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Tetrahedra case

Let us consider 8 points in IR3 general position.

Question : Is there a transversal line to all tetrahedra ?
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NEVER

! There are at least 5 points outside H

Transversal line

H

! There are at most 3 points inside H

! There are 3 points in the same side of H
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Tetrahedra case

Question : Let A be a set of 6 points in IR3 in general position. Is
there a transversal line to all tetrahedra of A ?

ALWAYS

Let x ∈ A and let T1 be the set of tetrahedra containing x and let
T2 be the set of tetrahedra not containing x .

T2 has the 4-Helly property, and therefore, there exists a point y in
the intersection of all tetrahedra in T2.

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in IR3 in general position. Is
there a transversal line to all tetrahedra of A ?
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Sometimes YES Sometimes NO
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Definitions

Let k, d , λ ≥ 1 be integers with d ≥ λ.

m(k , d , λ)
def
= the maximum positive integer n such that every set

of n points (not necessarily in general position) in IRd has the
property that the convex hull of all k-set have a transversal
(d − λ)-plane.

M(k , d , λ)
def
= the minimum positive integer n such that for every

set of n points in general position in IRd the convex hull of the
k-sets does not have a transversal (d − λ)-plane.
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• m(4, 3, 2) = 6 and M(4, 3, 2) = 8.

• m(k , d , λ) < M(k , d , λ).

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

M(k , d , λ) =

{
d + 2(k − λ) + 1 if k ≥ λ,
k + (d − λ) + 1 if k ≤ λ.

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

m(k , d , λ) ≥ d − λ+ k +

⌈
k

λ

⌉
− 1.
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Tetrahedra case

Theorem (Rado’s central point theorem, 1947) If X is a bounded
measurable set in Rd then, there exists a center point x ∈ Rd such
that for each half-space H that contains x

measure(H ∩ X ) ≥ measure(X/(d + 1)).

Discrete version of the central point theorem If X be a finite set of
n points in Rd then, there exists a center point x ∈ Rd such that
for any closed half-space H containing x

|H ∩ X | ≥
⌈
|X |
d + 1

⌉
.
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Our lower bound on m(k , d , λ) led to the following generalisation
of the discrete version of Rado’s central point theorem.

Theorem 1 (Arocha, Bracho, Montejano, R.A., 2011) Let X be a
finite set of n points in Rd . Then, there is a (d − λ)-plane L such
that any closed half-space H through L contains at least
bn−d+2λ

λ+1 c+ d − λ points.

Corollary (Arocha, Bracho, Montejano, R.A., 2011)

Let Ai ⊂ Rd for i = 1, . . . , d − λ+ 1. Then, there is a
(d − λ)-plane L such that any closed half-space H through L

contains at least
⌊
|Ai |+λ
λ+1

⌋
points of Ai .
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Conjecture 1 m(k , d , λ) = d − λ+ k + d kλe − 1.

Remark : Theorem 1 is sharp if Conjecture 1 is true.

Theorem (Arocha, Bracho, Montejano, R.A., 2011)
Conjecture 1 is true if either

a) d = λ or
b) λ = 1 (equivalent to Lovász’ result on a Kneser problem) or
c) k ≤ λ or
d) λ = k − 1 or
e) k = 2, 3.
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Question : Is Conjecture 1 true for tetrahedra, that is, for k = 4 ?

Conjecture 1 is equivalent to the following conjecture (by setting
d = α + λ)

Conjecture 2 There is a set of α + k + d kλe points in Rα+λ such
that the convex hulls of the k-sets do not admit a transversal
α-plane.

Since Conjecture 1 is true when k − 1 ≤ λ and λ = 1 then the
validity of Conjecture 1 in the case when k = 4 follows by showing
Conjecture 2 in the case when λ = 2.

Question : Is there a set of α + 6 points in Rα+2 such that the
convex hull of the 4-sets (the tetrahedra) do not admit a
transversal α-plane ?
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Lemma 1 Let R ⊂ Rα+2 be a set of α + 6 points in general
position and let H be a transversal α-plane to the tetrahedra of R.
Then, either

(a) H contains α + 1 points of R or

(b) H contains only α points of R and the six points of R which
are not in H can be partitioned in three pairs with the property
that the convex hull of each pair intersect transversely H.
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Definitions Let R ⊂ Rα+1 be a set of α + 4 points in general
position and let φ ∈ Rα+1.

A (α + 1)-set {x1, . . . , xα+1} ⊂ R is even if the hyperplane
generated by {x1, . . . , xα+1} does not leave exactly three points of
R ∪ {φ} in some open half-space determined by it.

(R, φ) is α-even if every α-set of R is contained in an even
(α + 1)-set of R.
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Lemma 2 Let R be a set of α+ 4 points of Rα+1 and let φ ∈ Rα+1

be such that R ∪ {φ} is a set of points in general position in Rα+1.
Let ψ,ϕ ∈ Rα+2 − Rα+1 be such that ϕ ∈ (φ, ψ).

If the α-plane H ⊂ Rα+2 through α points of R and ϕ is a
transversal α-plane to the tetrahedra of R ∪ {ϕ,ψ} then (R, φ) is
not α-even.
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Lemma 3 Let R be a set of α+ 4 points in Rα+1 and let φ ∈ Rα+1

such that the points of R ∪ {φ} are in general position and
satisfying :

• the set R ∪ {φ} has α + 5 points in Rα+1 without a transversal
(α− 1)-plane to the tetrahedra and

• (R, φ) is α-even,

Let ψ ∈ Rα+2 −Rα+1 be any point and let ϕ ∈ Rα+2 −Rα+1 be a
point such that ϕ ∈ (ψ, φ).

Then, the set of points R ∪ {ϕ,ψ} has α + 6 points in Rα+2

without a transversal α-plane to the tetrahedra.
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Theorem (Arocha, Bracho, Montejano, R.A., 2012)
Conjecture 1 is true for k = 4 and d = 4.

Theorem (Arocha, Bracho, Montejano, R.A., 2012)
There is a function f (4, 5, λ) such that

m(4, 5, λ) < f (4, 5, λ) < M(4, 5, λ).
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