On Transversals to Tetrahedra

J. L. Ramírez Alfonsín

Université Montpellier 2

(Joint work with J. Arocha, J. Bracho and L. Montejano)

Supported by the ANR TEOMATRO grant ANR-10-BLAN 0207

1 Introduction

2 Connection to Rado's type problem

3 Tetrahedra case

イロト イヨト イヨト イヨト

æ

Let us consider 8 points in ${\rm I\!R}^3$ general position.

Question : Is there a transversal line to all tetrahedra?

- < ≣ →

Let us consider 8 points in ${\rm I\!R}^3$ general position.

Question : Is there a transversal line to all tetrahedra?

< ≣ >

NEVER

ALWAYS

Let $x \in A$ and let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.

 T_2 has the 4-Helly property, and therefore, there exists a point y in the intersection of all tetrahedra in T_2 .

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let $x \in A$ and let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.

 T_2 has the 4-Helly property, and therefore, there exists a point y in the intersection of all tetrahedra in T_2 .

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let $x \in A$ and let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.

 T_2 has the 4-Helly property, and therefore, there exists a point y in the intersection of all tetrahedra in T_2 .

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let $x \in A$ and let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.

 T_2 has the 4-Helly property, and therefore, there exists a point y in the intersection of all tetrahedra in T_2 .

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let $x \in A$ and let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.

 T_2 has the 4-Helly property, and therefore, there exists a point y in the intersection of all tetrahedra in T_2 .

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let $x \in A$ and let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.

 T_2 has the 4-Helly property, and therefore, there exists a point y in the intersection of all tetrahedra in T_2 .

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

Sometimes NO

<ロ> (四) (四) (三) (三) (三)

Sometimes YES

Definitions

Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$.

 $m(k, d, \lambda) \stackrel{\text{def}}{=}$ the maximum positive integer *n* such that every set of *n* points (not necessarily in general position) in \mathbb{R}^d has the property that the convex hull of all *k*-set have a transversal $(d - \lambda)$ -plane.

 $M(k, d, \lambda) \stackrel{\text{def}}{=}$ the minimum positive integer *n* such that for every set of *n* points in general position in \mathbb{R}^d the convex hull of the *k*-sets does not have a transversal $(d - \lambda)$ -plane.

回 と く ヨ と く ヨ と

Definitions

Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$.

 $m(k, d, \lambda) \stackrel{\text{def}}{=}$ the maximum positive integer *n* such that every set of *n* points (not necessarily in general position) in \mathbb{R}^d has the property that the convex hull of all *k*-set have a transversal $(d - \lambda)$ -plane.

 $M(k, d, \lambda) \stackrel{\text{def}}{=}$ the minimum positive integer *n* such that for every set of *n* points in general position in \mathbb{R}^d the convex hull of the *k*-sets does not have a transversal $(d - \lambda)$ -plane.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definitions

Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$.

 $m(k, d, \lambda) \stackrel{\text{def}}{=}$ the maximum positive integer *n* such that every set of *n* points (not necessarily in general position) in \mathbb{R}^d has the property that the convex hull of all *k*-set have a transversal $(d - \lambda)$ -plane.

 $M(k, d, \lambda) \stackrel{\text{def}}{=}$ the minimum positive integer *n* such that for every set of *n* points in general position in \mathbb{R}^d the convex hull of the *k*-sets does not have a transversal $(d - \lambda)$ -plane.

・ロン ・回と ・ヨン ・ヨン

•
$$m(4,3,2) = 6$$
 and $M(4,3,2) = 8$.

• $m(k, d, \lambda) < M(k, d, \lambda)$.

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

$$M(k, d, \lambda) = \begin{cases} d + 2(k - \lambda) + 1 & \text{if } k \ge \lambda, \\ k + (d - \lambda) + 1 & \text{if } k \le \lambda. \end{cases}$$

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

$$m(k, d, \lambda) \geq d - \lambda + k + \left\lceil \frac{k}{\lambda} \right\rceil - 1.$$

・ロン ・回と ・ヨン・

- m(4,3,2) = 6 and M(4,3,2) = 8.
- $m(k, d, \lambda) < M(k, d, \lambda)$.

