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Minkowski’s sum

The Minkowski’s sum of polytopes P1, . . . ,Pn ⊂ IRd is defined as

P1 + · · ·+ Pn = {x1 + · · ·+ xn : xi ∈ Pi}.

Example P1 = [4, 0]× [0, 2] ⊂ IR2 and P2 = [(0, 0), (4, 5)] ⊂ IR2.
The vertices of P1 + P2 are (0, 0), (4, 0), (0, 2), (4, 7), (8, 5), (8, 7).
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Zonotope

Let u1, . . . , un be vectors in IRd .

We define a zonotope as

Z (u1, . . . , un) := {[0, u1] + · · ·+ [0, un]}.
Example Take u1 = (4, 1), u2 = (3, 2), u3 = (1, 3).
Z (u1, u2, u3) has (0, 0), (4, 1), (1, 3), (7, 3), (8, 7), (4, 6) as vertices.
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Permutahedron
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Zonotopes

We can rewrite as

Z (u1, . . . , un) = {λ1u1 + · · ·+ λnun : 0 ≤ λj ≤ 1}

= {(u1, . . . , un)

 λ1
...
λn

 : 0 ≤ λj ≤ 1}

= A[0, 1]n

where A = (u1, . . . , un).

A zonotope can be defined as a translation of A[0, 1]n,

A[0, 1]n + b

b a vector of IRd .
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Zonotopes

We thus have two definitions of a zonotope : via Minkowski’s sum
and by projecting the unit cube [0, 1]n.

Can we compute the Ehrhart polynomial of zonotopes ?
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Permutahedron

The d-dimensional permutahedron Pd is defined as
Pd := conv{(π(1)− 1, π(2)− 1, . . . , π(d)− 1) : π ∈ Sd}
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Theorem Pd is a translation of [e1, e2] + [e1, e3] + · · ·+ [ed−1, ed ],
that is, Pd is a translation of the Minkowski’s sum of the segments
formed by each pair of unit vectors in IRd .

We recall that a forest is a graph without a cycle.

Lemma Let S ⊆ {e1 + e2, e1 + e3, . . . , ed−1 + ed}. We associate a
graph GS with vertices {1, . . . , d} and where two vertices i are j
are adjacent if ei + ej ∈ S . Then, S is linearly independent if and
only if GS is a forest.

Theorem The coefficient ck of LPd
(t) = cd−1t

d−1 + · · ·+ c0 is
equals to the number of labeled forests on d vertices with k edges.
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Proof (idea). For each linear independent subset S of
{e1 + e2, e1 + e3, . . . , ed−1 + ed}, we associate a half-opened cube∑

ej+ei∈S
(0, ej + ei ]

• The relative volume of each such cube is equals to 1.
• These cubes decompose Pd as follows

Pd = 0 +
∑
S∈I

 ∑
ej+ei∈S

(0, ej + ei ]
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• The coefficients ck of LPd
(t) = cd t

d + · · ·+ c0 is equals to the
sum of the (relatives) volumes of the k-dimensional cubes in the
decomposition of Pd .

• These cubes correspond to linear independent subsets S of
{e1 + e2, e1 + e2, . . . , ed−1 + ed} with |S | = k .
• By Lemma, these subsets correspond to forests in GS with k
edges.
• Therefore, ck counts of labeled forests on d vertices with k
edges.
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Corollary Let d be a positive integer. Then, vol(Pd) = dd−2.

Proof Coefficients cd−1 of LPd
(t) is equals to the number of

labeled forest on d vertices and d − 1 edges.
But such forest is a tree.

It is known (Cayley theorem) that the number of different labeled
trees of Kd is equals to dd−2.
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We compute each ci , 0 ≤ i ≤ 2 in LP3(t) by counting forests.
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Therefore, LP3(t) = 3t2 + 3t + 1.
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Independents

A matroid M is an ordered pair (E , I) where E is a finite set
(E = {1, . . . , n}) and I is a family of subsets of E verifying the
following conditions :

(I1) ∅ ∈ I,

(I2) If I ∈ I and I ′ ⊂ I then I ′ ∈ I,

(I3) If I1, I2 ∈ I and |I1| < |I2| then there exists e ∈ I2\I1 such that
I1 ∪ e ∈ I.

