Ehrhart theory III : Tutte polynomial and zonotopes

J.L. Ram´ırez Alfons´ın

Université de Montpellier

V Mexican School in Discrete Mathematics CIMAT, Guanajuato January 8-12, 2018

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

◂**◻▸ ◂ਗ਼▸**

 Ω

Minkowski's sum

The Minkowski's sum of polytopes $P_1,\ldots,P_n\subset{\rm I\!R}^d$ is defined as $P_1 + \cdots + P_n = \{x_1 + \cdots + x_n : x_i \in P_i\}.$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

Minkowski's sum

The Minkowski's sum of polytopes $P_1,\ldots,P_n\subset{\rm I\!R}^d$ is defined as

$$
P_1+\cdots+P_n=\{x_1+\cdots+x_n:x_i\in P_i\}.
$$

Example $P_1 = [4, 0] \times [0, 2] \subset \mathbb{R}^2$ and $P_2 = [(0, 0), (4, 5)] \subset \mathbb{R}^2$. The vertices of $P_1 + P_2$ are $(0, 0), (4, 0), (0, 2), (4, 7), (8, 5), (8, 7)$.

Let u_1, \ldots, u_n be vectors in \mathbb{R}^d .

J.L. Ram´ırez Alfons´ın Universit´e de Montpellier

Let u_1, \ldots, u_n be vectors in \mathbb{R}^d . We define a zonotope as $Z(u_1, \ldots, u_n) := \{ [0, u_1] + \cdots + [0, u_n] \}.$

Kロトメ部トメミ 290

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

Let u_1, \ldots, u_n be vectors in \mathbb{R}^d . We define a zonotope as $Z(u_1, \ldots, u_n) := \{[0, u_1] + \cdots + [0, u_n]\}.$ Example Take $u_1 = (4, 1), u_2 = (3, 2), u_3 = (1, 3).$ $Z(u_1, u_2, u_3)$ has $(0, 0), (4, 1), (1, 3), (7, 3), (8, 7), (4, 6)$ as vertices.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier [Ehrhart theory III : Tutte polynomial and zonotopes](#page-0-0)

つひひ

K ロ ▶ | K 伺 ▶ | K 급

Let u_1, \ldots, u_n be vectors in \mathbb{R}^d . We define a zonotope as $Z(u_1, \ldots, u_n) := \{[0, u_1] + \cdots + [0, u_n]\}.$ Example Take $u_1 = (4, 1), u_2 = (3, 2), u_3 = (1, 3)$. $Z(u_1, u_2, u_3)$ has $(0, 0), (4, 1), (1, 3), (7, 3), (8, 7), (4, 6)$ as vertices.

Permutahedron

J.L. Ram´ırez Alfons´ın Universit´e de Montpellier

4 ロ → 4 伊 **In** 290

We can rewrite as

$$
Z(u_1,\ldots,u_n) = \{\lambda_1 u_1 + \cdots + \lambda_n u_n : 0 \le \lambda_j \le 1\}
$$

= $\{(u_1,\ldots,u_n) \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} : 0 \le \lambda_j \le 1\}$
= $A[0,1]^n$

where $A = (u_1, \ldots, u_n)$.

J.L. Ram´ırez Alfons´ın Universit´e de Montpellier

 299

Kロトメ部トメミ

We can rewrite as

$$
Z(u_1,\ldots,u_n) = \{\lambda_1 u_1 + \cdots + \lambda_n u_n : 0 \le \lambda_j \le 1\}
$$

= $\{(u_1,\ldots,u_n)\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} : 0 \le \lambda_j \le 1\}$
= $A[0,1]^n$

where $A = (u_1, \ldots, u_n)$. A zonotope can be defined as a translation of $A[0,1]^n$,

 $A[0, 1]$ ⁿ + b

b a vector of
$$
\mathbb{R}^d
$$
.

[Ehrhart theory III : Tutte polynomial and zonotopes](#page-0-0)

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

 290

K ロ ト K 倒 ト K 走 ト

We thus have two definitions of a zonotope : via Minkowski's sum and by projecting the unit cube $[0, 1]^n$.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

We thus have two definitions of a zonotope : via Minkowski's sum and by projecting the unit cube $[0, 1]^n$.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

We thus have two definitions of a zonotope : via Minkowski's sum and by projecting the unit cube $[0, 1]^n$.

4 0 8

Can we compute the Ehrhart polynomial of zonotopes ?

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

 Ω

Permutahedron

The d-dimensional permutahedron P_d is defined as $P_d := \text{conv}\{(\pi(1) - 1, \pi(2) - 1, \dots, \pi(d) - 1) : \pi \in S_d\}$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

Permutahedron

The d-dimensional permutahedron P_d is defined as $P_d := conv\{(\pi(1) - 1, \pi(2) - 1, \dots, \pi(d) - 1) : \pi \in S_d\}$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

We recall that a forest is a graph without a cycle.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

We recall that a forest is a graph without a cycle.

