# Transversals to the convex hull of all k set of discrete subsets of $\mathbb{R}^n$

# J. L. Ramírez Alfonsín

Université Montpellier 2

(joint work with J. Arocha, J. Bracho and L. Montejano)

イロト イヨト イヨト イヨト

# 1 Introduction

**2** Systems of plane and the  $\lambda$ -Helly property

# 3 Kneser hypergraphs

# 4 Conjecture

- - 4 回 ト - 4 回 ト

Let us consider 8 points in  $\mathbb{R}^3$  general position.



Question : Is there a transversal line to all tetrahedra?

イロン イヨン イヨン イヨン

Let us consider 8 points in  $\mathbb{R}^3$  general position.



Question : Is there a transversal line to all tetrahedra?

イロト イポト イヨト イヨト

#### Introduction

Systems of plane and the  $\lambda$ -Helly property Kneser hypergraphs Conjecture

### **NEVER**



## ALWAYS

- Let  $x \in A$  and let  $T_1$  be the set of tetrahedras containing x and let  $T_2$  be the set of tetrahedras not containing x.
- $T_2$  has the 4-Helly property, and therefore, there exists a point y in the intersection of all tetrahedras in  $T_2$ .
- So, the line passing through x and y gives the desired transversal.
- Question : Let A be a set of 7 points in  $\mathbb{R}^3$  in general position. Is there a transversal line to all tetrahedra of A?

## **ALWAYS**

Let  $x \in A$  and let  $T_1$  be the set of tetrahedras containing x and let  $T_2$  be the set of tetrahedras not containing x.

 $T_2$  has the 4-Helly property, and therefore, there exists a point y in the intersection of all tetrahedras in  $T_2$ .

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in  $\mathbb{R}^3$  in general position. Is there a transversal line to all tetrahedra of A?

### **ALWAYS**

Let  $x \in A$  and let  $T_1$  be the set of tetrahedras containing x and let  $T_2$  be the set of tetrahedras not containing x.

 $T_2$  has the 4-Helly property, and therefore, there exists a point y in the intersection of all tetrahedras in  $T_2$ .

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in  $\mathbb{R}^3$  in general position. Is there a transversal line to all tetrahedra of A?

### **ALWAYS**

Let  $x \in A$  and let  $T_1$  be the set of tetrahedras containing x and let  $T_2$  be the set of tetrahedras not containing x.

 $T_2$  has the 4-Helly property, and therefore, there exists a point y in the intersection of all tetrahedras in  $T_2$ .

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in  $\mathbb{R}^3$  in general position. Is there a transversal line to all tetrahedra of A?

**ALWAYS** 

Let  $x \in A$  and let  $T_1$  be the set of tetrahedras containing x and let  $T_2$  be the set of tetrahedras not containing x.

 $T_2$  has the 4-Helly property, and therefore, there exists a point y in the intersection of all tetrahedras in  $T_2$ .

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in  $\mathbb{R}^3$  in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let  $x \in A$  and let  $T_1$  be the set of tetrahedras containing x and let  $T_2$  be the set of tetrahedras not containing x.

 $T_2$  has the 4-Helly property, and therefore, there exists a point y in the intersection of all tetrahedras in  $T_2$ .

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in  $\mathbb{R}^3$  in general position. Is there a transversal line to all tetrahedra of A?

イロト イポト イヨト イヨト

Sometimes NO

<ロ> (四) (四) (三) (三) (三)

# Sometimes YES



# Definitions

# Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$ .

 $M(k, d, \lambda) \stackrel{\text{def}}{=}$  the maximum positive integer *n* such that every set of *n* points (not necessarily in general position) in  $\mathbb{R}^d$  has the property that the convex hull of all *k*-set have a transversal  $(d - \lambda)$ -plane.

 $m(k, d, \lambda) \stackrel{\text{def}}{=}$  the minimum positive integer *n* such that for every set of *n* points in general position in  $\mathbb{R}^d$  the convex hull of the *k*-sets does not have a transversal  $(d - \lambda)$ -plane.

# Definitions

Let  $k, d, \lambda \geq 1$  be integers with  $d \geq \lambda$ .

 $M(k, d, \lambda) \stackrel{\text{def}}{=}$  the maximum positive integer *n* such that every set of *n* points (not necessarily in general position) in  $\mathbb{R}^d$  has the property that the convex hull of all *k*-set have a transversal  $(d - \lambda)$ -plane.