The members in I are called the independents of M. A subset in E
not belonging to I is called dependent.
The rank of a set X ⊆ E is defined by

rM(X ) = max{|Y | : Y ⊆ X ,Y ∈ I}.
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Ehrhart theory III : Tutte polynomial and zonotopes



Independents

A matroid M is an ordered pair (E , I) where E is a finite set
(E = {1, . . . , n}) and I is a family of subsets of E verifying the
following conditions :

(I1) ∅ ∈ I,

(I2) If I ∈ I and I ′ ⊂ I then I ′ ∈ I,

(I3) If I1, I2 ∈ I and |I1| < |I2| then there exists e ∈ I2\I1 such that
I1 ∪ e ∈ I.

The members in I are called the independents of M. A subset in E
not belonging to I is called dependent.
The rank of a set X ⊆ E is defined by

rM(X ) = max{|Y | : Y ⊆ X ,Y ∈ I}.
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Representable Matroids

Theorem (Whitney 1935) Let {e1, . . . , en} a set of columns
(vectors) of a matrix with coefficients in a field F. Let I be the
family of subsets {i1, . . . , im} ⊆ {1, . . . , n} = E such that the
columns {ei1 , . . . , eim} are linearly independent in F. Then, (E , I)
is a matroid.

Proof. (I1) et (I2) are trivial.
(I3)] Let I ′1, I

′
2 ∈ I such that the corresponding columns, say I1 et

I2, are linearly independent with |I1| < |I2|.
By contradiction, suppose that I1 ∪ e is linearly dependent for any
e ∈ I2\I1. Let W the space generated by I1 and I2.
On one hand, dim(W ) ≥ |I2|, on the other hand W is contained in
the space generated by I1.

|I2| ≤ dim(W ) ≤ |I1| < |I2| !!!
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I2, are linearly independent with |I1| < |I2|.
By contradiction, suppose that I1 ∪ e is linearly dependent for any
e ∈ I2\I1. Let W the space generated by I1 and I2.
On one hand, dim(W ) ≥ |I2|, on the other hand W is contained in
the space generated by I1.

|I2| ≤ dim(W ) ≤ |I1| < |I2| !!!
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Let A be the following matrix with coefficients in R.

A =
1 2 3 4 5(
1 0 0 1 1
0 1 0 0 1

)

{∅, {1}, {2}, {4}, {4}, {5}, {1, 2}, {1, 5}, {2, 4}, {2, 5}, {4, 5}} ⊆ I(M)

A matroid obtained form a matrix A with coefficients in F is
denoted by M(A) and is called representable over F or
F-representable .
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Regular matroids

A matroid is called regular if it is representable over ALL fileds.

A matrix is totally unimodular if all its coefficients are 0,±1 and
the determinant of any square sub-matrix is equals to 0 or ±1.

Theorem Regular matroids are equivalent to totally unimodular
matrices.
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Non Representable Matroids

There exists matroids that are not representable in ANY field.

Example (classic) : the rank 3 matroid on 9 elements obtained
from the Non-Pappus configuration
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Duality

Let M be a matroid on the ground set E and let B the set of bases
of M. Then,

B∗ = {E\B | B ∈ B}

is the set of bases of a matroid on E .

The matroid on E having B∗ as set of bases, denoted by M∗, is
called the dual of M.

A base of M∗ is also called cobase of M.

• r(M∗) = |E | − rM and M∗∗ = M.
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Operation : deletion

Let M be a matroid on the set E and let A ⊂ E . Then,

{X ⊂ E\A | X is independent in M}

is a set of independent of a matroid on E\A.

This matroid is obtained from M by deleting the elements of A
and it is denoted by M\A.

The matroid (M∗ \ A)∗ is called the contraction of the elements of
A and it is denoted by M/A.
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Tutte Polynomial

The Tutte polynomial of a matroid M is the generating function
defined as follows

t(M; x , y) =
∑
X⊆E

(x − 1)r(E)−r(X )(y − 1)|X |−r(X ).

