

Dipartimento di Matematica “F. Casorati”, Universita di Pavia
http://www-dimat.unipv.it/boffi

ENUMATH - Uppsala - 2009



hp edge FE's

Daniele Boffi Conte ntS

@ Maxwell's eigenvalue problem.
e Recall the analysis for the h version of edge finite elements
and equivalence with mixed formulations.
e Discrete compactness property.
e Analysis does not extend trivially to p and hp version.
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@ Maxwell's eigenvalue problem.
e Recall the analysis for the h version of edge finite elements
and equivalence with mixed formulations.
e Discrete compactness property.
e Analysis does not extend trivially to p and hp version.

® Exterior calculus.
e Discrete compactness property in the framework of

differential forms.
e Recent results on Poincaré map give discrete compactness

for the p version of discrete differential forms.
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Daniele Boff Maxwell eigenvalues
Maxwell
cigenvalues Ampere and Faraday's laws: find resonance frequencies w € R

Variational

criees (with w # 0) and electromagnetic fields (E, H) # (0,0) such
' that

curlE = jwpH  in Q

Analysis for the

curlH = —iweE in Q
Exn=0 on 0N
H-n=0 on 00

w # 0 gives divergence conditions

diveE=0 inQ
divuH =0 on Q

It is then standard to eliminate one field and to obtain the
curl curl problem
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Eliminate H and take u = E (\ = w?)

curl(z L curlu) = Aeu in Q
div(eu) =0 in Q
uxn=0 on 02

Well-known and intensively studied problem. Special (edge)
finite elements required for its approximation. We review
classical analysis for the h version which covers basically all
known families of edge finite elements.

The ultimate goal of more recent work is to analyze the
convergence for the p and hp version of FEM.
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Eliminate H and take u = E (\ = w?)

curl(z L curlu) = Aeu in Q
div(eu) =0 in Q
uxn=0 on 02

Well-known and intensively studied problem. Special (edge)
finite elements required for its approximation. We review
classical analysis for the h version which covers basically all
known families of edge finite elements.

The ultimate goal of more recent work is to analyze the
convergence for the p and hp version of FEM.

For ease of presentation, we take =& =1 and simple
topology from now on.
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The standard variational formulation reads

Variational
formulations

u € Ho(curl) :
(curlu, curlv) = A(u, v) Vv € Ho(curl)
(u,grad ¢) =0 Vo € H}
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Daniele Boff Standard formulation

The standard variational formulation reads

Variational
formulations

u € Ho(curl) :
(curlu, curlv) = A(u, v) Vv € Ho(curl)
(u,grad ¢) =0 Vo € H}

The most commonly used variational formulation in based on
the replacement of the divergence free constraint by the
condition A # 0

u € Hy(curl) :
(curlu, curlv) = A(u,v) Vv € Hy(curl)

The kernel A = 0 corresponds to the infinite dimensional space
grad H}.
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e Mixed formulations

<Kikuchi '89>

Variational
formulations

Divergence free constraint imposed via Lagrange multiplier v
u € Ho(curl), ¢ € Hj :

(curlu, curlv) + (grad ¢, v) = A(u,v) Vv € Hg(curl)
(grad ¢,u) =0 Vo € Hy
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Daniele Boff Mixed formulations

<Kikuchi '89>

Variational
formulations

Divergence free constraint imposed via Lagrange multiplier v
u € Ho(curl), ¢ € Hj :

(curlu, curlv) + (grad ¢, v) = A(u,v) Vv € Hg(curl)
(grad ¢,u) =0 Vo € Hy

<B-Fernandes—Gastaldi—Perugia '99>
Second mixed formulation (Ho(div®) = curl(Ho(curl)))

o € Ho(curl), z € Ho(div®) :
(o,7)+ (curlT,2) =0 V7 € Hog(curl)
(curlo,w) = —\(z,w) VYw € Hy(div?)
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Eigenvalues in mixed form

The equivalence with mixed formulations allowed us to apply

general theory of eigenvalue approximation in mixed form.
<B.—Brezzi—-Gastaldi '97>
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Maxwell

e The equivalence with mixed formulations allowed us to apply
wnedgmave  B€NEral theory of eigenvalue approximation in mixed form.
approximation . . g
Discrete <B.-Brezzi—Gastaldi '97>
compactness

Analysis for the . . . . .
b The main tool for the analysis (exploited for the h version) is
the construction of a Fortin operator that converges to the
Exterior . . . .

calculus identity in norm: Fortid property.

