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Lattice notions

Let B = {b1, . . . , bn} be a family of linear independent vectors in
IRd . The lattice generated by B is the set

Λ =

{
n∑

i=1

xibi |xi ∈ Z

}

We say that B is a base of Λ of dimension n and that Λ is of full
rank if n = d .
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Lattice notions

The fundamental parallelepiped of Λ with respect to B is defined
as

P(B) := {Bx |x ∈ [0, 1)r}
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Lemma Let Λ be a lattice of rank n and let B = {b1, . . . , bn} be n
linearly independent vectors in Λ. Then, B is a base of Λ if and
only if P(B) ∩ Λ = {0}.

Proof Suppose B a base of Λ. By definition, Λ is the set of all
integer combinations of B and P(B) is the set of combinations of
B with coefficients in [0, 1). Then, P(B) ∩ Λ = {0}.
Suppose P(B) ∩ Λ = {0}. Since Λ is of full rank and b1, . . . , bn are
linearly independent then x =

∑
yibi with yi ∈ IR for any x ∈ Λ.

Since Λ is closed under addition then

x ′ =
∑

(yi − byic)bi

belong to Λ. But, x ′ also belong to P(B) and thus x ′ = 0,
implying that yi − byic = 0 and thus all yi are integers. Therefore,
x is an integer combination of b1, . . . , bn.
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Ehrhart theory I : introduction



Lemma Let Λ be a lattice of rank n and let B = {b1, . . . , bn} be n
linearly independent vectors in Λ. Then, B is a base of Λ if and
only if P(B) ∩ Λ = {0}.
Proof Suppose B a base of Λ. By definition, Λ is the set of all
integer combinations of B and P(B) is the set of combinations of
B with coefficients in [0, 1). Then, P(B) ∩ Λ = {0}.

Suppose P(B) ∩ Λ = {0}. Since Λ is of full rank and b1, . . . , bn are
linearly independent then x =

∑
yibi with yi ∈ IR for any x ∈ Λ.

Since Λ is closed under addition then

x ′ =
∑

(yi − byic)bi

belong to Λ. But, x ′ also belong to P(B) and thus x ′ = 0,
implying that yi − byic = 0 and thus all yi are integers. Therefore,
x is an integer combination of b1, . . . , bn.
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Lattice notions

The determinant of Λ, denoted by det(Λ), is defined as the volume
of n-dimensionnel de P(B), that is,

det(Λ) :=
√

det(BTB).

• When Λ is of full rank we have that B is an square matrix, and
thus det(Λ) = | det(B)|.
• det(Λ) is well defined in the sense that it is independent of the
choice of the base.
• det(Λ) is proportionally inverse to its density : smaller is the
determinant denser will be the lattice.
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Blichfeldt’s theorem

Theorem Let Λ be a lattice generated by a base B and let
S ⊆ span(B). If vol(S) > det(Λ) then there are z1, z2 ∈ S such
that z1 − z2 ∈ Λ.

Proof Consider Sx = S ∩ (x + P(B)) with x ∈ Λ. They are pairwise
disjoint and S =

⋃
x∈Λ

Sx .

In particular we have vol(S) =
∑
x∈Λ

vol(Sx).
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Notice that Sx − x = (S − x) ∩ P(B) are all contained in P(B).

From vol(Sx) = vol(Sx − x) we obtain

vol(P(B)) = det(Λ) < vol(S) =
∑
x∈Λ

vol(Sx) =
∑
x∈Λ

vol(Sx − x)

Since Sx − x ⊆ P(B) and
∑
x∈Λ

vol(Sx − x) > vol(P(B)) then there

exist x 6= y ∈ Λ such that (Sx − x) ∩ (Sy − y) 6= 0.
Let z ∈ (Sx − x) ∩ (Sy − y) and define

z1 = z + x ∈ Sx ⊆ S and z2 = z + y ∈ Sy ⊆ S .

These vectors satisfy z1 − z2 = x − y ∈ Λ.
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Minkowski’s convex body theorem

Theorem Let Λ be a full dimensional lattice. If S ⊂ IRn is a
symmetric convex body with vol(S) > 2n det(Λ) then S contains a
nonzero lattice point.

Proof Consider S/2 = {x : 2x ∈ S}. The volume of S/2 satisfies

vol(S/2) = 2−nvol(S) > det(Λ)

By Blichfeldt theorem there exist z1, z2 ∈ S/2 such that
z1− z2 ∈ Λ \ {0}. We thus have 2z1, 2z2 ∈ S and, by symmetry, we
also have −2z2 ∈ S . Moreover, by convexity,

z1 − z2 =
2z1 − 2z2

2
∈ S

is a non-zero lattice point vector contained in S .
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Integer points and volume

Theorem Let K be a convex in IRn containing 0 and such that
K ∩ Zn is not included in a hyperplan. Then,
Card(K ∩ Zn) ≤ n + n!vol(K ).