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

$$M(k, d, \lambda) = \begin{cases} d + 2(k - \lambda) + 1 & \text{if } k \ge \lambda, \\ k + (d - \lambda) + 1 & \text{if } k \le \lambda. \end{cases}$$

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

$$m(k, d, \lambda) \geq d - \lambda + k + \left\lceil \frac{k}{\lambda} \right\rceil - 1.$$

- m(4,3,2) = 6 and M(4,3,2) = 8.
- $m(k, d, \lambda) < M(k, d, \lambda)$.

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

$$M(k, d, \lambda) = \begin{cases} d + 2(k - \lambda) + 1 & \text{if } k \ge \lambda, \\ k + (d - \lambda) + 1 & \text{if } k \le \lambda. \end{cases}$$

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

$$m(k, d, \lambda) \geq d - \lambda + k + \left\lceil \frac{k}{\lambda} \right\rceil - 1.$$

イロン イヨン イヨン イヨン

- m(4,3,2) = 6 and M(4,3,2) = 8.
- $m(k, d, \lambda) < M(k, d, \lambda)$.

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

$$M(k, d, \lambda) = \begin{cases} d + 2(k - \lambda) + 1 & \text{if } k \ge \lambda, \\ k + (d - \lambda) + 1 & \text{if } k \le \lambda. \end{cases}$$

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

$$m(k, d, \lambda) \geq d - \lambda + k + \left\lceil \frac{k}{\lambda} \right\rceil - 1.$$

▲圖▶ ▲屋▶ ▲屋▶

Theorem (Rado's central point theorem, 1947) If X is a bounded measurable set in \mathbb{R}^d then, there exists a center point $x \in \mathbb{R}^d$ such that for each half-space H that contains x

 $measure(H \cap X) \ge measure(X/(d+1)).$

Discrete version of the central point theorem If X be a finite set of n points in \mathbb{R}^d then, there exists a center point $x \in \mathbb{R}^d$ such that for any closed half-space H containing x

$$|H \cap X| \geq \left\lceil \frac{|X|}{d+1} \right\rceil.$$

- 4 回 2 4 注 2 4 注 3

Theorem (Rado's central point theorem, 1947) If X is a bounded measurable set in \mathbb{R}^d then, there exists a center point $x \in \mathbb{R}^d$ such that for each half-space H that contains x

 $measure(H \cap X) \ge measure(X/(d+1)).$

Discrete version of the central point theorem If X be a finite set of n points in \mathbb{R}^d then, there exists a center point $x \in \mathbb{R}^d$ such that for any closed half-space H containing x

$$|H \cap X| \geq \left\lceil \frac{|X|}{d+1} \right\rceil.$$

向下 イヨト イヨト

Our lower bound on $m(k, d, \lambda)$ led to the following generalisation of the discrete version of Rado's central point theorem.

Theorem 1 (Arocha, Bracho, Montejano, R.A., 2011) Let X be a finite set of *n* points in \mathbb{R}^d . Then, there is a $(d - \lambda)$ -plane L such that any closed half-space H through L contains at least $\lfloor \frac{n-d+2\lambda}{\lambda+1} \rfloor + d - \lambda$ points.

Corollary (Arocha, Bracho, Montejano, R.A., 2011) Let $A_i \subset \mathbb{R}^d$ for $i = 1, ..., d - \lambda + 1$. Then, there is a $(d - \lambda)$ -plane L such that any closed half-space H through L contains at least $\left\lfloor \frac{|A_i|+\lambda}{\lambda+1} \right\rfloor$ points of A_i .

・ロト ・回ト ・ヨト ・ヨト

Our lower bound on $m(k, d, \lambda)$ led to the following generalisation of the discrete version of Rado's central point theorem.

Theorem 1 (Arocha, Bracho, Montejano, R.A., 2011) Let X be a finite set of *n* points in \mathbb{R}^d . Then, there is a $(d - \lambda)$ -plane L such that any closed half-space H through L contains at least $\lfloor \frac{n-d+2\lambda}{\lambda+1} \rfloor + d - \lambda$ points.