<B.-Fernandes—Gastaldi—Perugia '99>
<B. '00-'01>

Conclusions
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Daniele Boff Eigenvalues in mixed form

Maxwell

e The equivalence with mixed formulations allowed us to apply

et ceemate g€Neral theory of eigenvalue approximation in mixed form.

<B.~Brezzi-Gastaldi '97>

glzh;“ The main tool for the analysis (exploited for the h version) is

the construction of a Fortin operator that converges to the

oot identity in norm: Fortid property.

Conclusions <B.-Fernandes—Gastaldi—Perugia '99>
<B. '00-'01>

Discrete Compactness Property may also be used.
<Kikuchi '89>
<Monk—-Demkowicz '00>
< Caorsi—Fernandes—Raffetto '00>
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Eigenvalues in mixed form

The equivalence with mixed formulations allowed us to apply
general theory of eigenvalue approximation in mixed form.
<B.—Brezzi—-Gastaldi '97>

The main tool for the analysis (exploited for the h version) is
the construction of a Fortin operator that converges to the
identity in norm: Fortid property.
<B.—Fernandes—Gastaldi—Perugia '99>
<B. '00-'01>

Discrete Compactness Property may also be used.
<Kikuchi '89>

<Monk—Demkowicz '00>
< Caorsi—Fernandes—Raffetto '00>

The two approaches are indeed equivalent
<B. 07>
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Variational
formulations

Mixed eigenvalue
approximation

Mixed conditions for Kikuchi formulation
[ELKER] Ellipticity in the discrete kernel
There exists a > 0 such that

(curlvy, curlvy) > allvg|?,  Vvi € K¢

[WA1] Weak approximability of @ = Hy**

There exists wi (k) tending to zero such that

sup (V0 8Y) sl € Q

Vker ||Vk||curl

[SA1] Strong approximability of Vo = H§(curl) N H(div°)
There exists wa(k) tending to zero such that for every u € Vg
there exists u’ € K¢ such that

Hu — uIchrl < wz(k)HUH\/O
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Kikuchi resolvent operators: continuous. . .
rmulat (curlu, curlv) + (grad p,v) = (f,v) Vv € Hp(curl)
approximation (gl’ad q’ u) — 0 vq E Hé_
5 i TKi ¢ £(L?): TKi(f)=u

...and discrete one

(curlug, curlv) + (grad pg,v) = (f,v) Vv e V,
(gradq,ux) =0 Vg € Q«

TH € £(L2): TK(F) = uy
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<B.—Brezzi—Gastaldi '97>

Theorem

If the ellipticity in the discrete kernel [ELKER], the weak
approximability of @ [WA1I], and the strong approximability of
Vo [SA1] are satisfied, then the following convergence in norm

holds true . .
1T = T g2y — 0

Remark

Convergence in norm allows us to use the classical
Babuska—Osborn theory for eigenmode convergence



hp edge FE's

Daniele Boffi

Variational
formulations

Mixed eigenvalue
approximation

Mixed conditions for second formulation

[WA2] Weak approximability of Z° = Hg(curl) N H(div°)

There exists w3 (k) tending to zero such that

(curl 74, 2) < w3(k)||Tkll2llzllz0 VT € KE, Vz € Z°

trong approximability o curl) N iv?
SA2] S bility of Z° = H§ 1) N H(di

There exists wq(k) tending to zero such that for every z € Z°
there exists 2/ € K¢ such that

Iz — 2|2 < wa(k)llzl| 20
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Fortin operator

ezl My : VO — Vi such that Yo € VO
Mixed eigenvalue

approximation
Di

(curl(oc —Mio),wi) =0 Ywy € Z
Mk |lcun < Cllof|vo

[FORTID] Fortid property

There exists ws(k) tending to zero such that

o — Nyo||2 < ws(k)|o|yo Yo e VO
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Alternative resolvent operators: continuous. ..
(o,7)+ (curlT,2) =0 V7 € Hy(curl)
Mixed ‘(eiger)value
i (curlo,w) = —(g,w) Vw € curl(Ho(curl))
i TM2 ¢ £(L?): TM?*(g) =2