 $m(k, d, \lambda) \stackrel{\text{def}}{=}$  the minimum positive integer *n* such that for every set of *n* points in general position in  $\mathbb{R}^d$  the convex hull of the *k*-sets does not have a transversal  $(d - \lambda)$ -plane.

# Definitions

Let  $k, d, \lambda \geq 1$  be integers with  $d \geq \lambda$ .

 $M(k, d, \lambda) \stackrel{\text{def}}{=}$  the maximum positive integer *n* such that every set of *n* points (not necessarily in general position) in  $\mathbb{R}^d$  has the property that the convex hull of all *k*-set have a transversal  $(d - \lambda)$ -plane.

 $m(k, d, \lambda) \stackrel{\text{def}}{=}$  the minimum positive integer *n* such that for every set of *n* points in general position in  $\mathbb{R}^d$  the convex hull of the *k*-sets does not have a transversal  $(d - \lambda)$ -plane.

- $M(k, d, \lambda) < m(k, d, \lambda)$ .
- M(4,3,2) = 6 and m(4,3,2) = 8.

Theorem (Arocha, Bracho, Montejano, R.A.)

$$m(k, d, \lambda) = \left\{ egin{array}{cc} d+2(k-\lambda)+1 & ext{if } k \geq \lambda, \ k+(d-\lambda)+1 & ext{if } k \leq \lambda. \end{array} 
ight.$$

Proof (idea) :

- 1)  $m(k, d, \lambda) \leq \{ \cdots \text{ by using similar arguments as before.}$
- 2)  $m(k,d,\lambda) \geq \{ \cdots$  by using a classical result of Gale.

#### Introduction Systems of plane and the $\lambda$ -Helly property Kneser hypergraphs

#### Conjecture

- $M(k, d, \lambda) < m(k, d, \lambda)$ .
- M(4,3,2) = 6 and m(4,3,2) = 8.

Theorem (Arocha, Bracho, Montejano, R.A.)

$$m(k, d, \lambda) = \left\{ egin{array}{cc} d+2(k-\lambda)+1 & ext{if } k \geq \lambda, \ k+(d-\lambda)+1 & ext{if } k \leq \lambda. \end{array} 
ight.$$

Proof (idea) :

- 1)  $m(k, d, \lambda) \leq \{ \cdots$  by using similar arguments as before.
- 2)  $m(k, d, \lambda) \geq \{ \cdots \text{ by using a classical result of Gale.}$

- $M(k, d, \lambda) < m(k, d, \lambda)$ .
- M(4,3,2) = 6 and m(4,3,2) = 8.

Theorem (Arocha, Bracho, Montejano, R.A.)

$$m(k, d, \lambda) = \left\{ egin{array}{cc} d+2(k-\lambda)+1 & ext{if } k \geq \lambda, \ k+(d-\lambda)+1 & ext{if } k \leq \lambda. \end{array} 
ight.$$

Proof (idea) :

- 1)  $m(k, d, \lambda) \leq \{ \cdots \text{ by using similar arguments as before.}$
- 2)  $m(k,d,\lambda) \geq \{ \ \cdots \$ by using a classical result of Gale.

- $M(k, d, \lambda) < m(k, d, \lambda)$ .
- M(4,3,2) = 6 and m(4,3,2) = 8.

Theorem (Arocha, Bracho, Montejano, R.A.)

$${\it m}(k,d,\lambda) = \left\{ egin{array}{cc} d+2(k-\lambda)+1 & {
m if} \ k\geq\lambda, \ k+(d-\lambda)+1 & {
m if} \ k\leq\lambda. \end{array} 
ight.$$

Proof (idea) :

- 1)  $m(k, d, \lambda) \leq \{ \cdots \text{ by using similar arguments as before.}$
- 2)  $m(k, d, \lambda) \ge \{ \cdots \text{ by using a classical result of Gale.} \}$

イロト イポト イヨト イヨト 二日

# System of lines in $\mathbb{R}^d$ is a continuous selection of one line in every direction. Fact : Two systems of lines in $\mathbb{R}^2$ coincide in some direction.

・ロン ・回 と ・ ヨ と ・ ヨ と

System of lines in  $\mathbb{R}^d$  is a continuous selection of one line in every direction.