Let U2,3 be the matroid of rank 2 on 3 elements with
B(U2,3) = {{1, 2}, {1, 3}, {2, 3}}

t(U2,3; x , y) =
∑

X⊆E , |X |=0

(x − 1)2−0(y − 1)0−0 +
∑

X⊆E , |X |=1

(x − 1)2−1(y − 1)1−1

+
∑

X⊆E , |X |=2

(x − 1)2−2(y − 1)2−2 +
∑

X⊆E , |X |=3

(x − 1)2−2(y − 1)3−2

= (x − 1)2 + 3(x − 1) + 3(1) + y − 1
= x2 − 2x + 1 + 3x − 3 + 3 + y − 1 = x2 + x + y .
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A loop of a matroid M is a circuit of cardinality one.
An isthmus of M is an element that is contained in all the bases.

The Tutte polynomial can be expressed recursively as follows

t(M; x , y) =


t(M \ e; x , y) + t(M/e; x , y) if e 6= isthmus, loop,
x · t(M \ e; x , y) if e is an isthmus,
y · t(M/e; x , y) if e is a loop.
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Some properties

t(M∗; x , y) = t(M; y , x),
t(M; 1, 1) counts the number of bases of M,
t(M; 2, 1) counts the number of independents of M,
t(M; 1, 2) counts the number of generators of M.

The independent polynomial of M is given by

I (M, z) =

|E |∑
i=0

fiz
i

where fi design the number of independents of size i in M.
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Proposition I (M, z) = z r(M)t
(
M; 1

z + 1, 1
)
.

t

(
M;

1

z
+ 1, 1

)
=
∑
X⊆E

(
1

z
+ 1− 1

)r(M)−r(X )

(1−1)|X |−r(X ) =
∑
X⊆E

(
1

z

)r(M)−r(X )

0|X |−r(X ).

But ( 1
z )r(M)−r(X )0|X |−r(X ) is not zero if and only if |X | = r(X ),

that is, X is independent.

t

(
M;

1

z
+ 1, 1

)
=

∑
X⊆E ,X∈I(M)

(
1

z

)r(M)−r(X )

=

(
1

z

)r(M) ∑
X⊆E ,X∈I(M)

z r(X ).

Obtaining,

z r(M)t

(
M;

1

z
+ 1, 1

)
= z r(M)

(
1

z

)r(M) ∑
X⊆E ,X∈I(M)

z r(X ) =︸︷︷︸
since r(X )=|X |

|E |∑
i=0

fiz
i = I (M, z).
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Acyclic Orientations

Let G = (V ,E ) be a connected graph. An orientation of G is an
orientation of the edges of G .

We say that the orientation is acyclic if the oriented graph do not
contain an oriented cycle (i.e., a cycle where all its edges are
oriented clockwise or anti-clockwise).

Theorem The number of acyclic orientations of G is equals to

t(M(G ); 2, 0).
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Example : There are 6 acyclic orientations of C3

Notice that M(C3) is isomorphic to U2,3.

Since t(U2,3; x , y) = x2 + x + y then the number of acyclic
orientations of C3 is t(U2,3; 2, 0) = 22 + 2 + 0 = 6.
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Chromatic Polynomial

Let G = (V ,E ) be a graph and let λ be a positive integer.

A λ-coloring of G is a map φ : V −→ {1, . . . , λ}.

The coloring is called good if for any edge {u, v} ∈ E (G ),
φ(u) 6= φ(v).
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Ehrhart theory III : Tutte polynomial and zonotopes



Chromatic Polynomial

Let G = (V ,E ) be a graph and let λ be a positive integer.
A λ-coloring of G is a map φ : V −→ {1, . . . , λ}.

The coloring is called good if for any edge {u, v} ∈ E (G ),
φ(u) 6= φ(v).
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Let χ(G , λ) be the number of good λ-colorings of G .

Theorem χ(G , λ) is a polynomial on λ. Moreover

χ(G , λ) =
∑
X⊆E

(−1)|X |λω(G [X ])

where ω(G [X ]) denote the number of connected components of
the subgraph generated by X .

Proof (idea). By using the inclusion-exclusion formula.
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The chromatic polynomial has been introduced by Birkhoff as a
tool to attack the 4-color problem.

