Self-dual maps

J. L. Ramírez Alfonsín

IMAG, Université de Montpellier

joint work with L. Montejano and I. Rasskin

CaRT 2022 Combinatorics and Related Topics November 7th, 2022

臣

∢ ≣ ▶

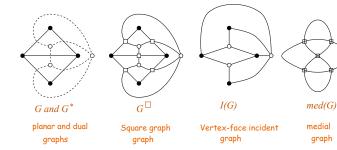
< 17 > <

Planar graphs and others

Let G be a planar graph and let G^* its dual.

Planar graphs and others

Let G be a planar graph and let G^* its dual.



イロト イヨト イヨト イヨト

Planar graphs and others

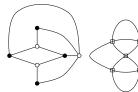
Let G be a planar graph and let G^* its dual.

G and G^*

planar and dual graphs

 G^{\square}

Square graph graph

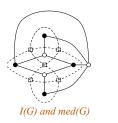


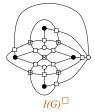
I(G)

Vertex-face incident graph

medial graph

-≣⇒





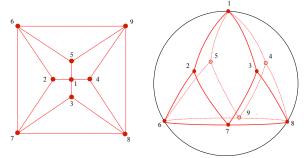
Self-dual maps

A map of a planar graph G is the image of an embedding of G into \mathbb{S}^2 .

イロト イヨト イヨト イヨト

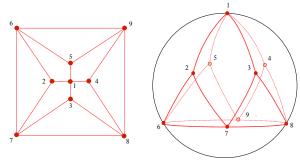
æ

A map of a planar graph G is the image of an embedding of G into \mathbb{S}^2 .

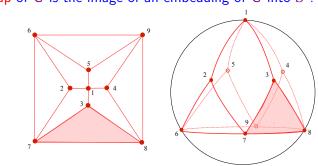


• • • • • • • •

A map of a planar graph G is the image of an embedding of G into \mathbb{S}^2 .



Any embedding of G into \mathbb{S}^2 partition the 2-sphere into simply connected regions of $\mathbb{S}^2 \setminus G$ called the faces of the embedding.



A map of G is the image of an embedding of G into \mathbb{S}^2 .

Any embedding of G into S^2 partition the 2-sphere into simply connected regions of $S^2 \setminus G$ called the faces of the embedding.

An embedding of G and its dual G^* in \mathbb{S}^2 .

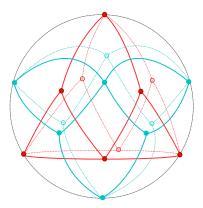


Image: A math a math

문 🕨 🗉 문

Antipodally self-dual maps

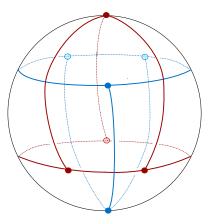
A map G is antipodally self-dual if G and G^* can be antipodally embedded in \mathbb{S}^2 .

臣

∢ ≣⇒

Antipodally self-dual maps

A map G is antipodally self-dual if G and G^* can be antipodally embedded in \mathbb{S}^2 .



Antipodally symmetric maps

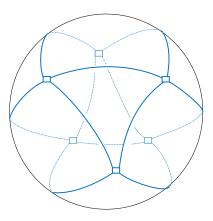
A map G is antipodally symmetric if it admits an antipodally embedding in \mathbb{S}^2 .

< ∃⇒

臣

Antipodally symmetric maps

A map G is antipodally symmetric if it admits an antipodally embedding in \mathbb{S}^2 .

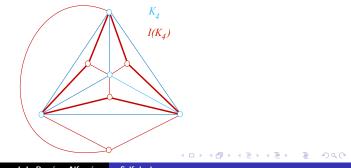


Let Aut(G) be the automorphism group of G (i.e., the set of isomorphisms of G into itself).

Let Aut(G) be the automorphism group of G (i.e., the set of isomorphisms of G into itself). A cycle C of G is symmetric if there is $\sigma \in Aut(G)$ such that $\sigma(C) = C$ and $\sigma(int(C)) = ext(C)$.