...and discrete one

(ok,7)+ (curlT,z) =0 V71 eV
(curloy,w) = —(g,w) Yw € Zj

T2 € L(L%): T}"*(g) = z
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Maxwell

eigenvalues <B.—Brezzi-Gastaldi '97>

Variational
formulations

Mixed eigenvalue

approximation Theorem
Discrete

compactness

Al e If the weak approximability of Z°® [WA2] and the strong

h version

g approximability of Z° [SA2] are satisfied, and if there exists a
fee Fortin operator satisfying the Fortid property [FORTID], then

the following convergence in norm holds true

Conclusions

I T2 — TM2)| 12y — O
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Variationa
formulati

The space Ho(curl) N H(div®) is compactly embedded in L2

Discrete Compactness can be rephrased as

compactness

Given a sequence {u,} C Ho(curl) such that
(un,grad¢) =0 Vo € H, Vn

If {up} is uniformly bounded in Ho(curl), || curlu,|» <1,
then there exits a subsequence (still denoted {u,}) and u € L2
such that

Jun —ull2 — 0
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Discrete compactness property
Discrete analogue for the spaces Vi C Ho(curl) and Qx C H3.
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Discrete analogue for the spaces Vi C Ho(curl) and Qx C H&.

Given a sequence {ux} C Vi discretely divergence free, i.e.,

compactness
Analysis for the

(ug,gradpy) =0 Vor € Qx, Vk

versions

If {u} is uniformly bounded in Ho(curl), || curlugl|,2 <1,
then there exits a subsequence (still denoted {uy}) and u € 2
such that

luk — 2 — 0
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Discrete compactness property
Discrete analogue for the spaces Vi C Ho(curl) and Qx C H&.

Given a sequence {ux} C Vi discretely divergence free, i.e.,

(ug,gradpy) =0 Vor € Qx, Vk

If {u} is uniformly bounded in Ho(curl), || curlugl|,2 <1,
then there exits a subsequence (still denoted {uy}) and u € 2
such that

luk — 2 — 0

Strong DCP

We say that the SDCP is satisfied if u is divergence free
divu = 0. This is true, for instance, if Q) is a good
approximation to HZ.



hp edge FE's

Daniele Boffi

Discrete
compactness

Analysis for the
h version
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versions

Commuting diagram property
<Douglas—Roberts '82>
<Bossavit '88>
<Arnold '02>

Q C H}, V C Ho(curl), U C Hp(div), S C L?/R

0— Q gad ooy dv, g 0
L ng Lny L ny L ny
grad curl div
0— Qk — Vk — Uk — Sk — 0

e Kikuchi formulation uses @ and V
e Alternative formulation uses V and U

e U and S are used for Darcy flow or mixed Laplacian
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approximation

Discrete
compactness
Analysis for the
h version
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versions

Equivalence
<B. '07>
Given Vi C Ho(curl), construct Qx and Zy such that
grad Q C Vi, curlV, C Z;

L4 Zk = curl Vk
e The kernel of curl in V| consists of gradient. Take Q as
set of potentials vanishing on the boundary 0Q
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<B. 07>

Given Vi C Ho(curl), construct Qx and Zy such that
grad Q C Vi, curlV, C Z;

Avabri for the o Zx = curl V
e The kernel of curl in V| consists of gradient. Take Q as
set of potentials vanishing on the boundary 0Q

versions

Theorem
The following three sets of conditions are equivalent
i) ELKER, WA, SAI

i) WA2, SA2, FORTID

iii) SDCP and standard approximation property: for any
v € V| there exists vi € V) such that

HV - VLchrI —0
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<Falk—Osborn '80>

Variational

formulations The analysis for the h version of edge elements is fairly easy in

Mixed eigenvalue

SRl the two dimensional case.

Discrete
compactness

Analysis for the
h version

pand bp e The two dimensional curl operator is isomorphic to the
div operator (and curl corresponds to grad)

e Edge elements are isomorphic to Raviart—=Thomas elements

e The RT interpolant is a Fortin operator

/ wp div(e — MpE) = — / grad wy, - (0 — MpX)+
K K

/ Wh(U—rth)~n:0
oK
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While the RT interpolant is still a Fortin operator, the edge
interpolant is not.