Proof Let k = Card(K ∩ Zn)− n. The result follows if k ≤ 0.
Suppose that k ≥ 1.

We may find a simplex S0 with n + 1 integer vertices contained in
K without integer points in its interior and thus vol(S0) = 1/n!

Among the rest k − 1 integer points in K , we pick the closest to
S0, say x1.
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Integer points and volume

Let S1 be the simplexe generated by x1 and the closest face of S0

to x1. We also have vol(S1) = 1/n!.

We carry on this way to construct k simplex Sj , obtaining

vol(K ) ≥
k−1∑
i=0

vol(Si ) = k/n!

Therefore
Card(K ∩ Zn) ≤ n + n!vol(K ).
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Pick’s theorem

An integer polytope P ⊂ R2 is a polygon (not necessarily convex)
with vertices in Z2.
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Pick’s theorem

Theorem Let P be an integer polygon containing I integer points
in its interior and B integer points on the frontier, B ≥ 3. Then,

Area(P) = I +
B

2
− 1.

Proof (idea) Decompose P and use induction.

P

P

P

1

2
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Let P be an integer polygon. By using Pick’s theorem we obtain

Card(P ∩ Z2) = 2vol(P) + 2

Theorem (Scott) Let k 6= 0 be the number of interior points of P
then

Card(P ∩ Z2) ≤ 3k + 6

except if P is equivalent to a triangle with vertices
(0, 0), (3, 0), (0, 3).
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Theorem (Hensley) There exists a constant B(n, k) depending only
on k and n such that for any n-dimensional polytope P having
exactly k integer points in its interior we have

vol(P) ≤ B(n, k).

It is known that

B(n, k) ≈ k(7(k + 1))n2n + 1.
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Reeve’s exemple

Can we generalise Pick’s theorem ? Can we compute volume
of 3-polytope by counting integers points ?

NO

Example Let Th be the tetrahedra with vertices
a = (0, 0, 0), b = (1, 0, 0), c = (0, 1, 0) et d = (1, 1, h), h ∈ Z>0.
We have

vol(Th) =
1

3
× base× heigh = h/6.

Moreover, the only integer points in Th are its 4 vertices.
Therefore, Th only admits 4 integer points but the volume grows
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Ehrhart theory

An integer polytope P ⊂ Rd is a convex hull of a finite set of
points in Zd .

Let k ∈ N. We define the k-dilation of P, as

kP := {kx |x ∈ P}.

For k ∈ N, let
LP(k) := #(kP ∩ Zd)
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Ehrhart theory I : introduction



Ehrhart theory

An integer polytope P ⊂ Rd is a convex hull of a finite set of
points in Zd .
Let k ∈ N. We define the k-dilation of P, as

kP := {kx |x ∈ P}.

For k ∈ N, let
LP(k) := #(kP ∩ Zd)
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Ehrhart theory

The first investigations of LP(k) date back to the 1960‘s work of
Ehrhart. As a lycée teacher he did many of his investigations as an
amateur mathematician.

Eugène Ehrhart (1906-2000)
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Ehrhart theory

Example
Q2 = conv{(0, 0), (1, 0), (0, 1), (1, 1)} = {x , y ∈ R : 0 ≤ x , y ≤ 1}.

Q2 k 1

LQ2(k) 4
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Example
Q2 = conv{(0, 0), (1, 0), (0, 1), (1, 1)} = {x , y ∈ R : 0 ≤ x , y ≤ 1}.

Q

Q

2

22

k 1 2

LQ2(k) 4 9
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Example
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Q

Q

Q

2

2
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3
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Ehrhart theory

Example
Q2 = conv{(0, 0), (1, 0), (0, 1), (1, 1)} = {x , y ∈ R : 0 ≤ x , y ≤ 1}.

Q

Q

Q

Q

2

2

2

22

3

4

k 1 2 3 4

LQ2(k) 4 9 16 25

LQ2
(k) = (k + 1)2

d-dimensional cube : LQd
(k) = (k + 1)d =

d∑
i=0

(d
i

)
k i
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Ehrhart polynomial

Theorem (Ehrhart 1962) Let P be an integer polytope. Then,
LP(k) is a polynomial on k of degree dim(P) with rational
coefficients and constante term equals 1.