Lemma Let $S \subseteq \{e_1 + e_2, e_1 + e_3, \ldots, e_{d-1} + e_d\}$. We associate a graph G_S with vertices $\{1, \ldots, d\}$ and where two vertices *i* are *j* are adjacent if $e_i + e_i \in S$. Then, S is linearly independent if and only if G_S is a forest.

つひひ

We recall that a forest is a graph without a cycle.

Lemma Let $S \subseteq \{e_1 + e_2, e_1 + e_3, \ldots, e_{d-1} + e_d\}$. We associate a graph G_S with vertices $\{1, \ldots, d\}$ and where two vertices *i* are *j* are adjacent if $e_i + e_j \in S$. Then, S is linearly independent if and only if G_S is a forest.

Theorem The coefficient c_k of $L_{P_d}(t) = c_{d-1}t^{d-1} + \cdots + c_0$ is equals to the number of labeled forests on d vertices with k edges.

つひひ

イロト イ部ト イミトン

Proof (idea). For each linear independent subset S of ${e_1 + e_2, e_1 + e_3, \ldots, e_{d-1} + e_d}$, we associate a half-opened cube

$$
\sum_{e_j+e_i\in S}(0,e_j+e_i]
$$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

K ロ ▶ K 何 ▶ K

 Ω

Proof (idea). For each linear independent subset S of ${e_1 + e_2, e_1 + e_3, \ldots, e_{d-1} + e_d}$, we associate a half-opened cube

$$
\sum_{e_j+e_i\in S}(0,e_j+e_i]
$$

• The relative volume of each such cube is equals to 1.

Proof (idea). For each linear independent subset S of ${e_1 + e_2, e_1 + e_3, \ldots, e_{d-1} + e_d}$, we associate a half-opened cube

$$
\sum_{e_j+e_i\in S}(0,e_j+e_i]
$$

• The relative volume of each such cube is equals to 1.

• These cubes decompose P_d as follows

$$
P_d = 0 + \sum_{\mathcal{S} \in \mathcal{I}} \left(\sum_{e_j + e_i \in \mathcal{S}} (0, e_j + e_i] \right)
$$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

 Ω

(□) (n) () =

 Ω

• These cubes correspond to linear independent subsets S of

 ${e_1 + e_2, e_1 + e_2, \ldots, e_{d-1} + e_d}$ with $|S| = k$.

つひひ

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶

• These cubes correspond to linear independent subsets S of ${e_1 + e_2, e_1 + e_2, \ldots, e_{d-1} + e_d}$ with $|S| = k$.

• By Lemma, these subsets correspond to forests in G_S with k edges.

つひひ

• These cubes correspond to linear independent subsets S of ${e_1 + e_2, e_1 + e_2, \ldots, e_{d-1} + e_d}$ with $|S| = k$.

• By Lemma, these subsets correspond to forests in G_S with k edges.

• Therefore, c_k counts of labeled forests on d vertices with k edges.

つひひ

K ロ ▶ | K 伺 ▶ | K ヨ ▶

Corollary Let d be a positive integer. Then, $vol(P_d) = d^{d-2}$.

J.L. Ram´ırez Alfons´ın Universit´e de Montpellier

Corollary Let d be a positive integer. Then, $vol(P_d) = d^{d-2}$. Proof Coefficients c_{d-1} of $L_{P_d}(t)$ is equals to the number of labeled forest on d vertices and $d - 1$ edges.

(□) (母) (글

 Ω

Corollary Let d be a positive integer. Then, $vol(P_d) = d^{d-2}$. Proof Coefficients c_{d-1} of $L_{P_d}(t)$ is equals to the number of labeled forest on d vertices and $d - 1$ edges. But such forest is a tree.

(□) (母) (글

 Ω

Corollary Let d be a positive integer. Then, $vol(P_d) = d^{d-2}$.

Proof Coefficients c_{d-1} of $L_{P_d}(t)$ is equals to the number of labeled forest on d vertices and $d - 1$ edges. But such forest is a tree.

It is known (Cayley theorem) that the number of different labeled trees of K_d is equals to d^{d-2} .

 Ω

We compute each $c_i, 0 \leq i \leq 2$ in $L_{P_3}(t)$ by counting forests.

[Ehrhart theory III : Tutte polynomial and zonotopes](#page-0-0)

J.L. Ramírez Alfonsín **II. Andreas Alfonsín a componenta a componenta a la componenta de Montpellier**

 \leftarrow \Box

We compute each $c_i, 0 \leq i \leq 2$ in $L_{P_3}(t)$ by counting forests.

Therefore,
$$
L_{P_3}(t) = 3t^2 + 3t + 1
$$
.