Let Aut(G) be the automorphism group of G (i.e., the set of isomorphisms of G into itself). A cycle C of G is symmetric if there is $\sigma \in Aut(G)$ such that $\sigma(C) = C$ and $\sigma(int(C)) = ext(C)$. Theorem (Montejano, R.A., Rasskin, 2022) Let G be antipodally self-dual map. Then, I(G) always admits at least one symmetric cycle. Moreover, all symmetric cycles in I(G) are of length 2n with $n \ge 1$ odd.

Let Aut(G) be the automorphism group of G (i.e., the set of isomorphisms of G into itself). A cycle C of G is symmetric if there is $\sigma \in Aut(G)$ such that $\sigma(C) = C$ and $\sigma(int(C)) = ext(C)$. Theorem (Montejano, R.A., Rasskin, 2022) Let G be antipodally self-dual map. Then, I(G) always admits at least one symmetric cycle. Moreover, all symmetric cycles in I(G) are of length 2n with $n \ge 1$ odd.



Let G be a map and let $X = \{x_1, \ldots, x_m\}$ and $\overline{X} = \{\overline{x}_1, \ldots, \overline{x}_m\}$ be two sets of labels.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

3

 $\Lambda: V \to \mathcal{P}(X \cup \overline{X})$ (= the set of subsets of $X \cup \overline{X}$)

satisfying the following properties :

 $\Lambda: V \to \mathcal{P}(X \cup \overline{X})$ (= the set of subsets of $X \cup \overline{X}$)

satisfying the following properties :

(i) $|\Lambda(v)| \in \{1,2\}$ for every $v \in V$.

 $\Lambda: V \to \mathcal{P}(X \cup \bar{X})$ (= the set of subsets of $X \cup \bar{X}$)

satisfying the following properties :

(i) $|\Lambda(v)| \in \{1,2\}$ for every $v \in V$. (ii) If $|\Lambda(v)| = 2$ then $\Lambda(v) = \{x_i, \overline{x}_i\}$ (v a fixed vertex of Λ).

 $\Lambda: V \to \mathcal{P}(X \cup \bar{X})$ (= the set of subsets of $X \cup \bar{X}$)

satisfying the following properties :

(i) $|\Lambda(v)| \in \{1,2\}$ for every $v \in V$. (ii) If $|\Lambda(v)| = 2$ then $\Lambda(v) = \{x_i, \overline{x}_i\}$ (v a fixed vertex of Λ). (iii) $\Lambda(u) \cap \Lambda(v) \neq \emptyset$ if and only if u = v.

 $\Lambda: V \to \mathcal{P}(X \cup \bar{X})$ (= the set of subsets of $X \cup \bar{X}$)

satisfying the following properties :

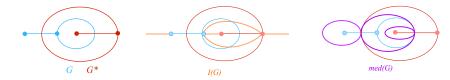
(i) |Λ(v)| ∈ {1,2} for every v ∈ V.
(ii) If |Λ(v)| = 2 then Λ(v) = {x_i, x̄_i} (v a fixed vertex of Λ).
(iii) Λ(u) ∩ Λ(v) ≠ Ø if and only if u = v.
(iv) {Λ⁻¹(x_i), Λ⁻¹(x_j)} ∈ E if and only if {Λ⁻¹(x̄_i), Λ⁻¹(x̄_j)} ∈ E where Λ⁻¹(x_i) := {v ∈ V | x_i ∈ Λ(v)}.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Montejano, R.A., Rasskin, 2022) Let G be a self-dual map. Then, G is antipodally if and only if $I(G)^{\Box}$ admits an involutive labeling without fixed vertex.

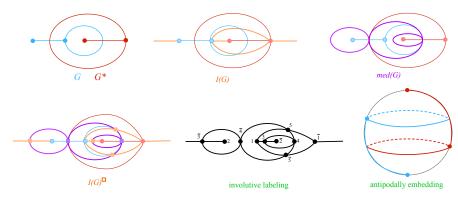
Antipodally self-dual : charaterization

Theorem (Montejano, R.A., Rasskin, 2022) Let G be a self-dual map. Then, G is antipodally if and only if $I(G)^{\Box}$ admits an involutive labeling without fixed vertex.

