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Euler formula

Let P be a d-polytope. We recall that Euler’s formula for P is

d∑
k=0

(−1)knk(P) = 1

where nk(P) is the number of k-faces of P.

When P is simple (that is, each vertex of P is of degree d) the
Dehn-Sommerville’s relations are

k∑
j=0

(−1)j
(
d − j

d − k

)
nj(P) = nk(P), k = 0, . . . , d .
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Ehrhart theory II : further results



Euler formula

Let P be a d-polytope. We recall that Euler’s formula for P is

d∑
k=0

(−1)knk(P) = 1

where nk(P) is the number of k-faces of P.

When P is simple (that is, each vertex of P is of degree d) the
Dehn-Sommerville’s relations are

k∑
j=0

(−1)j
(
d − j

d − k

)
nj(P) = nk(P), k = 0, . . . , d .
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Proof of Euler’s formula via Ehrhart

We count integer points in tP according to the (relative) interior
points

LP(t) =
∑
F⊆P

LF◦(t) =
∑
F⊆P

(−1)dim(F )LF (−t)

Now, the constant term of LF (t) is 1 for every face F . Hence

1 =
∑
F⊆P

(−1)dim(F ) =
d∑

j=0

(−1)jnj(P).
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Dehn-Summerville generalisation

Let P be an integer polytope, we define

Fk(t) =
∑

F⊆P,dim(F )=k

LF (t)

Since LF (0) = 1 for any face F then Fk(0) = nk(P)
Let F be a k-face of P and let us count integers points of F
according to the relative interior faces of F

LF (t) =
∑
G⊆F

LG◦(t)

and by the reciprocity law

LF (t) =
∑
G⊆F

(−1)dim(G)LG (−t) =
k∑

j=0

(−1)j
∑

G⊆F ,dim(G)=j

LG (−t).
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Dehn-Summerville generalisation

Obtaining

Fk(t) =
∑

F⊆P,dim(F )=k

LF (t)

=
∑

F⊆P,dim(F )=k

k∑
j=0

(−1)j
∑

G⊆F ,dim(G)=j

LG (−t)

=
k∑

j=0
(−1)j

∑
F⊆P,dim(F )=k

∑
G⊆F ,dim(G)=j

LG (−t)

=
k∑

j=0
(−1)j

∑
G⊆F ,dim(G)=j

nk(P/G )LG (−t)

where nk(P/G ) denotes the number of k-faces in P containing a
given j-face of G of P.
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Dehn-Summerville generalisation

If P is simple then nk(P/G ) =
(d−j
d−k
)
.

Then,

Fk(t) =
k∑

j=0
(−1)j

∑
G⊆F ,dim(G)=j

(d−j
d−k
)
LG (−t)

=
k∑

j=0
(−1)j

(d−j
d−k
)
Fj(−t)

We recover Dehn-Summerville’s relations by considering the
constant terms in both sides.
Moreover, for k = d we have

LP(−t) = Fd(−t) =
d∑

j=0

(−1)jFj(t) = (−1)d
d∑

j=0

(−1)d−jFj(t)

inclusion-exclusion formula for the number of integer points in the
interior of tP.
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Applications to coefficients

Consider Fk(t) when k = d

LP(t) = Fd(t) =
d∑

j=0

(−1)jFj(−t).

The last term of this sum is

(−1)dFd(−t) = (−1)dLP(−t) = LP◦(t)

obtaining

LP(t)− LP◦(t) =
d−1∑
j=0

(−1)jFj(−t)

the number of integer points on the boundary of tP.
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If we let LP(t) = cd t
d + cd−1t

d−1 + · · ·+ c0 then

LP◦(t) = cd t
d − cd−1t

d−1 + · · ·+ (−1)dc0

and then

LP(t)− LP◦(t) = 2cd−1t
d−1 + 2cd−3t

d−3 + · · ·

the sum ends with 2c0 if d is odd and 2c1t if d is even.
Obtaining

cd−1t
d−1 + cd−3t

d−3 + · · · =
1

2

d−1∑
j=0

(−1)jFj(−t)
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Brion’s formula

A way to enumerate positive integers is through a generating
function

x1 + x2 + · · · =
∑
k≥0

xk =
x

1− x

On the same way, we can enumerate all positive integers smaller
than 5

· · ·+ x−1 + x0 + x1 + x2 + x3 + x4 + x5 =
∑
k≤5

xk =
x5

1− x−1

By adding these two equalities we obtain a kind of miracle

x

1− x
+

x5

1− x−1
=

x

1− x
+

x6

x − 1
=

x − x6

1− x
= x+x2+x3+x4+x5.
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We can thought this as a function enumerating the positive
integers in the finite segment [1, 5]