# Fact : Two systems of lines in ${ m I\!R}^2$ coincide in some direction, i.e. ${ m some}$

J. L. Ramírez Alfonsín Transversals to the convex hull of all k set of discrete subsets of

System of lines in  $\mathbb{R}^d$  is a continuous selection of one line in every direction.



Fact : Two systems of lines in  ${\rm I\!R}^2$  coincide in some direction

J. L. Ramírez Alfonsín Transversals to the convex hull of all k set of discrete subsets of

# System of planes in $\mathbb{R}^d$ is a continuous selection of one plane in every direction. Fact : Three systems of planes in $\mathbb{R}^d$ coincide in some direction.

・ロン ・回 と ・ ヨ と ・ ヨ と

System of planes in  $\mathbb{R}^d$  is a continuous selection of one plane in every direction.



# Planes dividing volume (or surface) in half

# Fact : Three systems of planes in $\mathbb{R}^d$ coincide in some direction.

J. L. Ramírez Alfonsín Transversals to the convex hull of all k set of discrete subsets of

System of planes in  $\mathbb{R}^d$  is a continuous selection of one plane in every direction.



## Planes dividing volume (or surface) in half

Fact : Three systems of planes in  $\mathbb{R}^d$  coincide in some direction.

System of  $\lambda$ -planes for every  $\lambda$ -plane H through the origin in  $\mathbb{R}^d$ , we choose continuously a  $\lambda$ -plane  $\Phi(H)$  parallel to H

 $\{\Phi(H)\}_{H\in G(\lambda,d)}$ 

Theorem (Dol'nikov, Bracho-Montejano) Let  $\{\Phi_0(H)\}, \ldots, \{\Phi_\lambda(H)\}\$  be  $\lambda + 1$  systems of  $\lambda$ -plane in  $\mathbb{R}^d$ . Then, they coincide in some direction, that is, there is a  $\lambda$ -plane H' through the origin such that

$$\Phi_0(H') = \cdots = \Phi_\lambda(H').$$

System of  $\lambda$ -planes for every  $\lambda$ -plane H through the origin in  $\mathbb{R}^d$ , we choose continuously a  $\lambda$ -plane  $\Phi(H)$  parallel to H

 $\{\Phi(H)\}_{H\in G(\lambda,d)}$ 

Theorem (Dol'nikov, Bracho-Montejano) Let  $\{\Phi_0(H)\}, \ldots, \{\Phi_{\lambda}(H)\}\$ be  $\lambda + 1$  systems of  $\lambda$ -plane in  $\mathbb{R}^d$ . Then, they coincide in some direction, that is, there is a  $\lambda$ -plane H' through the origin such that

$$\Phi_0(H') = \cdots = \Phi_\lambda(H').$$

イロト イポト イヨト イヨト 二日

# A family of convex sets $\{A_i\}_1^n$ in $\mathbb{R}^d$ has $\lambda$ -Helly property if every subfamily of $\{A_i\}_1^n$ of size $\lambda + 1$ is intersecting.

Remark Suppose that family  $F = \{A_i\}_1^n$  in  $\mathbb{R}^d$  has the  $\lambda$ -Helly property with  $\lambda \leq d$ . Then, there is a system of  $(d - \lambda)$ -planes in  $\mathbb{R}^d$  transversal to F.

A family of convex sets  $\{A_i\}_1^n$  in  $\mathbb{R}^d$  has  $\lambda$ -Helly property if every subfamily of  $\{A_i\}_1^n$  of size  $\lambda + 1$  is intersecting.

Remark Suppose that family  $F = \{A_i\}_1^n$  in  $\mathbb{R}^d$  has the  $\lambda$ -Helly property with  $\lambda \leq d$ . Then, there is a system of  $(d - \lambda)$ -planes in  $\mathbb{R}^d$  transversal to F.

소리가 소리가 소문가 소문가 ...



◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで







(ロ) (回) (E) (E) (E)



(ロ) (回) (E) (E) (E)



# A coloration of F is $\lambda$ -admissable if every subfamily of the convex sets with the same color has the $\lambda$ -Helly property.

**Proposition** Let F be a family of convex sets in  $\mathbb{R}^d$  and suppose that F has  $\lambda$ -admissable coloration with  $d - \lambda + 1$  colors,  $\lambda \leq d$ . Then, F admits a transversal  $(d - \lambda)$ -plane.

