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Planar graphs and others

Let G be a planar graph and let G ∗ its dual.
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Maps

A map of a planar graph G is the image of an embedding of G
into S2.
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Any embedding of G into S2 partition the 2-sphere into simply
connected regions of S2 \ G called the faces of the embedding.
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J. L. Raḿırez Alfonśın Self-dual maps



Self-dual maps

An embedding of G and its dual G ∗ in S2.
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Antipodally self-dual maps

A map G is antipodally self-dual if G and G ∗ can be antipodally
embedded in S2.
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Antipodally symmetric maps

A map G is antipodally symmetric if it admits an antipodally
embedding in S2.
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Antipodally self-dual : necessary conditions

Let Aut(G ) be the automorphism group of G (i.e., the set of
isomorphisms of G into itself).

A cycle C of G is symmetric if there is σ ∈ Aut(G ) such that
σ(C ) = C and σ(int(C )) = ext(C ).
Theorem (Montejano, R.A., Rasskin, 2022) Let G be antipodally
self-dual map. Then, I (G ) always admits at least one symmetric
cycle. Moreover, all symmetric cycles in I (G ) are of length 2n with
n ≥ 1 odd.
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Antipodally self-dual : charaterization

Let G be a map and let X = {x1, . . . , xm} and X̄ = {x1, . . . , xm}
be two sets of labels.

An involutive labeling of G is a function

Λ : V → P(X ∪ X̄ ) (= the set of subsets of X ∪ X̄ )

satisfying the following properties :

(i) |Λ(v)| ∈ {1, 2} for every v ∈ V .

(ii) If |Λ(v)| = 2 then Λ(v) = {xi , x i} (v a fixed vertex of Λ).

(iii) Λ(u) ∩ Λ(v) 6= ∅ if and only if u = v .

(iv) {Λ−1(xi ),Λ
−1(xj)} ∈ E if and only if {Λ−1(x i ),Λ

−1(x j)} ∈ E
where Λ−1(xi ) := {v ∈ V | xi ∈ Λ(v)}.
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Antipodally self-dual : charaterization

Theorem (Montejano, R.A., Rasskin, 2022) Let G be a self-dual
map. Then, G is antipodally if and only if I (G )� admits an
involutive labeling without fixed vertex.

G G* I(G) med(G)
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Antipodally self-dual : charaterization

Theorem (Montejano, R.A., Rasskin, 2022) Let G be a self-dual
map. Then, G is antipodally if and only if I (G )� admits an
involutive labeling without fixed vertex.
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Antipodally self-dual : infinite families

4-ear 6-ear (3,2)-pancake (5,3)-pancake

Proposition (Montejano, R.A., Rasskin, 2022) The n-ear is
antipodally self-dual if and only if n ≥ 4 is even.

Proposition (Montejano, R.A., Rasskin, 2022) The (n, l)-pancake is
antipodally self-dual if and only if n ≥ 3 is odd for all integer l ≥ 1.
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Strongly involutive maps

Let G be a self-dual graph with duality isomorphism σ : G −→ G ∗

(i.e., application sending vertices to faces and faces to vertices
while preserving incidence).

G is strongly involutive if the following conditions are satisfied :

a) σ2 = id
b) for every vertex v ∈ V (G ), we have that v 6∈ σ(v).

Motivations
• These conditions are the combinatorial counterpart of a more
general geometric object called strong self-dual polytopes
(introduced by Lovász).

• Closely related to Vázsonyi conjecture : a finite set X ⊂ R3 of
size m and diameter 1 has at most 2m − 2 diameters.

• Connected with ball polyhedra.
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J. L. Raḿırez Alfonśın Self-dual maps



Strongly involutive maps

Let G be a self-dual graph with duality isomorphism σ : G −→ G ∗

(i.e., application sending vertices to faces and faces to vertices
while preserving incidence).
G is strongly involutive if the following conditions are satisfied :

a) σ2 = id
b) for every vertex v ∈ V (G ), we have that v 6∈ σ(v).

Motivations

• These conditions are the combinatorial counterpart of a more
general geometric object called strong self-dual polytopes
(introduced by Lovász).

• Closely related to Vázsonyi conjecture : a finite set X ⊂ R3 of
size m and diameter 1 has at most 2m − 2 diameters.

• Connected with ball polyhedra.
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Constant width body

A constant width body is a convex body for which the distance
between any pairs of parallel supporting planes is the same.

Involutive self-dual graphs can be used to obtain Reuleaux
polyhedra from which constant width bodies can be constructed.
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Strongly involutive

Corollary (Montejano, R.A., Rasskin, 2022) Let G be a self-dual
map. If G is strongly involutive then G is antipodally self-dual.

Proposition (Montejano, R.A., Rasskin, 2022) Let G be a self-dual
map. Then, G is strongly involutive if and only if I (G ) admits an
involutive labeling without edges whose ends are labeled by k and
k̄ .
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Knot theory : quick overview
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Achirality

A knot K is achiral if there is an automorphism of R3 (or S3)
preserving K and reversing the orientation.

Remark : the Trefoil is not achiral while the Figure-eight is achiral.
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J. L. Raḿırez Alfonśın Self-dual maps



Achirality

A knot K is achiral if there is an automorphism of R3 (or S3)
preserving K and reversing the orientation.

Remark : the Trefoil is not achiral while the Figure-eight is achiral.

_

++

_

_

++

+

_

__

+

J. L. Raḿırez Alfonśın Self-dual maps



Achirality

A knot K is achiral if there is an automorphism of R3 (or S3)
preserving K and reversing the orientation.

Remark : the Trefoil is not achiral while the Figure-eight is achiral.

_

++

_

_

++

+

_

__

+
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Achirality

Theorem (Montejano, R.A., Rasskin, 2022) Let G be an
edge-signed map and suppose that med(G ) is antipodally
symmetric (realized by a map α). If either

(a) α is color-preserving and sign-reversing ; or

(b) α is color-reversing and sign-preserving,

then the link L obtained from G is achiral.

Theorem (Montejano, R.A., Rasskin, 2022) Let G be an
edge-signed map and suppose that I (G ) admits either

(a) color-preserving and sign-reversing reflexive curve ; or

(b) color-reversing and sign-preserving reflexive curve,

then the link L obtained from G is achiral.

J. L. Raḿırez Alfonśın Self-dual maps



Achirality

Theorem (Montejano, R.A., Rasskin, 2022) Let G be an
edge-signed map and suppose that med(G ) is antipodally
symmetric (realized by a map α). If either

(a) α is color-preserving and sign-reversing ; or

(b) α is color-reversing and sign-preserving,

then the link L obtained from G is achiral.

Theorem (Montejano, R.A., Rasskin, 2022) Let G be an
edge-signed map and suppose that I (G ) admits either

(a) color-preserving and sign-reversing reflexive curve ; or

(b) color-reversing and sign-preserving reflexive curve,

then the link L obtained from G is achiral.
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Some achiral knots

4 6
8

8 8 8

1 3

3

9 12 18

(figure-eight)
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