1 2 3 4 5 60-1

+

=

Consider the polygon Q with vertices (0, 0, (2, 0), (0, 2) et (4, 2)

(0,0) (2,0)

(4,2)(0,2)
Q
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The two edges incident to the origine generate the nonnegative
quadrant admitting thus the generating function∑

m,n≥0

xmyn =
∑
m≥0

xm
∑
n≥0

yn =
1

1− x

1

1− y
=

1

(1− x)(1− y)
.

The two edges incident to vertex (0, 2) generate de cone
(0, 2) + IR≥0(0,−2) + IR≥0(4, 0) admitting thus the generating
function ∑

m≥0,n≥2

xmyn =
∑
m≥0

xm
∑
n≤2

yn =
1

1− x

y2

1− y−1
.
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The two edges incident to vertex (4, 2) generate de cone
(4, 2) + IR≥0(−4, 0) + IR≥0(−2,−2) admitting thus the generating
function

x4y2

(1− x−1)(1− x−1y−1)
.

Finally, The two edges incident to vertex (2, 0) generate de cone
(2, 0) + IR≥0(2, 2) + IR≥0(−1, 0) admitting thus the generating
function

x2

(1− xy)(1− x−1)
.

By adding these functions we obtain

1

(1− x)(1− y)
+

y2

1− y−1
+

x4y2

(1− x−1)(1− x−1y−1)
+

x2

(1− xy)(1− x−1)

= y2 +xy2 +x2y2 +x3y2 +x4y2 +y +xy +x2y +x3y + 1 +x +x2.
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The sum reduce again to a polynomial enumerating the integer
points in Q.

Brion’s theorem asserts that this magic is produced for any rational
d-polytope (with rational vertices).
Let Cv be the cone associate to vertex v (generated by the edges
incident to v).
We know that the generating function

σCu(x) =
∑

m∈(Cu∩Zd )

xm

is a rational function.
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We write xm for xm1
1 xm2

2 · · · x
md
d .

Brion’s formula asserts that

σP(x) = σP(x1, . . . , xd) =
∑

m∈(Cu∩Zd )

xm =
∑

v -vertex of P

σCu(x)

We donc have that σP(1, . . . , 1) counts the number of integer
points in P.

Example ... continuation.

σQ(1, . . . , 1) =
∑

m∈(Q∩Z2)

1m = 1+1+1+1+1+1+1+1+1+1+1+1 = 12.

is the number of integer points in Q.
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Barvinok’s algorithm

In 1993 Barvinok found an algorithme to count integer points in
polyhedra.
When the dimension is fixed the algorithm can count the number
of integer points in a polytope in polynomial time on the size of
the input.
It computes ∑

m∈(Cu∩Zd )

xm

where xm for xm1
1 xm2

2 · · · x
md
d .
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Quasi-polynomial

A periodic rational number c(n) is a function c : Z→ Q with a
period q such that c(n) = c(n′) when n ≡ n′ (mod q).

Example Consider c(n) = [5/2, 1/3, 1, 1/4]n.
c(n) is a periodic number of period 4.

n c(n)

0 (mod 4) 5/2
1 (mod 4) 1/3
2 (mod 4) 1
3 (mod 4) 1/4

A quasi-polinomial f of degree d is a function

f (n) = cd(n)nd + · · ·+ c1(n)n + c0

where ci (n) is a periodic number. The period q of f is the least
commun multiple of the periods of its coefficients.
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Example

Consider the quasi-polynomial
f (n) = 5n3 + [1/2, 2, 1/3]nn

2 + [1, 1/2]nn + [3/7, 3]n.

f (n) is of degree 3 and its period is equals to lcm(1, 3, 2, 2) = 6.

The list of polynomials that f represents are

n fn (mod 6)(n)

0 (mod 6) 5n3 + 1/2n2 + n + 3/7
1 (mod 6) 5n3 + 2n2 + 1/2n + 3
2 (mod 6) 5n3 + 1/3n2 + n + 3/7
3 (mod 6) 5n3 + 1/2n2 + 1/2n + 3
4 (mod 6) 5n3 + 2n2 + n + 3/7
5 (mod 6) 5n3 + 1/3n2 + 1/2n + 3
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Let P ⊂ IRd be a rational polytope. The denominator of P is
defined as D(P) = min{n ∈ Z≥0 : nP is an integer}.

