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Planar graphs and others

Let G be a planar graph and let G* its dual.
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A map of a planar graph G is the image of an embedding of G
into S2.
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A map of a planar graph G is the image of an embedding of G
into S2.
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Any embedding of G into S? partition the 2-sphere into simply
connected regions of S? \ G called the faces of the embedding.
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A map of G is the image of an embedding of G into S?.
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Self-dual maps

An embedding of G and its dual G* in S.
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Antipodally self-dual maps

A map G is antipodally self-dual if G and G* can be antipodally
embedded in S2.
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Antipodally symmetric maps

A map G is antipodally symmetric if it admits an antipodally
embedding in S.
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Antipodally symmetric maps

A map G is antipodally symmetric if it admits an antipodally
embedding in S.
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Antipodally self-dual : necessary conditions

Let Aut(G) be the automorphism group of G (i.e., the set of
isomorphisms of G into itself).
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Let Aut(G) be the automorphism group of G (i.e., the set of
isomorphisms of G into itself).
A cycle C of G is symmetric if there is ¢ € Aut(G) such that

o(C) = C and o(int(C)) = ext(C).
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Antipodally self-dual : necessary conditions

Let Aut(G) be the automorphism group of G (i.e., the set of
isomorphisms of G into itself).

A cycle C of G is symmetric if there is ¢ € Aut(G) such that
o(C) = C and o(int(C)) = ext(C).

Theorem (Montejano, R.A., Rasskin, 2022) Let G be antipodally
self-dual map. Then, /(G) always admits at least one symmetric
cycle. Moreover, all symmetric cycles in /(G) are of length 2n with
n>1 odd.
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Antipodally self-dual : charaterization

Let G be a map and let X = {x1,...,xn} and X = {X1,...,Xm}
be two sets of labels.
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A:V — P(XUX) (= the set of subsets of X U X)
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Let G be a map and let X = {x1,...,xn} and X = {X1,...,Xm}
be two sets of labels. An involutive labeling of G is a function

A:V — P(XUX) (= the set of subsets of X U X)

satisfying the following properties :
(1) IN(v)| € {1,2} for every v € V.
(i) 1f |[A(v)| = 2 then A(v) = {x;, X} (v a fixed vertex of A).
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Antipodally self-dual : charaterization

Let G be a map and let X = {x1,...,xn} and X = {X1,...,Xm}
be two sets of labels. An involutive labeling of G is a function

A:V — P(XUX) (= the set of subsets of X U X)

satisfying the following properties :

(1) IN(v)| € {1,2} for every v € V.

(i) 1f |[A(v)| = 2 then A(v) = {x;, X} (v a fixed vertex of A).
(iii) N(u) N A(v) # 0 if and only if u=v.
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Antipodally self-dual : charaterization

Let G be a map and let X = {x1,...,xn} and X = {X1,...,Xm}
be two sets of labels. An involutive labeling of G is a function

A:V — P(XUX) (= the set of subsets of X U X)

satisfying the following properties :

(1) IN(v)| € {1,2} for every v € V.

(i) 1f |[A(v)| = 2 then A(v) = {x;, X} (v a fixed vertex of A).

(i) A(u) Y A(v) # 0 if and only if u = v.

(iv) {A"Y(x ),/\—1(xj)} € E if and only if {A"1(x;),A"1(X;)} € E
where A71(x;) == {v € V| x; € A(v)}.
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Antipodally self-dual : charaterization

Theorem (Montejano, R.A., Rasskin, 2022) Let G be a self-dual
map. Then, G is antipodally if and only if /(G)” admits an
involutive labeling without fixed vertex.
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Antipodally self-dual : charaterization

Theorem (Montejano, R.A., Rasskin, 2022) Let G be a self-dual
map. Then, G is antipodally if and only if /(G)” admits an

involutive labeling without fixed vertex.
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Antipodally self-dual : charaterization

Theorem (Montejano, R.A., Rasskin, 2022) Let G be a self-dual
map. Then, G is antipodally if and only if /(G)” admits an
involutive labeling without fixed vertex.

I(G) involutive labeling antipodally embedding

J. L. Ramirez Alfonsin Self-dual maps



Antipodally self-dual : infinite families

4-ear 6-car (3,2)-pancake (5,3)-pancake
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Antipodally self-dual : infinite families

4-car (3,2)-pancake (5,3)-pancake

Proposition (Montejano, R.A., Rasskin, 2022) The n-ear is
antipodally self-dual if and only if n > 4 is even.