J.L. Ramírez Alfonsín **II. Andreas Alfonsín a componenta a componenta a la componenta de Montpellier**

Independents

A matroid M is an ordered pair (E, \mathcal{I}) where E is a finite set $(E = \{1, \ldots, n\})$ and $\mathcal I$ is a family of subsets of E verifying the following conditions :

 (11) $\emptyset \in \mathcal{I}$,

(12) If $I \in \mathcal{I}$ and $I' \subset I$ then $I' \in \mathcal{I}$,

(13) If $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$ then there exists $e \in I_2 \setminus I_1$ such that $I_1 \cup e \in \mathcal{I}$.

つひひ

∢ □ ▶ ⊣ n → ⊣ ∃ ▶

Independents

A matroid M is an ordered pair (E, \mathcal{I}) where E is a finite set $(E = \{1, \ldots, n\})$ and $\mathcal I$ is a family of subsets of E verifying the following conditions :

 (11) $\emptyset \in \mathcal{I}$,

(12) If $I \in \mathcal{I}$ and $I' \subset I$ then $I' \in \mathcal{I}$,

(13) If $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$ then there exists $e \in I_2 \setminus I_1$ such that $I_1 \cup \rho \in \mathcal{T}$

The members in $\mathcal I$ are called the independents of M . A subset in E not belonging to I is called dependent.

つひひ

∢ □ ▶ ⊰ 何 ▶ ⊰ ∃ ▶ .

Independents

A matroid M is an ordered pair (E, \mathcal{I}) where E is a finite set $(E = \{1, \ldots, n\})$ and $\mathcal I$ is a family of subsets of E verifying the following conditions :

 (11) $\emptyset \in \mathcal{I}$,

(12) If $I \in \mathcal{I}$ and $I' \subset I$ then $I' \in \mathcal{I}$,

(13) If $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$ then there exists $e \in I_2 \setminus I_1$ such that $I_1 \cup \rho \in \mathcal{T}$

The members in $\mathcal I$ are called the independents of M. A subset in E not belonging to I is called dependent. The rank of a set $X \subseteq E$ is defined by

$$
r_M(X) = \max\{|Y| : Y \subseteq X, Y \in \mathcal{I}\}.
$$

つひひ

∢ロ ▶ ∢ 何 ▶ ∢ ヨ ▶

Theorem (Whitney 1935) Let $\{e_1, \ldots, e_n\}$ a set of columns (vectors) of a matrix with coefficients in a field $\mathbb F$. Let $\mathcal I$ be the family of subsets $\{i_1, \ldots, i_m\} \subseteq \{1, \ldots, n\} = E$ such that the columns $\{e_{i_1},\ldots,e_{i_m}\}$ are linearly independent in $\mathbb F.$ Then, (E,\mathcal{I}) is a matroid.

つひひ
Proof. (11) et (12) are trivial.

[Ehrhart theory III : Tutte polynomial and zonotopes](#page-0-0)

つひひ

Proof. (11) et (12) are trivial.

(13)] Let $I'_1, I'_2 \in \mathcal{I}$ such that the corresponding columns, say I_1 et I_2 , are linearly independent with $|I_1| < |I_2|$.

つひひ

Proof. (11) et (12) are trivial.

(13)] Let $I'_1, I'_2 \in \mathcal{I}$ such that the corresponding columns, say I_1 et I_2 , are linearly independent with $|I_1| < |I_2|$.

By contradiction, suppose that $I_1 \cup e$ is linearly dependent for any $e \in I_2 \backslash I_1$.

つひひ

K ロ ト K 何 ト K ヨ ト .

Proof. (11) et (12) are trivial.

(13)] Let $I'_1, I'_2 \in \mathcal{I}$ such that the corresponding columns, say I_1 et I_2 , are linearly independent with $|I_1| < |I_2|$. By contradiction, suppose that $I_1 \cup e$ is linearly dependent for any

 $e \in I_2 \backslash I_1$. Let W the space generated by I_1 and I_2 .

つひひ

イロト イ母ト イヨト

Proof. (11) et (12) are trivial.

(13)] Let $I'_1, I'_2 \in \mathcal{I}$ such that the corresponding columns, say I_1 et I_2 , are linearly independent with $|I_1| < |I_2|$. By contradiction, suppose that $I_1 \cup e$ is linearly dependent for any

 $e \in I_2 \backslash I_1$. Let W the space generated by I_1 and I_2 .

On one hand, $dim(W) > |I_2|$,

つひひ

イロト イ部ト イミトン

Proof. (11) et (12) are trivial.

(13)] Let $I'_1, I'_2 \in \mathcal{I}$ such that the corresponding columns, say I_1 et I_2 , are linearly independent with $|I_1| < |I_2|$.