Theorem If P is a rational d-polytope then LP(t) is a
quasi-polynomial of degree d . The period of LP(t) divide the
denominator of P.
Example Consider P given by the interval [0, n/3]. The
denominator of P is 3 and its quasi-polynomial of the form

LP(t) = αn + [β1, β2, β3]n

In order to determine α, β1, β2, β3 we use Lagrange interpolation.
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Compute the number of integer points of nP for some values of n

n LP(n)

0 1
1 1
2 1
3 2

From LP(0) = 1 we get 1 = LP(0) = α0 + β1 and thus β1 = 1
and since 2 = LP(3) = 3α + β1 = 3α + 1 we obtain α = 1/3. We
also have

1 = LP(2) = 1/3(2) + β3 impliying that β3 = 1/3

1 = LP(3) = 1/3(2) + β2 implying that β2 = 2/3

We get
LP(n) = 1/3n + [1, 2/3, 1/3]n.
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Periodicity

We have that a period of a Ehrhart quasi-polynomil divide its
denominator, but

what is the minimal period ?

We say that the period is reduced (resp. is full) when the minimal
period is strictly smaller (resp. equal) to the denominator of P.

Example Consider the pyramide P with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0) and (1/2, 0, 1/2). In this case,
the denominator of P is 2 however LP(n) =

(n+3
3

)
is of period 1.

Theorem The quasi-polynomial of a rational 1-polytope is always
of full period.
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Ehrhart theory II : further results



Cyclic polytope

Let m(t) = (t, t2, . . . , td) be the moment curve in Rd .

The d-dimensional Cyclic polytope Cd = Cd(t1, . . . , tn) is defined
as

Cd := conv{m(t1), . . . ,m(tn)}

Theorem

LCd
(k) =

d∑
i=0

fik
i

where fi = vol(Ci (t1, . . . , tn)).
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Semimagic matrix

A semimagic square is a square matrix whose entries are
nonnegative integers and whose rows and columns sum to the
same number.

3 0 0

0 1 2

0 2 1

Let Hn(t) be the total number of semimagic matrices of order n
and line sum t.
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Semimagic matrix

Consider the polytope

Bn :=


 x11 · · · x1n

...
...

xn1 · · · xnn

 ∈ IRn2
: xjk ≥ 0,

∑
j xjk = 1 for all 1 ≤ k ≤ n∑
k xjk = 1 for all 1 ≤ j ≤ n


consisting of nonnegative real matrices in which all rows and

columns sum to 1. Bn is called Birkhoff-von Neumann polytope.

Hn(t) enumerates precisely the integer points in tBn, that is,

Hn(t) = #(tBn ∩ Zn2
) = LBn(t).

A permutation matrix is a square matrix with 0,1 entries with
exactly one 1 in each row and each column. Permutation matrices
are integer vertices of Bn (and so, Ehrhart’s theorem applies).
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Frobenius coin-exchange problem

Given coins of denominations A = {a1, . . . , ad} that are positive
integers without any common factor, what is the largest amount
that cannot be obtained using these coins ?

This largest integer is called the Frobenius number and denoted by
g(a1, . . . , an).
Consider the restricted partition function

pA(n) := #{(m1, . . . ,md) ∈ Zd : mj ≥ 0,m1a1 + · · ·+ mdad = n}

the number of partitions of n using only the elements a1, . . . , ad
as parts.
g(a1, . . . , an) is the largest positive integer n for which pA(n) = 0.
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Ehrhart theory II : further results



There is a nice geometric interpretation of pA(n). Let

P = {(x1, . . . , xd) ∈ IRd : xj ≥ 0, x1a1 + · · ·+ xdad = 1}

The function pA(n) counts precisely those integer points in Zd

that lie in the nP (that is, we replace x1a1 + · · ·+ xdad = 1 by
x1a1 + · · ·+ xdad = n).

1/a n/a

n/b

1/b

1/c

n/c
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Ehrhart theory II : further results



There is a nice geometric interpretation of pA(n). Let

P = {(x1, . . . , xd) ∈ IRd : xj ≥ 0, x1a1 + · · ·+ xdad = 1}
The function pA(n) counts precisely those integer points in Zd

that lie in the nP (that is, we replace x1a1 + · · ·+ xdad = 1 by
x1a1 + · · ·+ xdad = n).

1/a n/a

n/b

1/b

1/c

n/c
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