Corollary (Arocha, Bracho, Montejano, R.A., 2011) Let $A_i \subset \mathbb{R}^d$ for $i = 1, ..., d - \lambda + 1$. Then, there is a $(d - \lambda)$ -plane L such that any closed half-space H through L contains at least $\left| \frac{|A_i| + \lambda}{\lambda + 1} \right|$ points of A_i .

(日) (部) (注) (注) (言)

Conjecture 1 $m(k, d, \lambda) = d - \lambda + k + \lfloor \frac{k}{\lambda} \rfloor - 1.$

Remark : Theorem 1 is sharp if Conjecture 1 is true.

Theorem (Arocha, Bracho, Montejano, R.A., 2011) Conjecture 1 is true if either

```
a) d = \lambda or
b) \lambda = 1 (equivalent to Lovász' result on a Kneser problem) or
c) k \leq \lambda or
d) \lambda = k - 1 or
e) k = 2, 3.
```

- - 4 回 ト - 4 回 ト

Conjecture 1 $m(k, d, \lambda) = d - \lambda + k + \lfloor \frac{k}{\lambda} \rfloor - 1$.

Remark : Theorem 1 is sharp if Conjecture 1 is true.

Theorem (Arocha, Bracho, Montejano, R.A., 2011) Conjecture 1 is true if either

```
a) d = \lambda or
b) \lambda = 1 (equivalent to Lovász' result on a Kneser problem) or
c) k \leq \lambda or
d) \lambda = k - 1 or
e) k = 2, 3.
```

- - 4 回 ト - 4 回 ト

Conjecture 1 $m(k, d, \lambda) = d - \lambda + k + \lfloor \frac{k}{\lambda} \rfloor - 1$.

Remark : Theorem 1 is sharp if Conjecture 1 is true.

Theorem (Arocha, Bracho, Montejano, R.A., 2011) Conjecture 1 is true if either

```
a) d = \lambda or

b) \lambda = 1 (equivalent to Lovász' result on a Kneser problem) or

c) k \leq \lambda or

d) \lambda = k - 1 or

e) k = 2, 3.
```

(4回) (1日) (日)

Question : Is Conjecture 1 true for tetrahedra, that is, for k = 4?

Conjecture 1 is equivalent to the following conjecture (by setting $d = \alpha + \lambda$)

Conjecture 2 There is a set of $\alpha + k + \lceil \frac{k}{\lambda} \rceil$ points in $\mathbb{R}^{\alpha+\lambda}$ such that the convex hulls of the *k*-sets do not admit a transversal α -plane.

Since Conjecture 1 is true when $k - 1 \le \lambda$ and $\lambda = 1$ then the validity of Conjecture 1 in the case when k = 4 follows by showing Conjecture 2 in the case when $\lambda = 2$.

Question : Is there a set of $\alpha + 6$ points in $\mathbb{R}^{\alpha+2}$ such that the convex hull of the 4-sets (the tetrahedra) do not admit a transversal α -plane?

・ロト ・日本 ・モート ・モート

Question : Is Conjecture 1 true for tetrahedra, that is, for k = 4? Conjecture 1 is equivalent to the following conjecture (by setting $d = \alpha + \lambda$)

Conjecture 2 There is a set of $\alpha + k + \lceil \frac{k}{\lambda} \rceil$ points in $\mathbb{R}^{\alpha+\lambda}$ such that the convex hulls of the *k*-sets do not admit a transversal α -plane.

Since Conjecture 1 is true when $k - 1 \le \lambda$ and $\lambda = 1$ then the validity of Conjecture 1 in the case when k = 4 follows by showing Conjecture 2 in the case when $\lambda = 2$.

Question : Is there a set of $\alpha + 6$ points in $\mathbb{R}^{\alpha+2}$ such that the convex hull of the 4-sets (the tetrahedra) do not admit a transversal α -plane?

・ロト ・日本 ・モート ・モート

Question : Is Conjecture 1 true for tetrahedra, that is, for k = 4? Conjecture 1 is equivalent to the following conjecture (by setting $d = \alpha + \lambda$)

Conjecture 2 There is a set of $\alpha + k + \lceil \frac{k}{\lambda} \rceil$ points in $\mathbb{R}^{\alpha+\lambda}$ such that the convex hulls of the *k*-sets do not admit a transversal α -plane.