Gl (e di Moreover, standard estimates for mixed approximations don't
p and hp

help (we need uniform convergence!)

o € Ho(curl), z € Ho(div?) :
(o,7)+ (curlT,2) =0 V7 € Ho(curl)
(curlo,w) = —(g,w)  Vw € Hy(div?)

lo = anllueuny + 1z = znl[2 < C inf ([lo — 74[ + [|z — wa)
h 0(1) O(h)

Estimate for ||z — zp||;2 not involving curl o needed.
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A better estimate can be obtained, for instance, with the help
of Fortin operator

co
Analysis for the
h version

pand hp

o = anliz = € (I = Morlia + (1/v@) nf Iz - wle

2= zhlie < C (igf Iz = walle + o — ool
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A better estimate can be obtained, for instance, with the help
of Fortin operator

. o-oulz<cC (Ha — Moz + (1/v/a) inf 12 - wh\m)

Analysis for the
h version

pand hp

versions

2= zhlie < C (igf Iz = walle + o — ool

The result then follows from the Fortid property

lo = Mhollz < Ch*|lo||ms
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Fortid for edge elements

<B. '00>

A Fortin operator can be easily constructed by using the inf-sup
condition for edge elements.

The uniform estimate follows from the commuting diagram and
a particular bound for the edge interpolant

o —o'||;2 < Ch®||o||ys  when curl o is discrete
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Fortid for edge elements

<B. '00>

A Fortin operator can be easily constructed by using the inf-sup
condition for edge elements.

The uniform estimate follows from the commuting diagram and
a particular bound for the edge interpolant

o —o'||;2 < Ch®||o||ys  when curl o is discrete

Remark

The last estimate needs to be generalized to p and hp versions
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p and hp versions

Some preliminary steps towards hp DCP

e Numerical evidence of p convergence

<Monk 94>
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Conclusions



hp edge FE's

Daniele Boffi

Maxwell
eigenvalues
Variational
formulations

Mixed eigenvalue
approximation

Discrete
compactness

Analysis for the
h version

p and hp
versions
Exterior

calculus

Conclusions

p and hp versions

Some preliminary steps towards hp DCP

e Numerical evidence of p convergence <Monk '94>

e Convergence proof of hp DCP for 2D triangular meshes
modulo a conjectured L? estimate
<B.—Costabel-Demkowicz '03>
e Rigorous proof of hp DCP for 2D rectangular meshes

(allowing for 1-irregular hanging nodes)
<B.—Costabel-Dauge-Demkowicz '06>

Existing proof does not extend to more general situations
(triangles or 3D)
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Maxwell

cigenvalues <Arnold—Falk—=Winther '06-'09>
Exterior

o We consider a complex of differential forms, Q C R”

igenvalue

p‘roblem'for

el 0(y %, ALy G, ... d

- 0 — A (Q) — A (Q) = . /5 /\"(Q) — 0

Proof for the p
version of DCP

Conclusions
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<Arnold—Falk—=Winther '06-'09>

S We consider a complex of differential forms, Q C R”
igenvalue

problem for

differential forms

Discrete d() d1
compactness 0 — /\O(Q) — /\I(Q) —
Proof for the p
version of D

CcpP

L ANQ) 0

We define V¢ = Hy(d,, Q), so that we have the complex

dn_
0 — VO P, 1 A G

Vi(Q) — 0
and, given finite element approximation spaces Vlf c V4 we
consider the discrete differential complex

dn—l

0—>Vgﬂ>vpli>---—>V;(Q)—>0
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Eigenvalue
problem for
differential forms

P

Identification table

Differential form

Proxy representation

d=2 ‘ d=3
do grad grad
=0 | tragp blo0 P10
Ho(do, Q) | Hp(2) Hs (2)
dy curl curl
/=1 troqu (u X n)|39 (u X rl)|,39
Ho(dl, Q) Ho(curl) Ho(CUI‘|)
01 div div
d> 0 div
¢ _ o | trood 0 (a-n)joq
Ho(c2,Q) | L3(R) Ho(div)
—
0o curl curl
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Eigenvalue
problem for
differential forms
Discrete
compactness
Proof for the p
version of DCP