Proof Let S be a simplex with vertices 0, s1, . . . , sr .
The set mS is the disjoint union of

Sm,j =

{
λ1s1 + · · ·+ λr sr | λi ≥ 0,

r∑
i=1

λi ≤ m,
r∑

i=1

bλic = m − j

}

for each j ∈ {0, . . . ,m}.
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Ehrhart polynomial

The number of points in Sm,j is given by the number of positive

integer solutions to
r∑

i=1
xi = m − j

which is given by
(m−j+r−1

r−1

)
× the number of integer points in

aj =

{
β1s1 + · · ·+ βr sr | 0 ≤ βi < 1,

r∑
i=1

βi ≤ j

}
.
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Ehrhart polynomial

Since aj = ar for all j ≥ r , we have

Card(mS ∩ Zn) =
m∑
j=0

aj
(m−j+r−1

r−1

)
=

r−1∑
j=0

aj
(m−j+r−1

r−1

)
+ ar

m∑
j=r

(m−j+r−1
r−1

)
=

r−1∑
j=0

(aj − ar )
(m−j+r−1

r−1

)
+ ar

m∑
j=0

(m−j+r−1
r−1

)
=

r−1∑
j=0

(aj − ar )
(m−j+r−1

r−1

)
+ ar

(m+r
r

)
.

Therefore, Card(mP ∩ Zn) is a polynomial function on m of
degree r and its value is equals 1 when m = 0. Moreover, its
leading term is equals 1

r !ar .
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Example

Triangle S with vertices (0, 0), (3, 0), (0, 2) and take m = 6.

S3

S3

S3S3

S3

S3

S301

1

1

2

23

0 9

6

4

2

3 6

Decomposition of S in Sm,j . Points marked with ◦, •,�,4
correspond to solutions of a0, a1, a2 and a3 respectively.
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Example

LS(m) =
1∑

j=0
(aj − a2)

(m−j+2−1
2−1

)
+ a2

(m+2
2

)
= (a0 − a2)

(m+1
1

)
+ (a1 − a2)

(m
1

)
+ a2

(m+2
2

)
= (1− 6)(m + 1) + (5− 6)m + 6 (m+2)(m+1)

2
= −5m − 5−m + 3m2 + 3m + 6m + 6
= 3m2 + 3m + 1.
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Reciprocity law

Let P◦ denotes the interior of P.

Example : LQ◦
d

(k) = (k − 1)d = (−1)d(1− k)d = (−1)dLQd
(−k)

Theorem (Macdonald 1971) LP(−k) = (−1)dim(P)LP◦(k).
Proof If P is a r -simplex, we just verify the formula.

If P is not a simplex with dim(P) = r then there exists vertex s of
P such that Q = conv(P \ {s}) is an integer polytope with
dim(P) = r .

We have thus that one facet F of Q separate s from Q.
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Ehrhart theory I : introduction



Reciprocity law

Let P◦ denotes the interior of P.
Example : LQ◦

d
(k) = (k − 1)d = (−1)d(1− k)d = (−1)dLQd

(−k)

Theorem (Macdonald 1971) LP(−k) = (−1)dim(P)LP◦(k).
Proof If P is a r -simplex, we just verify the formula.

If P is not a simplex with dim(P) = r then there exists vertex s of
P such that Q = conv(P \ {s}) is an integer polytope with
dim(P) = r .

We have thus that one facet F of Q separate s from Q.
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Reciprocity law

Let R = conv({s} ∪ F ).

We have

LP(m) = LQ(m) + LR(m)− LF (m) and

LP◦(m) = LQ◦(m) + LR◦(m) + LF◦(m).

By induction on the number of vertices, we obtain

LP◦(m) = LQ◦(m) + LR◦(m) + LF◦(m)
= (−1)rLQ(−m) + (−1)rLR(−m) + (−1)r−1LF (−m)
= (−1)r (LQ(−m) + LR(−m)− LF (−m))
= (−1)rLP(−m).
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Some coefficients

Proposition Let P be an integer polytope of dimension d in IRd

and let cd t
d + cd−1t

d−1 + · · ·+ c0 be its Ehrhart polynomial.
Then,

cd = vold(P) and cd−1 = 1
2

∑
F⊂P

vold−1(F ).

Proof [first equality]
• vol(P) can be computed by approximating P with d-dimensional
cubes which get smaller and smaller.
• Consider cubes of side 1/t (and thus of volume 1

td
).

• The vertices of these cubes can be thought in ( 1
tZ)d .

• The volume can be approximated by counting theses cubes
or, equivalently, the integer points in ( 1

tZ)d .
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Some coefficients

vol(P) = lim
t→∞

1

td
· Card

(
P ∩

(
1

t
Z
)d
)
.

But

Card

(
P ∩

(
1

t
Z
)d
)

= Card(tP ∩ Zd),

and thus

vol(P) = lim
t→∞

1

td
· Card(tP ∩ Zd).

Obtaining

vol(P) = lim
t→∞

cd t
d + cd−1t

d−1 + · · ·+ c0

td
= cd .
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Some coefficients

[second equality] By the reciprocity law, we have

LP◦(t) = ad t
d − ad−1t

d−1 + · · · .