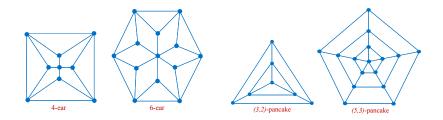


Antipodally self-dual : charaterization

Theorem (Montejano, R.A., Rasskin, 2022) Let G be a self-dual map. Then, G is antipodally if and only if $I(G)^{\Box}$ admits an involutive labeling without fixed vertex.



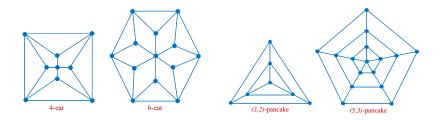
Antipodally self-dual : infinite families



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

æ

Antipodally self-dual : infinite families



Proposition (Montejano, R.A., Rasskin, 2022) The *n*-ear is antipodally self-dual if and only if $n \ge 4$ is even.

Proposition (Montejano, R.A., Rasskin, 2022) The (n, l)-pancake is antipodally self-dual if and only if $n \ge 3$ is odd for all integer $l \ge 1$.

A (1) < A (1) < A (1) </p>

Let G be a self-dual graph with duality isomorphism $\sigma : G \longrightarrow G^*$ (i.e., application sending vertices to faces and faces to vertices while preserving incidence).

Let G be a self-dual graph with duality isomorphism $\sigma : G \longrightarrow G^*$ (i.e., application sending vertices to faces and faces to vertices while preserving incidence).

 ${\it G}$ is strongly involutive if the following conditions are satisfied :

- a) $\sigma^2 = id$
- b) for every vertex $v \in V(G)$, we have that $v \notin \sigma(v)$.

Let G be a self-dual graph with duality isomorphism $\sigma : G \longrightarrow G^*$ (i.e., application sending vertices to faces and faces to vertices while preserving incidence).

G is strongly involutive if the following conditions are satisfied :

a)
$$\sigma^2 = id$$

b) for every vertex $v \in V(G)$, we have that $v \notin \sigma(v)$.

Motivations

Let G be a self-dual graph with duality isomorphism $\sigma : G \longrightarrow G^*$ (i.e., application sending vertices to faces and faces to vertices while preserving incidence).

G is strongly involutive if the following conditions are satisfied :

a)
$$\sigma^2 = id$$

b) for every vertex $v \in V(G)$, we have that $v \notin \sigma(v)$.

Motivations

• These conditions are the combinatorial counterpart of a more general geometric object called strong self-dual polytopes (introduced by Lovász).

Let G be a self-dual graph with duality isomorphism $\sigma : G \longrightarrow G^*$ (i.e., application sending vertices to faces and faces to vertices while preserving incidence).

G is strongly involutive if the following conditions are satisfied :

a)
$$\sigma^2 = id$$

b) for every vertex $v \in V(G)$, we have that $v \notin \sigma(v)$.

Motivations

• These conditions are the combinatorial counterpart of a more general geometric object called strong self-dual polytopes (introduced by Lovász).

• Closely related to Vázsonyi conjecture : a finite set $X \subset \mathbb{R}^3$ of size *m* and diameter 1 has at most 2m - 2 diameters.

Let G be a self-dual graph with duality isomorphism $\sigma : G \longrightarrow G^*$ (i.e., application sending vertices to faces and faces to vertices while preserving incidence).

G is strongly involutive if the following conditions are satisfied :

a)
$$\sigma^2 = id$$

b) for every vertex $v \in V(G)$, we have that $v \notin \sigma(v)$.

Motivations

• These conditions are the combinatorial counterpart of a more general geometric object called strong self-dual polytopes (introduced by Lovász).

• Closely related to Vázsonyi conjecture : a finite set $X \subset \mathbb{R}^3$ of size *m* and diameter 1 has at most 2m - 2 diameters.

• Connected with ball polyhedra.

Constant width body

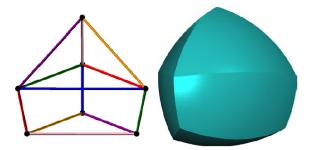
A constant width body is a convex body for which the distance between any pairs of parallel supporting planes is the same.

Constant width body

A constant width body is a convex body for which the distance between any pairs of parallel supporting planes is the same. Involutive self-dual graphs can be used to obtain Reuleaux polyhedra from which constant width bodies can be constructed.