Eigenvalue problem

The abstract counterpart of Maxwell's eigenvalue problem is
the following general formulation related to Hodge—Laplace
problem

uc Ho(dg, Q) :

(dgu, dgv) = )\(U, V) Vv € Ho(dg, Q)
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CcpP

Eigenvalue problem

The abstract counterpart of Maxwell's eigenvalue problem is
the following general formulation related to Hodge—Laplace

problem
uc Ho(dg, Q) :

(dgu, dgv) = )\(U, V) Vv € Ho(dg, Q)
The corresponding discretization reads

u, € Vlf :
(deup, dev) = Ap(up,v) Vv e fo
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CcpP

Eigenvalue problem

The abstract counterpart of Maxwell's eigenvalue problem is
the following general formulation related to Hodge—Laplace

problem
uc Ho(dg, Q) :

(dgu, dgv) = )\(U, V) Vv € Ho(dg, Q)

The corresponding discretization reads

u, € Vlf :
(deup, dev) = Ap(up,v) Vv e fo

Remark

For £ = 0 we have the standard eigenvalue problem for Laplace
operator.



hp edge FE's

Daniele Boffi

Eigenvalue
problem for
differential forms

Kikuchi mixed formulation

Kikuchi-like formulation for differential forms
uec Ho(dg,Q), w (S Ho(dg_l,Q) :
(deu, dyv) + (do—19, v) = Mu, v) Vv € Ho(dp, )
(dp—10,u) =0 V¢ € Ho(dp—1,9)

Inclusion dy_1(Ho(dr—1,9)) C Ho(dg, Q) implies ¢ = 0.
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Eigenvalue
problem for
differential forms
Discrete
compactness

Kikuchi mixed formulation

Kikuchi-like formulation for differential forms
uc Ho(dg,Q), P e Ho(dg_l,Q) :
(deu, dyv) + (do—19, v) = Mu, v) Vv € Ho(dp, )
(dp—10,u) =0 V¢ € Ho(dp—1,9)
Inclusion dy_1(Ho(dr—1,9)) C Ho(dg, Q) implies ¢ = 0.

We need to write the appropriate discrete compactness
property in order to prove eigenvalue convergence.
<B. 07>
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We start from the commuting diagram (for a fixed ¢)

Maxwell
eigenvalues
Exterior /—1 de_1 YA
calculus S(Q, /\ ) — )((S-Z7 /\ )
Eigenvalue
problem for
differential forms ﬂ_lfl i
Discrete P P
compactness

do—1

Proof for the p
VZ—l

version of DCP

Conclusions
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Daniele Boff DCP for differential forms

We start from the commuting diagram (for a fixed ¢)

dp—1
S(Q, AL /5 X(Q,A9)

Eigenvalue

oblem f
differential forms -1 ot
Discrete P P
compactness
Proof for the
e o7 1P vi-1 de—1 V.

p p

Given {up} with up € Vlf and satisfying
(upv d€—1¢) =0 v¢ € Vg_l V,D,

if {up} is bounded uniformly in Ho(d;, ), ||dpup||2 < 1, then
there exists a subsequence (denoted by {u,}) and
u € L2(,\Y) such that

lup — ufl2 — 0
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Maxwell
eigenvalues

Exterior
calculus

S Using the arguments of <B. — [CMAME] '07 >, it is possible
differential forms . . .
Disree to show that SDCP and standard approximation properties
Plosisr g imply the eigenvalue convergence.

