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The classical electromagnetic field is described by the four vectors
E , D, H, and B which are functions of the position x ∈ R3 and of
the time t ∈ R. The vectors E and H are referred to as the electric
and magnetic field, while D and B are the electric and magnetic
displacements, respectively.
The Faraday law of induction states∫

∂Σ
E · ds = − d

dt

∫
Σ
B · n

The Ampère law says∫
∂Σ
H · ds =

d

dt

∫
Σ
D · n +

∫
Σ
J · n

where J denotes the current density vector.



It can be noticed that the fields E , H, B, and D have a different
nature. Indeed, the first two are integral 1-forms, while the latter
two are integral 2-forms.
This remark is of fundamental importance for the design of finite
element schemes.

The differential forms of Faraday and Ampère laws read

∂B
∂t

+ curl E = 0

∂D
∂t
− curlH = −J

which are usually referred to as Maxwell’s equations, together with
the two Gauss Laws

divD = ρ

divB = 0

where ρ denotes the charge density function.
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The time-harmonic Maxwell system is considered, for instance,
when the Fourier transform in time is used or when the
propagation of electromagnetic waves at a given frequency is
studied. Then, given a frequency ω, we consider the ansatz:

E(x, t) = <
(
e−iωtE(x)

)
D(x, t) = <

(
e−iωtD(x)

)
H(x, t) = <

(
e−iωtH(x)

)
B(x, t) = <

(
e−iωtB(x)

)
where < denotes the real part. We define also

J (x, t) = <
(
e−iωtJ(x)

)
ρ(x, t) = <

(
e−iωtr(x)

)



Standard constitutive equations for linear media read

D = εE B = µH

where ε and µ denote the electric permittivity and the magnetic
permeability, respectively. For general inhomogeneous, anisotropic
materials ε and µ are 3× 3 positive definite matrix functions.

Inserting constitutive relations into the Maxwell’s equations and
considering the time-harmonic assumptions, we get the time
harmonic Maxwell’s equations

curl E− iωµH = 0

div(εE) = r

curlH + iωεE = J

div(µH) = 0
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It is a standard procedure to eliminate one variable and to write
the time harmonic Maxwell’s system as a second order system.
Eliminating for instance the field H, we get

curl(µ−1 curl E)− ω2εE = F

where F is given by iωJ, together with the divergence condition
(which follows from the equation)

−ω2 div(εE) = divF.

The equation is usually equipped with suitable boundary
conditions. The simplest one is the perfect conducting boundary
condition which reads

E× n = 0

where n is the outward unit vector.
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