By contradiction, suppose that $I_1 \cup e$ is linearly dependent for any $e \in I_2 \backslash I_1$. Let W the space generated by I_1 and I_2 .

On one hand, $dim(W) \geq |I_2|$, on the other hand W is contained in the space generated by I_1 .

つひひ

K ロ ト K 倒 ト K 差 ト K

Proof. (11) et (12) are trivial.

(13)] Let $I'_1, I'_2 \in \mathcal{I}$ such that the corresponding columns, say I_1 et I_2 , are linearly independent with $|I_1| < |I_2|$.

By contradiction, suppose that $I_1 \cup e$ is linearly dependent for any $e \in I_2 \backslash I_1$. Let W the space generated by I_1 and I_2 .

On one hand, $dim(W) \geq |I_2|$, on the other hand W is contained in the space generated by I_1 .

 $|I_2| \leq dim(W) \leq |I_1| < |I_2|$!!!

つひへ

(ロトヨ 伊) ヨ ミン

Let A be the following matrix with coefficients in \mathbb{R} .

$$
A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}
$$

 $\{\emptyset, \{1\}, \{2\}, \{4\}, \{4\}, \{5\}, \{1, 2\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{4, 5\}\} \subseteq \mathcal{I}(M)$

A matroid obtained form a matrix A with coefficients in $\mathbb F$ is denoted by $M(A)$ and is called representable over $\mathbb F$ or F-representable .

[Ehrhart theory III : Tutte polynomial and zonotopes](#page-0-0)

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

つひひ

A matroid is called regular if it is representable over ALL fileds.

J.L. Ramírez Alfonsín **II. Andreas Alfonsín a componenta a componenta a la componenta de Montpellier** [Ehrhart theory III : Tutte polynomial and zonotopes](#page-0-0)

K ロ ▶ K 伊 ▶

 299

A matroid is called regular if it is representable over ALL fileds. A matrix is totally unimodular if all its coefficients are $0, \pm 1$ and the determinant of any square sub-matrix is equals to 0 or ± 1 .

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier [Ehrhart theory III : Tutte polynomial and zonotopes](#page-0-0)

 Ω

A matroid is called regular if it is representable over ALL fileds. A matrix is totally unimodular if all its coefficients are $0, \pm 1$ and the determinant of any square sub-matrix is equals to 0 or ± 1 . Theorem Regular matroids are equivalent to totally unimodular matrices.

 Ω

Non Representable Matroids

There exists matroids that are not representable in ANY field.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

Non Representable Matroids

There exists matroids that are not representable in ANY field. Example (classic) : the rank 3 matroid on 9 elements obtained from the Non-Pappus configuration

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

 Ω

Duality

Let M be a matroid on the ground set E and let B the set of bases of M. Then,

 $\mathcal{B}^* = \{E \setminus B \mid B \in \mathcal{B}\}$

is the set of bases of a matroid on E.

J.L. Ramírez Alfonsín **II. A film a component a component a component a component a literature de Montpellier** [Ehrhart theory III : Tutte polynomial and zonotopes](#page-0-0)

 Ω

K ロ ▶ K 何 ▶ K 手

Duality

Let M be a matroid on the ground set E and let β the set of bases of M. Then,

 $\mathcal{B}^* = \{E \setminus B \mid B \in \mathcal{B}\}$

is the set of bases of a matroid on E.

The matroid on E having \mathcal{B}^* as set of bases, denoted by M^* , is called the dual of M.

A base of M^* is also called cobase of M .

•
$$
r(M^*) = |E| - r_M
$$
 and $M^{**} = M$.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

∢ ロ ▶ . ∢ 伺 ▶ . ∢ ∃ ♪

 Ω

Let M be a matroid on the set E and let $A \subset E$. Then, ${X \subset E \backslash A \mid X \text{ is independent in } M}$

is a set of independent of a matroid on $E \backslash A$.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier [Ehrhart theory III : Tutte polynomial and zonotopes](#page-0-0)

 Ω

K ロ ▶ K 何 ▶ K 手

Let M be a matroid on the set E and let $A \subset E$. Then,

 ${X \subset E \backslash A \mid X \text{ is independent in } M}$

is a set of independent of a matroid on $E\setminus A$. This matroid is obtained from M by deleting the elements of A and it is denoted by $M\setminus A$.

つひひ

(□) (n) () =

Let M be a matroid on the set E and let $A \subset E$. Then,

 $\{X \subset E \backslash A \mid X \text{ is independent in } M\}$

is a set of independent of a matroid on $E\setminus A$.

This matroid is obtained from M by deleting the elements of A and it is denoted by $M\setminus A$.

The matroid $(M^* \setminus A)^*$ is called the contraction of the elements of A and it is denoted by M/A .