Conclusions

Analysis relies on:

e compactness result <Picard '84>
e equivalence with Kikuchi formulation

e eigenvalue convergence for mixed problems
<B.-Brezzi—Gastaldi '00>
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Exterior The proof relies on a Poincaré map which respects polynomials
o <Costabel-McIntosh '08>
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Discrete
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Proof for the p
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Conclusions
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<B.—Costabel-Dauge-Demkowicz—Hiptmair '09>

The proof relies on a Poincaré map which respects polynomials
< Costabel-Mclntosh '08>

The main assumptions are the following ones

compactness
Proof for the p
version of DCP

@ Regularity and compactness
Ho(dp, Q) N H(5,0,Q) — X(Q,A%)

® Locality of projectors Wﬁ_l and 7Tf; and commuting diagram

© Local approximation property
Ide—1(6 = 7 D) |2k ne-1) < -1 (ISl sk ne )
@ Poincaré map r; : C®°(K,N) — C®(K,N71) for
J=4,0+ 1 such that dy_1 0 kg + kg1 0 dy = Idy and
Key1 o dp 2 VE(K) — VE(K) with
ke € L(X(K,NY),S(K, A1) and
Ke+1 € ‘C(LZ(Ka /\“_1)7 X(K, /\Z))
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Maxwell
eigenvalues

Exterior
calculus

Eigenvalue
problem for

e ™ Theorem (B.—Costabel-Dauge—Demkowicz—Hiptmair '09)

Discrete
compactness

Proof for the p

C orpee If hypotheses 1+2+3+-4 are satisfied, then the Discrete
onclusions
Compactness Property holds true.

Remark

Approximation properties indeed imply that the Strong Discrete
Compactness Property is valid.
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Proof for the p
version of DCP

Sketch of the proof |

We are given {up}, with up € Vg, such that
(Up, di—10) = 0 Vo, |deup|[ 120y < 1.
We perform the continuous Hodge decomposition of {up}
E’p = up+ dE—l"Zp QzZP € HO(dZ—la Q)
(Up, dp—14) =0 Vo € Ho(dr-1,)
Hence @i, € X(Q,A?). From the compactness of X(,A?) in
L2(Q,A%), {@i,} has a subsequence strongly convergent to

u € L2(Q,A%). We will show that the same subsequence of
{up} converges to u in L2(, A°).

We use Nédélec trick
~ 2 ~ ~ 0~ 0~

[dp — Up||L2(Q,/\£) = (lp — up, Up — TpUp + Tplp — Up)

= (

~ ~ 0~
= (Tp — up, Up — ”p”p)

<

~ l~ —1,7
p — Up, Up — Tplp + d€—177p Vp)
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Eigenvalue
problem for

differential forms

Discrete
compactness
Proof for the p
version of DCP

Sketch of the proof Il

[ip — UPHL2(Q,/\Z) < |t — 7r;l;f’p”B(Q,/\f)

The final result follows from the approximation assumption and
the Poincaré map

Lemma

If u € X(Q,N\) satisfies dyu € dyV%, then

‘
|u—mpull2@.aey < Cee1(p)llullx(o,n0)

In order to prove the last estimate, we can work on a single
element K (locality assumption).
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Daniele Boff Sketch of the proof Il|

Poincaré map gives u = dyp_1K¢uU + K¢41deu and
[Ker1deul| x(k aey < Clldeull 2ok a0

We set ¢ = ryu, so that [[1[|sk a1y < Cllullx (ka0

di
D

Peredce  From u = dy 11 + Kep1dpu we obtain
(Id =y )u = dp—1(ld — 7y )b + (Id — 7p, )iy 1deu
= dy—1(ld — WP,KW

Hence

(Id — bk )u < €1 (P) ¥l sk ae-1y < Cee—1(P)lullx(k ey
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Summary and additional results

The numerical analysis of edge finite element
approximation of Maxwell's eigenvalues has been a
challenging problem for more than a decade

The use of nodal finite element is known to produce
unreliable results

Enforcing the divergence free condition with nodal
elements and by a penalty procedure may be problematic
Analysis for the h version of edge elements is complete
Exterior calculus is a powerful tool for the analysis of our
problem

Analysis for the p version of edge elements is covered by
the much more general theory of DCP for differential forms
Extension to nonconstant coefficients and nontrivial
topologies
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What is covered by our theory. ..