イロト イポト イヨト イヨト

A coloration of *F* is  $\lambda$ -admissable if every subfamily of the convex sets with the same color has the  $\lambda$ -Helly property.

Proposition Let F be a family of convex sets in  $\mathbb{R}^d$  and suppose that F has  $\lambda$ -admissable coloration with  $d - \lambda + 1$  colors,  $\lambda \leq d$ . Then, F admits a transversal  $(d - \lambda)$ -plane.

A hypergraph H is a pair  $(V, \mathcal{H})$  where V (vertices) is a finite set and  $\mathcal{H}$  (hyperedges) is a collection of subsets of V.

The Kneser hypergraph  $K^{\lambda+1}(n, k)$  is the hypergraph  $(V, \mathcal{H})$ where V is the collection of all k-elements subsets of a *n*-set and  $\mathcal{H} = \{(S_1, \ldots, S_{\rho}) | 2 \le \rho \le \lambda + 1, S_1 \cap \cdots \cap S_{\rho} = \emptyset\}.$ 

Remark Kneser graphs are obtained when  $\lambda = 1$ .

# A hypergraph H is a pair $(V, \mathcal{H})$ where V (vertices) is a finite set and $\mathcal{H}$ (hyperedges) is a collection of subsets of V.

The Kneser hypergraph  $K^{\lambda+1}(n,k)$  is the hypergraph  $(V,\mathcal{H})$ where V is the collection of all k-elements subsets of a n-set and  $\mathcal{H} = \{(S_1, \ldots, S_{\rho}) | \ 2 \le \rho \le \lambda + 1, \ S_1 \cap \cdots \cap S_{\rho} = \emptyset\}.$ 

Remark Kneser graphs are obtained when  $\lambda = 1$ .

소리가 소리가 소문가 소문가

A hypergraph H is a pair  $(V, \mathcal{H})$  where V (vertices) is a finite set and  $\mathcal{H}$  (hyperedges) is a collection of subsets of V.

The Kneser hypergraph  $K^{\lambda+1}(n, k)$  is the hypergraph  $(V, \mathcal{H})$ where V is the collection of all k-elements subsets of a *n*-set and  $\mathcal{H} = \{(S_1, \ldots, S_{\rho}) | 2 \le \rho \le \lambda + 1, S_1 \cap \cdots \cap S_{\rho} = \emptyset\}.$ 

Remark Kneser graphs are obtained when  $\lambda = 1$ .

A hypergraph H is a pair  $(V, \mathcal{H})$  where V (vertices) is a finite set and  $\mathcal{H}$  (hyperedges) is a collection of subsets of V.

The Kneser hypergraph  $K^{\lambda+1}(n, k)$  is the hypergraph  $(V, \mathcal{H})$ where V is the collection of all k-elements subsets of a *n*-set and  $\mathcal{H} = \{(S_1, \ldots, S_{\rho}) | 2 \le \rho \le \lambda + 1, S_1 \cap \cdots \cap S_{\rho} = \emptyset\}.$ 

Remark Kneser graphs are obtained when  $\lambda = 1$ .

Kneser hypergraph when n = 5, k = 2 and  $\lambda = 1$  (Petersen graph)



イロト イヨト イヨト イヨト

-2

# A coloring of a hypergraph H is a function that assigns colors to the vertices such that each hyperedge of H is *heterochromatic*.

- A collection of vertices  $\{S_1, \ldots, S_{\rho}\}$  of  $K^{\lambda+1}(n, k)$  are in the same color class if and only if either
- a)  $ho \leq \lambda + 1$  and  $S_1 \cap \dots \cap S_
  ho 
  eq \emptyset$  or
- b)  $\rho > \lambda + 1$  and any  $(\lambda + 1)$ -subfamily  $\{S_{i_1}, \ldots, S_{i_{\lambda+1}}\}$  of  $\{S_1, \ldots, S_{\rho}\}$  is such that  $S_{i_1} \cap \cdots \cap S_{i_{\lambda+1}} \neq \emptyset$  (that is, they satisfy the  $\lambda$ -Helly property).

イロト イポト イヨト イヨト

A coloring of a hypergraph H is a function that assigns colors to the vertices such that each hyperedge of H is *heterochromatic*.