つひひ

K ロ ▶ | K 何 ▶ | K ヨ ▶

Tutte Polynomial

The Tutte polynomial of a matroid M is the generating function defined as follows

$$
t(M; x, y) = \sum_{X \subseteq E} (x-1)^{r(E)-r(X)}(y-1)^{|X|-r(X)}.
$$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

Tutte Polynomial

The Tutte polynomial of a matroid M is the generating function defined as follows

$$
t(M; x, y) = \sum_{X \subseteq E} (x-1)^{r(E)-r(X)}(y-1)^{|X|-r(X)}.
$$

Let $U_{2,3}$ be the matroid of rank 2 on 3 elements with $\mathcal{B}(U_{2,3}) = \{\{1,2\},\{1,3\},\{2,3\}\}\$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

K ロ ▶ K 何 ▶ K

 Ω

Tutte Polynomial

The Tutte polynomial of a matroid M is the generating function defined as follows

$$
t(M; x, y) = \sum_{X \subseteq E} (x - 1)^{r(E) - r(X)} (y - 1)^{|X| - r(X)}.
$$

Let $U_{2,3}$ be the matroid of rank 2 on 3 elements with $\mathcal{B}(U_{2,3}) = \{\{1,2\},\{1,3\},\{2,3\}\}\$

$$
t(U_{2,3}; x, y) = \sum_{X \subseteq E, |X|=0} (x-1)^{2-0}(y-1)^{0-0} + \sum_{X \subseteq E, |X|=1} (x-1)^{2-1}(y-1)^{1-1}
$$

+
$$
\sum_{X \subseteq E, |X|=2} (x-1)^{2-2}(y-1)^{2-2} + \sum_{X \subseteq E, |X|=3} (x-1)^{2-2}(y-1)^{3-2}
$$

= $(x-1)^2 + 3(x-1) + 3(1) + y - 1$
= $x^2 - 2x + 1 + 3x - 3 + 3 + y - 1 = x^2 + x + y$.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

 Ω

K ロ ▶ | K 伺 ▶ | K 급

A loop of a matroid M is a circuit of cardinality one. An isthmus of M is an element that is contained in all the bases.

[Ehrhart theory III : Tutte polynomial and zonotopes](#page-0-0)

K ロ ト K 伊 ト K

 299

A loop of a matroid M is a circuit of cardinality one. An isthmus of M is an element that is contained in all the bases. The Tutte polynomial can be expressed recursively as follows

$$
t(M; x, y) = \begin{cases} t(M \setminus e; x, y) + t(M/e; x, y) & \text{if } e \neq \text{isthmus, loop,} \\ x \cdot t(M \setminus e; x, y) & \text{if } e \text{ is an isthmus,} \\ y \cdot t(M/e; x, y) & \text{if } e \text{ is a loop.} \end{cases}
$$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

◂**◻▸ ◂⁄** ▸

 Ω

Some properties

 $t(M^*; x, y) = t(M; y, x),$ $t(M; 1, 1)$ counts the number of bases of M, $t(M; 2, 1)$ counts the number of independents of M, $t(M; 1, 2)$ counts the number of generators of M.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

Some properties

 $t(M^*; x, y) = t(M; y, x),$ $t(M; 1, 1)$ counts the number of bases of M, $t(M; 2, 1)$ counts the number of independents of M, $t(M; 1, 2)$ counts the number of generators of M. The independent polynomial of M is given by

$$
I(M,z)=\sum_{i=0}^{|E|}f_iz^i
$$

where f_i design the number of independents of size i in M.

[Ehrhart theory III : Tutte polynomial and zonotopes](#page-0-0)

J.L. Ramírez Alfonsín a controllation de la controllation de la controllation de la controllation de Montpellier

つひひ

∢ □ ▶ ⊣ n → ⊣ ∃ ▶

Proposition $I(M, z) = z^{r(M)} t (M; \frac{1}{z} + 1, 1)$.

 299 **K ロ ▶ K 御 ▶ K 活** Þ \rightarrow

J.L. Ram´ırez Alfons´ın Universit´e de Montpellier

Proposition $I(M, z) = z^{r(M)} t (M; \frac{1}{z} + 1, 1)$.

$$
t\left(M; \frac{1}{z} + 1, 1\right) = \sum_{X \subseteq E} \left(\frac{1}{z} + 1 - 1\right)^{r(M) - r(X)} (1 - 1)^{|X| - r(X)} = \sum_{X \subseteq E} \left(\frac{1}{z}\right)^{r(M) - r(X)} 0^{|X| - r(X)}
$$

But $(\frac{1}{7})$ $\frac{1}{z}$) $r^{(M)-r(X)}0^{|X|-r(X)}$ is not zero if and only if $|X|=r(X)$, that is, X is independent.