Indeed, if for a planar graph G we have χ(G , 4) > 0 then G admits
a good 4-coloring.

Theorem If G is a graph with ω(G ) connected components. Then,

χ(G , λ) = λω(G)(−1)|V (G)|−ω(G)t(M(G ); 1− λ, 0).

Example : χ(K3, 3) = 31(−1)3−1t(K3; 1− 3, 0)

= 3 · 1 · t(U2,3;−2, 0) = 3((−2)2 − 2 + 0) = 6.
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Relation with zonotopes

A demi-opened cube is the Minkowski’s sum of a set of
half-opened lines linearly independent.

On the same way that any polytope admits a decomposition in
simplices, a zonotope admits a decomposition in half-opened cubes.
Let w1, . . . ,wm ∈ IRd be linear independent and let
σ1, . . . , σm ∈ {±1}. We define

σ1,...,σm∏
w1,...,wm

:=

{
λ1w1 + · · ·+ λmwm :

0 ≤ λj < 1 si σj = −1
0 < λj ≤ 1 si σj = 1

}
Lemme 1 Z (u1, . . . , un) can be decomposed in disjoint

translations of
∏σ1,...,σm

w1,...,wm
where {w1, . . . ,wm} vary over all subset

linear independent de {u1, . . . , un} with an appropriate choice of
signs σ1, . . . , σm.
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Decomposition of Z ((4, 1), (3, 2), (1, 3)) in half-opened cubes.
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Lemme 2 Let {w1, . . . ,wd} ∈ Zd a set of vector linear independent
and let

∏
:= {λ1w1 + · · ·+ λdwd : 0 ≤ λ1, · · · , λd < 1}. Then,

Card
(∏

∩Zd
)

= vol
(∏)

= |det(w1, . . . ,wd)|

and for any positive integer t

Card
(
t
∏
∩Zd

)
= vol

(∏)
td .

By combining Lemmas 1 and 2, we obtain
Corollary Let Z ⊂ IRd be a zonotope decomposed in half-opened
cubes. Then, the coefficients ck in LZ (t) = cd t

d + · · ·+ c0 is
equals to the sum of (relative) volumes of the k-dimensional cubes
in the decomposition of Z .
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Remark If the matrix formed by the vectors {w1, . . . ,wd} is
unimodular then all minors have determinant 0 or ±1. In this case,
the coefficient of tk is equals to the number of all subset linearly
independent of size k .

Theorem Let M be a regular matroid represented by a unimodular
matrix A. Then,

LZ(A)(q) = qr(M)t(M; 1 +
1

q
, 1).

If A has rank d then by the reciprocity law, we have

LZ(A)(q) = (−1)dLZ(A)(−q) = (−1)dqr(M)t

(
M; 1−

1

q
, 1

)
= (−q)d t

(
M; 1−

1

q
, 1

)
.

So, (−1)r(M)t(M, 0, 1) counts the number of integer points in the
interior of Z (A).
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Finitude of polytopes

The following transformations of IRn preserve the lattice Zn (and
therefore the integer points and integer polytopes) :

• translation by an integer vector,

• linear transformations x 7→ Ax where A is a matrix in GLn(Z),
that is, n × n matrices with integer coefficients and determinant
±1 (such transformation also preserve the euclidean volume.

Two polytopes are of the same type if they differ by one such
transformations.
Theorem (Lagarias & Ziegler) Let k and n be two positive integer.
Then, there is a finite number of equivalent classes of integer
polytopes of dimension n with exactly k interior integer points.
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For n = 2 there are exactly 16 integer polygones with exactly one
interior point (modulo GL2(Z) action)

Such a list do not exist in dimension n ≥ 3 (suspected to be very
long and hard to access).
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Fano polytopes

A Fano polytope is an integer polytope of dimension n admitting
as a unique interior integer point the origin and all its facets have
exactement n vertices forming a base for the lattice Zn.
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Fano polytopes

Theorem (Casagrande) The number of vertices of a Fano polytope
of dimension n is at most 3n.

Moreover, there is equality if and only if n is even and P is of the
same type to the cartesian product of n/2 copies of the following
Fano’s polytope.
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