Conclusions

e Basically all known edge element families for Maxwell's
equations in two and three space dimensions (simplices,
parallelepipeds, prisms,...)

e Raviart—-Thomas elements for mixed Laplacian

e Standard Laplacian
...and what is not

e General quadrilateral and hexahedral elements
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...and what is not
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Conclusions

P = L%-projection

Mo — ahHi =Npo —o,Npo —op)+ (60 —op,Nro — op)
= (Npo — o,Nyo — o) — (curl(Nyo — o),z — Pz)
< Mo — o|[[Mho — ol + [ cur(Mho — op)[|lz — Pz||
<|[Mpo — s (IMho — ol + (1/Va)llz - Pz|)

Pz — |
1Pz — zp 2 < Csup (P2 2Zncurl )

Th HTthurI
< Csup (Pz—z,curlTy) + (z — zp, curl )
Th ”TthurI
Th HTthurI

< C(lPz=z|l+ o —anl)
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Nodal finite elements

<B.—Fernandes—Gastaldi—Perugia '99>

Nodal elements on unstructured meshes produce awful results

NODAL ELEMENTS

25

0.5

o®

o

I
20 25 30 35 40
# eigenvalue

45

50
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<B.—Brezzi—Gastaldi '97>

Daniele Boffi
Nodal elements on structured meshes produce dangerous results

Mode n=238 n=16 | n=32
condlusons (1,0) | 1 | 1.00428 | 1.00107 | 1.00027
(0,1) | 1 | 1.00428 | 1.00107 | 1.00027
(1,1) | 2 | 2.01711 | 2.00428 | 2.00107
(2,0) | 4 | 4.06804 | 4.01710 | 4.00428
(0,2) | 4 | 4.06804 | 4.01710 | 4.00428
(2,1) | 5| 5.10634 | 5.02674 | 5.00669
(1,2) | 5| 5.10634 | 5.02674 | 5.00669
?? | 6 | 5.92293 | 5.98074 | 5.99518
(2,2) | 8 | 8.27128 | 8.06845 | 8.01713
(3,0) | 9 | 9.34085 | 9.08640 | 9.02166
(0,3) | 9 | 9.34085 | 9.08640 | 9.02166
# zeros 63 255 1023
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Daniele Boff Penalty formulation

Penalty formulation works on convex domains only!

Conclusions

(curlu, curlv) + s(divu,divv) = A(u,v) WYv

Due to the fact that H! N Hg(curl) is a closed subspace of
Ho(curl) N H(div)
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Conclusions

Penalty formulation

Penalty formulation works on convex domains only!

(curlu, curlv) + s(divu,divv) = A(u,v) WYv

Due to the fact that H! N Hg(curl) is a closed subspace of
Ho(curl) N H(div)

It is possible to use a weighted formulation which weakens the
constraint in the proximity of reentrant corners
< Costabel-Dauge '02>



hp edge FE's

Daniele Boffi
Maxwell
eigenvalues

Exterior
calculus

Conclusions

More realistic situations

The case of variable coefficients (different materials) can be
handled with the tools of <Caorsi-Fernandes—Raffetto '01>
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Danisle Bof More realistic situations

Conclusions

The case of variable coefficients (different materials) can be
handled with the tools of <Caorsi-Fernandes—Raffetto '01>

The case of nontrivial topologies gives rise to a de Rham
complex which is no longer exact. The cohomology is however
finite (a finite dimensional space of harmonic forms shows up),
so that the DCP proof still remains valid
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Quadrilateral finite elements

<Arnold-B.—Falk '02-'05>

Quaderilateral finite elements have particular requirements for

optimal approximation.

For Maxwell's eigenvalues, in 2D edge elements do not work:

additional degrees of freedom have to be added (ABF element)
<Arnold-B.-Falk '05, Gardini '05>
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additional degrees of freedom have to be added (ABF element)
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Reduced integration technique restores optimal convergence
<B.-Kikuchi-Schoberl '06>

Mimetic techniques can also be adopted to modify standard

edge elements
<B.—Gastaldi '09>
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Conclusions

Quadrilateral finite elements

<Arnold-B.—Falk '02-'05>

Quaderilateral finite elements have particular requirements for

optimal approximation.

For Maxwell's eigenvalues, in 2D edge elements do not work:

additional degrees of freedom have to be added (ABF element)
<Arnold-B.-Falk '05, Gardini '05>

Reduced integration technique restores optimal convergence
<B.—Kikuchi-Schoberl '06>

Mimetic techniques can also be adopted to modify standard

edge elements
<B.—Gastaldi '09>

Three-dimensional analysis still in progress
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