$$
t\left(M;\frac{1}{z}+1,1\right)=\sum_{X\subseteq E,X\in\mathcal{I}(M)}\left(\frac{1}{z}\right)^{r(M)-r(X)}=\left(\frac{1}{z}\right)^{r(M)}\sum_{X\subseteq E,X\in\mathcal{I}(M)}z^{r(X)}.
$$

Obtaining,

$$
z^{r(M)}t\left(M;\frac{1}{z}+1,1\right)=z^{r(M)}\left(\frac{1}{z}\right)^{r(M)}\sum_{X\subseteq E, X\in\mathcal{I}(M)}z^{r(X)}\sum_{\text{since }r(X)=|X|}\sum_{i=0}^{|E|}f_iz^{i}=I(M,z).
$$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

 Ω

K ロ ⊁ K 伊 ⊁ K ミ ⊁

Let $G = (V, E)$ be a connected graph. An orientation of G is an orientation of the edges of G.

We say that the orientation is acyclic if the oriented graph do not contain an oriented cycle (i.e., a cycle where all its edges are oriented clockwise or anti-clockwise).

つひひ

Let $G = (V, E)$ be a connected graph. An orientation of G is an orientation of the edges of G.

We say that the orientation is acyclic if the oriented graph do not contain an oriented cycle (i.e., a cycle where all its edges are oriented clockwise or anti-clockwise).

Theorem The number of acyclic orientations of G is equals to

 $t(M(G); 2, 0).$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

つひひ

Example : There are 6 acyclic orientations of C_3

Notice that $M(C_3)$ is isomorphic to $U_{2,3}$.

J.L. Ramírez Alfonsín National Alfonsón de Montpellier de Montpellier de Montpellier de Montpellier de Montpellier

4 0 8 4

 299

Example : There are 6 acyclic orientations of C_3

Notice that $M(C_3)$ is isomorphic to $U_{2,3}$.

Since $t(U_{2,3}; x, y) = x^2 + x + y$ then the number of acyclic orientations of C_3 is $t(U_{2,3}; 2, 0) = 2^2 + 2 + 0 = 6$.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

 Ω

Chromatic Polynomial

Let $G = (V, E)$ be a graph and let λ be a positive integer.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

Let $G = (V, E)$ be a graph and let λ be a positive integer. A λ -coloring of G is a map $\phi: V \longrightarrow \{1, \ldots, \lambda\}.$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

Let $G = (V, E)$ be a graph and let λ be a positive integer. A λ -coloring of G is a map $\phi: V \longrightarrow \{1, \ldots, \lambda\}.$

The coloring is called good if for any edge $\{u, v\} \in E(G)$, $\phi(u) \neq \phi(v)$.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier [Ehrhart theory III : Tutte polynomial and zonotopes](#page-0-0)

Let $G = (V, E)$ be a graph and let λ be a positive integer. A λ -coloring of G is a map $\phi: V \longrightarrow \{1, \ldots, \lambda\}.$

The coloring is called good if for any edge $\{u, v\} \in E(G)$, $\phi(u) \neq \phi(v)$.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

つひひ

Let $\chi(G, \lambda)$ be the number of good λ -colorings of G.

Kロト K個 K K B 299

J.L. Ram´ırez Alfons´ın Universit´e de Montpellier
Let $\chi(G, \lambda)$ be the number of good λ -colorings of G. Theorem $\chi(G, \lambda)$ is a polynomial on λ . Moreover

$$
\chi(\mathcal{G},\lambda)=\sum_{X\subseteq E}(-1)^{|X|}\lambda^{\omega(\mathcal{G}[X])}
$$

where $\omega(G[X])$ denote the number of connected components of the subgraph generated by X .

Proof (idea). By using the inclusion-exclusion formula.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

 Ω

イロト イ母ト イヨト

The chromatic polynomial has been introduced by Birkhoff as a tool to attack the 4-color problem.

Indeed, if for a planar graph G we have $\chi(G, 4) > 0$ then G admits a good 4-coloring.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

The chromatic polynomial has been introduced by Birkhoff as a tool to attack the 4-color problem.

Indeed, if for a planar graph G we have $\chi(G, 4) > 0$ then G admits a good 4-coloring.

Theorem If G is a graph with $\omega(G)$ connected components. Then,

$$
\chi(G,\lambda)=\lambda^{\omega(G)}(-1)^{|V(G)|-\omega(G)}t(M(G);1-\lambda,0).
$$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

(□) (n) () =

 Ω

The chromatic polynomial has been introduced by Birkhoff as a tool to attack the 4-color problem.

Indeed, if for a planar graph G we have $\chi(G, 4) > 0$ then G admits a good 4-coloring.