A collection of vertices  $\{S_1, \ldots, S_{\rho}\}$  of  $K^{\lambda+1}(n, k)$  are in the same color class if and only if either

a)  $ho \leq \lambda + 1$  and  $S_1 \cap \dots \cap S_{
ho} \neq \emptyset$  or

b)  $\rho > \lambda + 1$  and any  $(\lambda + 1)$ -subfamily  $\{S_{i_1}, \ldots, S_{i_{\lambda+1}}\}$  of  $\{S_1, \ldots, S_{\rho}\}$  is such that  $S_{i_1} \cap \cdots \cap S_{i_{\lambda+1}} \neq \emptyset$  (that is, they satisfy the  $\lambda$ -Helly property).

A coloring of a hypergraph H is a function that assigns colors to the vertices such that each hyperedge of H is *heterochromatic*.

A collection of vertices  $\{S_1, \ldots, S_{\rho}\}$  of  $K^{\lambda+1}(n, k)$  are in the same color class if and only if either

a)  $ho \leq \lambda + 1$  and  $S_1 \cap \dots \cap S_{
ho} \neq \emptyset$  or

b)  $\rho > \lambda + 1$  and any  $(\lambda + 1)$ -subfamily  $\{S_{i_1}, \ldots, S_{i_{\lambda+1}}\}$  of  $\{S_1, \ldots, S_{\rho}\}$  is such that  $S_{i_1} \cap \cdots \cap S_{i_{\lambda+1}} \neq \emptyset$  (that is, they satisfy the  $\lambda$ -Helly property).

$$\chi(\mathsf{K}^{\lambda+1}(n,k)) > \begin{cases} n-2k+\lambda & \text{if } k \ge \lambda, \\ n-2k & \text{if } k \le \lambda. \end{cases}$$

Theorem (Lovász)  $\chi(K^2(n,k)) = n - 2k + 2$ .

イロト イポト イヨト イヨト

$$\chi(\mathcal{K}^{\lambda+1}(n,k)) > \begin{cases} n-2k+\lambda & \text{if } k \ge \lambda, \\ n-2k & \text{if } k \le \lambda. \end{cases}$$

Theorem (Lovász)  $\chi(K^2(n,k)) = n - 2k + 2$ .

イロト イポト イヨト イヨト

$$\chi(\mathcal{K}^{\lambda+1}(n,k)) > \begin{cases} n-2k+\lambda & \text{if } k \ge \lambda, \\ n-2k & \text{if } k \le \lambda. \end{cases}$$

Theorem (Lovász)  $\chi(K^2(n,k)) = n - 2k + 2$ .

イロト イポト イヨト イヨト

$$\chi(\mathcal{K}^{\lambda+1}(n,k)) > \begin{cases} n-2k+\lambda & \text{if } k \geq \lambda, \\ n-2k & \text{if } k \leq \lambda. \end{cases}$$

Theorem (Lovász)  $\chi(K^2(n,k)) = n - 2k + 2$ .

イロト イポト イヨト イヨト

$$\chi(\mathcal{K}^{\lambda+1}(n,k)) > \begin{cases} n-2k+\lambda & \text{if } k \geq \lambda, \\ n-2k & \text{if } k \leq \lambda. \end{cases}$$

Theorem (Lovász)  $\chi(K^2(n,k)) = n - 2k + 2$ .

イロト イポト イヨト イヨト

# Conjecture $M(k, d, \lambda) = d - \lambda + k + \lfloor \frac{k}{\lambda} \rfloor - 1$ .

Theorem (Arocha, Bracho, Montejano, R.A.) The conjecture is true if either a)  $d = \lambda$  or b)  $\lambda = 1$  or c)  $k \le \lambda$  or d)  $\lambda = k - 1$  or e) k = 2 3

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Conjecture  $M(k, d, \lambda) = d - \lambda + k + \lfloor \frac{k}{\lambda} \rfloor - 1$ .

Theorem (Arocha, Bracho, Montejano, R.A.) The conjecture is true if either a)  $d = \lambda$  or b)  $\lambda = 1$  or c)  $k \le \lambda$  or d)  $\lambda = k - 1$  or e) k = 2, 3.

・ 同 ト ・ ヨ ト ・ ヨ ト …