Constant width body

A constant width body is a convex body for which the distance between any pairs of parallel supporting planes is the same. Involutive self-dual graphs can be used to obtain Reuleaux polyhedra from which constant width bodies can be constructed.



Corollary (Montejano, R.A., Rasskin, 2022) Let G be a self-dual map. If G is strongly involutive then G is antipodally self-dual.

- Corollary (Montejano, R.A., Rasskin, 2022) Let G be a self-dual map. If G is strongly involutive then G is antipodally self-dual.
- Proposition (Montejano, R.A., Rasskin, 2022) Let G be a self-dual map. Then, G is strongly involutive if and only if I(G) admits an involutive labeling without edges whose ends are labeled by k and \overline{k} .

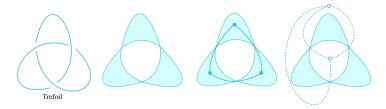
J. L. Ramírez Alfonsín Self-dual maps

(日)、<回)、<三)、</p>

< ∃⇒

æ

Knot theory : quick overview

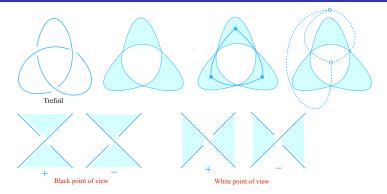


・ロト ・回ト ・ヨト

< ∃⇒

æ

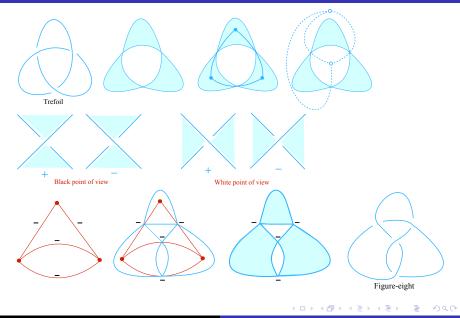
Knot theory : quick overview



・ロト ・回ト ・ヨト ・ヨト

æ

Knot theory : quick overview



A knot K is achiral if there is an automorphism of \mathbb{R}^3 (or \mathbb{S}^3) preserving K and reversing the orientation.

臣

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

A knot K is achiral if there is an automorphism of \mathbb{R}^3 (or \mathbb{S}^3) preserving K and reversing the orientation.

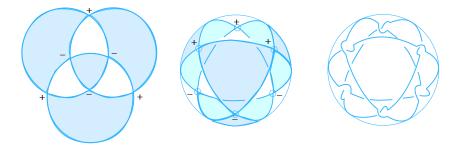
Remark : the Trefoil is not achiral while the Figure-eight is achiral.

< ∃⇒

Achirality

A knot K is achiral if there is an automorphism of \mathbb{R}^3 (or \mathbb{S}^3) preserving K and reversing the orientation.

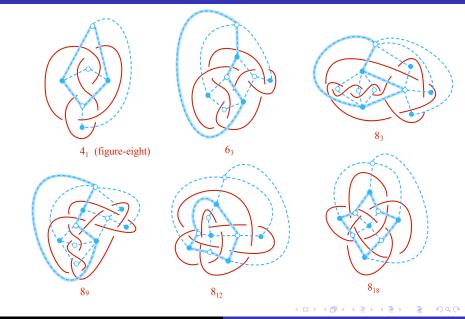
Remark : the Trefoil is not achiral while the Figure-eight is achiral.



Theorem (Montejano, R.A., Rasskin, 2022) Let G be an edge-signed map and suppose that med(G) is antipodally symmetric (realized by a map α). If either (a) α is color-preserving and sign-reversing; or (b) α is color-reversing and sign-preserving, then the link L obtained from G is achiral. Theorem (Montejano, R.A., Rasskin, 2022) Let G be an edge-signed map and suppose that med(G) is antipodally symmetric (realized by a map α). If either (a) α is color-preserving and sign-reversing; or (b) α is color-reversing and sign-preserving, then the link L obtained from G is achiral.

Theorem (Montejano, R.A., Rasskin, 2022) Let G be an edge-signed map and suppose that I(G) admits either (a) color-preserving and sign-reversing *reflexive curve*; or (b) color-reversing and sign-preserving *reflexive curve*, then the link L obtained from G is achiral.

Some achiral knots



< A > < B

∢ ≣⇒