Theorem If G is a graph with $\omega(G)$ connected components. Then,

$$
\chi(\mathcal{G},\lambda)=\lambda^{\omega(\mathcal{G})}(-1)^{|V(\mathcal{G})|-\omega(\mathcal{G})}t(M(\mathcal{G});1-\lambda,0).
$$

Example : $\chi(K_3,3) = 3^1(-1)^{3-1}t(K_3;1-3,0)$ $= 3 \cdot 1 \cdot t(\mathcal{U}_{2,3}; -2, 0) = 3((-2)^2 - 2 + 0) = 6.$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

つひひ

 $A \Box B$ $A \Box B$ $A \Box B$

A demi-opened cube is the Minkowski's sum of a set of half-opened lines linearly independent.

J.L. Ramírez Alfonsín **Mateur and Alfons** and Alfonso and Alfonso and Alfonso and Alfonso and Université de Montpellier

A demi-opened cube is the Minkowski's sum of a set of half-opened lines linearly independent. On the same way that any polytope admits a decomposition in simplices, a zonotope admits a decomposition in half-opened cubes.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

つひひ

A demi-opened cube is the Minkowski's sum of a set of half-opened lines linearly independent. On the same way that any polytope admits a decomposition in simplices, a zonotope admits a decomposition in half-opened cubes. Let $w_1, \ldots, w_m \in \mathbb{R}^d$ be linear independent and let $\sigma_1, \ldots, \sigma_m \in \{\pm 1\}$. We define

$$
\prod_{w_1,\ldots,w_m}^{\sigma_1,\ldots,\sigma_m} := \left\{ \lambda_1 w_1 + \cdots + \lambda_m w_m : \begin{array}{l} 0 \leq \lambda_j < 1 \text{ si } \sigma_j = -1 \\ 0 < \lambda_j \leq 1 \text{ si } \sigma_j = 1 \end{array} \right\}
$$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

つひひ

A demi-opened cube is the Minkowski's sum of a set of half-opened lines linearly independent. On the same way that any polytope admits a decomposition in simplices, a zonotope admits a decomposition in half-opened cubes. Let $w_1, \ldots, w_m \in \mathbb{R}^d$ be linear independent and let $\sigma_1, \ldots, \sigma_m \in \{\pm 1\}$. We define

$$
\prod_{w_1,\ldots,w_m}^{\sigma_1,\ldots,\sigma_m} := \left\{ \lambda_1 w_1 + \cdots + \lambda_m w_m : \begin{array}{l} 0 \leq \lambda_j < 1 \text{ si } \sigma_j = -1 \\ 0 < \lambda_j \leq 1 \text{ si } \sigma_j = 1 \end{array} \right\}
$$

Lemme 1 $Z(u_1, \ldots, u_n)$ can be decomposed in disjoint translations of $\prod^{\sigma_1,...,\sigma_m}_{w_1,...,w_m}$ where $\{w_1,\ldots,w_m\}$ vary over all subset linear independent de $\{u_1, \ldots, u_n\}$ with an appropriate choice of signs $\sigma_1, \ldots, \sigma_m$.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier

つひひ

Decomposition of $Z((4,1),(3,2),(1,3))$ in half-opened cubes.

K ロ ▶ K 伊

 299

Lemme 2 Let $\{w_1, \ldots, w_d\} \in \mathbb{Z}^d$ a set of vector linear independent and let $\prod := {\lambda_1 w_1 + \cdots + \lambda_d w_d : 0 \leq \lambda_1, \cdots, \lambda_d < 1}.$ Then,

$$
\mathit{Card}\left(\prod \cap \mathbb{Z}^d\right) = \mathit{vol}\left(\prod\right) = |\mathit{det}(w_1,\ldots,w_d)|
$$

and for any positive integer t

$$
Card\left(t\prod \cap \mathbb{Z}^d\right)=vol\left(\prod\right)t^d.
$$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

 Ω

K ロ ▶ K 御 ▶ K 舌

Lemme 2 Let $\{w_1, \ldots, w_d\} \in \mathbb{Z}^d$ a set of vector linear independent and let $\prod := {\lambda_1 w_1 + \cdots + \lambda_d w_d : 0 \leq \lambda_1, \cdots, \lambda_d < 1}.$ Then,

$$
\mathit{Card}\left(\prod \cap \mathbb{Z}^d\right) = \mathit{vol}\left(\prod\right) = |\mathit{det}(w_1,\ldots,w_d)|
$$

and for any positive integer t

$$
Card\left(t\prod \cap \mathbb{Z}^d\right)=vol\left(\prod\right)t^d.
$$

By combining Lemmas 1 and 2, we obtain Corollary Let $Z \subset \mathbb{R}^d$ be a zonotope decomposed in half-opened cubes. Then, the coefficients c_k in $L_Z(t) = c_d \, t^d + \cdots + c_0$ is equals to the sum of (relative) volumes of the k-dimensional cubes in the decomposition of Z.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier

つひひ

◂**◻▸ ◂⁄** ▸

 Ω

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

Theorem Let M be a regular matroid represented by a unimodular matrix A. Then,

$$
L_{Z(A)}(q) = q^{r(M)}t(M; 1 + \frac{1}{q}, 1).
$$

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

つひひ

Theorem Let M be a regular matroid represented by a unimodular matrix A. Then,

$$
L_{Z(A)}(q) = q^{r(M)}t(M; 1 + \frac{1}{q}, 1).
$$

If A has rank d then by the reciprocity law, we have

$$
L_{Z(A)}(q) = (-1)^d L_{Z(A)}(-q) = (-1)^d q^{r(M)} t \left(M; 1 - \frac{1}{q}, 1 \right) = (-q)^d t \left(M; 1 - \frac{1}{q}, 1 \right).
$$

つひひ

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

Theorem Let M be a regular matroid represented by a unimodular matrix A. Then,

$$
L_{Z(A)}(q) = q^{r(M)}t(M; 1 + \frac{1}{q}, 1).
$$

If A has rank d then by the reciprocity law, we have

$$
L_{Z(A)}(q) = (-1)^d L_{Z(A)}(-q) = (-1)^d q^{r(M)} t \left(M; 1 - \frac{1}{q}, 1 \right) = (-q)^d t \left(M; 1 - \frac{1}{q}, 1 \right).
$$

So, $(-1)^{r(M)}t(M,0,1)$ counts the number of integer points in the interior of $Z(A)$.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

つひひ

Kロトメ部トメミトス

Finitude of polytopes

The following transformations of \mathbb{R}^n preserve the lattice \mathbb{Z}^n (and therefore the integer points and integer polytopes) :

• translation by an integer vector,

• linear transformations $x \mapsto Ax$ where A is a matrix in $GL_n(\mathbb{Z})$, that is, $n \times n$ matrices with integer coefficients and determinant ± 1 (such transformation also preserve the euclidean volume.

つひひ

Finitude of polytopes

The following transformations of \mathbb{R}^n preserve the lattice \mathbb{Z}^n (and therefore the integer points and integer polytopes) :

• translation by an integer vector,

• linear transformations $x \mapsto Ax$ where A is a matrix in $GL_n(\mathbb{Z})$, that is, $n \times n$ matrices with integer coefficients and determinant ± 1 (such transformation also preserve the euclidean volume.

Two polytopes are of the same type if they differ by one such transformations.

つひひ

The following transformations of \mathbb{R}^n preserve the lattice \mathbb{Z}^n (and therefore the integer points and integer polytopes) :

• translation by an integer vector,

• linear transformations $x \mapsto Ax$ where A is a matrix in $GL_n(\mathbb{Z})$, that is, $n \times n$ matrices with integer coefficients and determinant ± 1 (such transformation also preserve the euclidean volume.

Two polytopes are of the same type if they differ by one such transformations.

Theorem (Lagarias & Ziegler) Let k and n be two positive integer. Then, there is a finite number of equivalent classes of integer polytopes of dimension *n* with exactly *k* interior integer points.

つひひ

K ロ ト K 御 ト K 君 ト

For $n = 2$ there are exactly 16 integer polygones with exactly one interior point (modulo $GL_2(\mathbb{Z})$ action)

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

For $n = 2$ there are exactly 16 integer polygones with exactly one interior point (modulo $GL_2(\mathbb{Z})$ action)

J.L. Ram´ırez Alfons´ın Universit´e de Montpellier

4 0 8

 $2Q$

For $n = 2$ there are exactly 16 integer polygones with exactly one interior point (modulo $GL_2(\mathbb{Z})$ action)

Such a list do not exist in dimension $n \geq 3$ (suspected to be very long and hard to access).

[Ehrhart theory III : Tutte polynomial and zonotopes](#page-0-0)

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

 Ω

Fano polytopes

A Fano polytope is an integer polytope of dimension n admitting as a unique interior integer point the origin and all its facets have exactement *n* vertices forming a base for the lattice \mathbb{Z}^n .

Fano polytopes

A Fano polytope is an integer polytope of dimension n admitting as a unique interior integer point the origin and all its facets have exactement *n* vertices forming a base for the lattice \mathbb{Z}^n .

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

 Ω

Fano polytopes

A Fano polytope is an integer polytope of dimension n admitting as a unique interior integer point the origin and all its facets have exactement *n* vertices forming a base for the lattice \mathbb{Z}^n .

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

 Ω

Theorem (Casagrande) The number of vertices of a Fano polytope of dimension n is at most $3n$.

J.L. Ramírez Alfonsín a controllador de la controllador de la controllador de la controllador de Montpellier

Theorem (Casagrande) The number of vertices of a Fano polytope of dimension n is at most $3n$.

Moreover, there is equality if and only if n is even and P is of the same type to the cartesian product of $n/2$ copies of the following Fano's polytope.

つひひ