Proposition (Montejano, R.A., Rasskin, 2022) The (n, /)-pancake is
antipodally self-dual if and only if n > 3 is odd for all integer / > 1.
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Strongly involutive maps

Let G be a self-dual graph with duality isomorphism o : G — G*
(i.e., application sending vertices to faces and faces to vertices
while preserving incidence).
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Let G be a self-dual graph with duality isomorphism o : G — G*
(i.e., application sending vertices to faces and faces to vertices
while preserving incidence).

G is strongly involutive if the following conditions are satisfied :
a) 0% = id

b) for every vertex v € V(G), we have that v & o(v).
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(i.e., application sending vertices to faces and faces to vertices
while preserving incidence).

G is strongly involutive if the following conditions are satisfied :
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Let G be a self-dual graph with duality isomorphism o : G — G*
(i.e., application sending vertices to faces and faces to vertices
while preserving incidence).

G is strongly involutive if the following conditions are satisfied :
a) 0% = id

b) for every vertex v € V(G), we have that v & o(v).
Motivations

e These conditions are the combinatorial counterpart of a more
general geometric object called strong self-dual polytopes
(introduced by Lovész).
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Let G be a self-dual graph with duality isomorphism o : G — G*
(i.e., application sending vertices to faces and faces to vertices
while preserving incidence).

G is strongly involutive if the following conditions are satisfied :
a) 0% = id

b) for every vertex v € V(G), we have that v & o(v).
Motivations

e These conditions are the combinatorial counterpart of a more
general geometric object called strong self-dual polytopes
(introduced by Lovész).

e Closely related to VVazsonyi conjecture : a finite set X C R3 of
size m and diameter 1 has at most 2m — 2 diameters.
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Strongly involutive maps

Let G be a self-dual graph with duality isomorphism o : G — G*
(i.e., application sending vertices to faces and faces to vertices
while preserving incidence).

G is strongly involutive if the following conditions are satisfied :
a) 0% = id

b) for every vertex v € V(G), we have that v & o(v).
Motivations

e These conditions are the combinatorial counterpart of a more
general geometric object called strong self-dual polytopes
(introduced by Lovész).

e Closely related to VVazsonyi conjecture : a finite set X C R3 of
size m and diameter 1 has at most 2m — 2 diameters.

e Connected with ball polyhedra.
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Constant width body

A constant width body is a convex body for which the distance
between any pairs of parallel supporting planes is the same.
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A constant width body is a convex body for which the distance
between any pairs of parallel supporting planes is the same.

Involutive self-dual graphs can be used to obtain Reuleaux
polyhedra from which constant width bodies can be constructed.
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Strongly involutive

Corollary (Montejano, R.A., Rasskin, 2022) Let G be a self-dual
map. If G is strongly involutive then G is antipodally self-dual.
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Strongly involutive

Corollary (Montejano, R.A., Rasskin, 2022) Let G be a self-dual
map. If G is strongly involutive then G is antipodally self-dual.

Proposition (Montejano, R.A., Rasskin, 2022) Let G be a self-dual
map. Then, G is strongly involutive if and only if /(G) admits an

involutive labeling without edges whose ends are labeled by k and
k.
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Knot theory : quick overview
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Knot theory : quick overview

Trefoil
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Knot theory : quick overview
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Achirality

A knot K is achiral if there is an automorphism of R3 (or S3)
preserving K and reversing the orientation.
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Achirality

A knot K is achiral if there is an automorphism of R3 (or S3)
preserving K and reversing the orientation.

Remark : the Trefoil is not achiral while the Figure-eight is achiral.
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Achirality

Theorem (Montejano, R.A., Rasskin, 2022) Let G be an
edge-signed map and suppose that med(G) is antipodally
symmetric (realized by a map «). If either

(a) «a is color-preserving and sign-reversing ; or
(b) « is color-reversing and sign-preserving,
then the link L obtained from G is achiral.
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Achirality

Theorem (Montejano, R.A., Rasskin, 2022) Let G be an
edge-signed map and suppose that med(G) is antipodally
symmetric (realized by a map «). If either

(a) «a is color-preserving and sign-reversing ; or

(b) « is color-reversing and sign-preserving,

then the link L obtained from G is achiral.

Theorem (Montejano, R.A., Rasskin, 2022) Let G be an
edge-signed map and suppose that /(G) admits either
(a) color-preserving and sign-reversing reflexive curve; or
(b) color-reversing and sign-preserving reflexive curve,
then the link L obtained from G is achiral.
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Some achiral knots
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