Therefore,
lim
t→∞

t−d(LP(t)− LP◦(t)) = 2ad−1.

But P \ P◦ is the union of the (d − 1)-faces of P (with relative
interiors pairwise disjoint)
Thus,

lim
t→∞

t−d(LP(t)− LP◦(t)) =
∑
F⊂P

vold−1(F ).

and the equality follows by same arguments as above.
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Relative affine volume

Let S ⊂ IRd of dimension m < d . As before, we can compute the
volume with respect to the induced sublattice of span(S) ∩ Zd .

Example The segment L joining (0, 0) et (4, 2) in IR2 has relative
volume 2 since in the span(L) = {(x , y) ∈ IR2 : y = x/2} L is
covered by two unit segments in the affine space.

(0,0)

(4,2)

span(L)

L
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J.L. Raḿırez Alfonśın Université de Montpellier

Ehrhart theory I : introduction



Relative affine volume

Let S ⊂ IRd of dimension m < d . As before, we can compute the
volume with respect to the induced sublattice of span(S) ∩ Zd .
Example The segment L joining (0, 0) et (4, 2) in IR2 has relative
volume 2 since in the span(L) = {(x , y) ∈ IR2 : y = x/2} L is
covered by two unit segments in the affine space.

(0,0)

(4,2)

span(L)

L
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Low dimension

n = 1 An interval [p, q]. It contains q − p + 1 integer points
LP(m) = mq −mp + 1,
LP◦(m) = mq −mp − 1 = −LP(−m).

n = 2 (Pick’s theorem) Polygon P in IR2. We have
Area(P) = I (P) + 1

2B(P)− 1
Let k be an integer. We have Area(kP) = k2Area(P) and
B(kP) = kB(P). Obtaining

LP(k) = Area(P)k2 + 1
2B(P)k + 1

n = 3 None of the coefficients ai can be expressed in terms of∑
F⊂P

volk(F ). ak is a linear combination of the volk(F ).
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Ehrhart theory I : introduction



Low dimension

n = 1 An interval [p, q]. It contains q − p + 1 integer points
LP(m) = mq −mp + 1,
LP◦(m) = mq −mp − 1 = −LP(−m).

n = 2 (Pick’s theorem) Polygon P in IR2. We have
Area(P) = I (P) + 1

2B(P)− 1
Let k be an integer. We have Area(kP) = k2Area(P) and
B(kP) = kB(P). Obtaining

LP(k) = Area(P)k2 + 1
2B(P)k + 1

n = 3 None of the coefficients ai can be expressed in terms of∑
F⊂P

volk(F ). ak is a linear combination of the volk(F ).
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Voting theory

There are many types of voting systems :

Plurality Voting : the candidate with most votes wins the elections.

Plurality Runoff Voting : the candidate most obtain an absolute
majority. If no candidate gets more than 50% of votes a second
round of elections is held with only two candidates, those who had
the highest plurality scores in the first round. The candidate with
the absolute majority in the second round wins the elections.
Will PV yield another candidate as winner as PRV for a given
voting situation ?And if so, what is the probability of this
happening ?
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Voting theory

Consider an election on three candidates {a, b, c}. Assume that
voters have complete linear preference ranking on these candidates.

There are 6 possible preferences orders :

abc, acb, bac, bca, cab, cba

In order to compute the probability that some event takes place,
we assume that all voting situation is equally likely to occur (called
Impartial Anonymous Culture condition).
Suppose that a voting situation occurs where PV will denote a as
winner while PRV will claim that b has won.
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nabc + nacb > nbac + nbca a beats b
nbac + nbca > ncab + ncba b beats c
nabc + nacb + ncab < N/2 a loses the second round
nabc + nacb + nbac + nbca + ncab + ncba = N all votes add up N
ni ≥ 0 for all i ∈ Sabc

• The first two inequalities say that in the first round a has the
most votes, then b and c has the least votes
• The second equality represent the second round. Here, candidate
c does not participate anymore, that means that the voters with
preferences cab and cba will vote for their second choice. Therefore
cab would vote for a, as will abc and acb and so
nabc + nacb + ncab < N/2
• The fourth inequality represents the total number of voters.
• The last makes sure that the number people with certain
preference is not negative.
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• The vote problem is thus represented by a finite set of linear
inequalities, that is, by a polyhedron Pd (d for disagreement).

• By leaving out the first three inequalities this yield to a
polyhedron Pt (t for total) - all possible voting outcomes.
• By the IAC condition any of these voting situation is evenly likely
to occur.
• The above describe the situation where a is the PV winner while
b is the PRV winner but there are 6 possible pairs of PV winner
and PRV winner Therefore,

Prob(PVandPRVdisagree) = 6
#(Pd ∩ Zd)

#(Pt ∩ Zd)
.
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Ehrhart theory I : introduction