Since Conjecture 1 is true when $k - 1 \le \lambda$ and $\lambda = 1$ then the validity of Conjecture 1 in the case when k = 4 follows by showing Conjecture 2 in the case when $\lambda = 2$.

Question : Is there a set of $\alpha + 6$ points in $\mathbb{R}^{\alpha+2}$ such that the convex hull of the 4-sets (the tetrahedra) do not admit a transversal α -plane?

・ロン ・回と ・ヨン ・ヨン

Lemma 1 Let $R \subset \mathbb{R}^{\alpha+2}$ be a set of $\alpha + 6$ points in general position and let H be a transversal α -plane to the tetrahedra of R. Then, either

(a) H contains $\alpha + 1$ points of R or

(b) H contains only α points of R and the six points of R which are not in H can be partitioned in three pairs with the property that the convex hull of each pair intersect transversely H.

Definitions Let $R \subset \mathbb{R}^{\alpha+1}$ be a set of $\alpha + 4$ points in general position and let $\phi \in \mathbb{R}^{\alpha+1}$.

A $(\alpha + 1)$ -set $\{x_1, \ldots, x_{\alpha+1}\} \subset R$ is even if the hyperplane generated by $\{x_1, \ldots, x_{\alpha+1}\}$ does not leave exactly three points of $R \cup \{\phi\}$ in some open half-space determined by it.

 (R, ϕ) is α -even if every α -set of R is contained in an even $(\alpha + 1)$ -set of R.

Lemma 2 Let R be a set of $\alpha + 4$ points of $\mathbb{R}^{\alpha+1}$ and let $\phi \in \mathbb{R}^{\alpha+1}$ be such that $R \cup \{\phi\}$ is a set of points in general position in $\mathbb{R}^{\alpha+1}$. Let $\psi, \varphi \in \mathbb{R}^{\alpha+2} - \mathbb{R}^{\alpha+1}$ be such that $\varphi \in (\phi, \psi)$.

If the α -plane $H \subset \mathbb{R}^{\alpha+2}$ through α points of R and φ is a transversal α -plane to the tetrahedra of $R \cup \{\varphi, \psi\}$ then (R, ϕ) is not α -even.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Lemma 3 Let R be a set of $\alpha + 4$ points in $\mathbb{R}^{\alpha+1}$ and let $\phi \in \mathbb{R}^{\alpha+1}$ such that the points of $R \cup \{\phi\}$ are in general position and satisfying :

• the set $R \cup \{\phi\}$ has $\alpha + 5$ points in $\mathbb{R}^{\alpha+1}$ without a transversal $(\alpha - 1)$ -plane to the tetrahedra and

• (R, ϕ) is α -even,

Let $\psi \in \mathbb{R}^{\alpha+2} - \mathbb{R}^{\alpha+1}$ be any point and let $\varphi \in \mathbb{R}^{\alpha+2} - \mathbb{R}^{\alpha+1}$ be a point such that $\varphi \in (\psi, \phi)$.

Then, the set of points $R \cup \{\varphi, \psi\}$ has $\alpha + 6$ points in $\mathbb{R}^{\alpha+2}$ without a transversal α -plane to the tetrahedra.

・ロン ・回 と ・ 回 と ・ 回 と

Theorem (Arocha, Bracho, Montejano, R.A., 2012) Conjecture 1 is true for k = 4 and d = 4.

Theorem (Arocha, Bracho, Montejano, R.A., 2012) There is a function $f(4,5,\lambda)$ such that

 $m(4,5,\lambda) < f(4,5,\lambda) < M(4,5,\lambda).$

- 4 回 2 - 4 □ 2 - 4 □

- Theorem (Arocha, Bracho, Montejano, R.A., 2012) Conjecture 1 is true for k = 4 and d = 4.
- Theorem (Arocha, Bracho, Montejano, R.A., 2012) There is a function $f(4, 5, \lambda)$ such that

 $m(4,5,\lambda) < f(4,5,\lambda) < M(4,5,\lambda).$

| 4 回 2 4 U = 2 4 U =