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Basics on posets

Let (P,≤) be a locally finite poset, i.e,

the set P is partially ordered by ≤, and

for every a, b ∈ P the set {c ∈ P | a ≤ c ≤ b} is finite.

A chain of length l ≥ 0 between a, b ∈ P is

{a = a0 < a1 < · · · < al = b} ⊂ P.

We denote by cl(a, b) the number of chains of length l between a
and b.

The Möbius function µP is the function

µP : P × P −→ Z

µP(a, b) =
∑
l≥0

(−1)lcl(a, b).
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Consider the poset (N, | ) of nonnegative integers ordered by
divisibility, i.e., a | b ⇐⇒ a divides b.

Let us compute µN(2, 36).

We observe that {c ∈ N; 2 | c | 36} = {2, 4, 6, 12, 18, 36}. Chains
of

length 1 → {2, 36}

length 2


{2, 4, 36}
{2, 6, 36}
{2, 12, 36}
{2, 18, 36}

length 3


{2, 4, 12, 36}
{2, 6, 12, 26}
{2, 6, 18, 36}

2

64

12 18

36

Thus,
µN(2, 36) = −c1(2, 36) + c2(2, 36)− c3(2, 36) = 1− 4 + 3 = 0.
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Möbius classical arithmetic function

Given n ∈ N the Möbius arithmetic function µ(n) is defined as

µ(n) =


1 if n = 1,
(−1)k if n = p1 · · · pk with pi distinct primes,
0 otherwise (i.e., n admits at least one square

factor bigger than one).

The inverse of the ζ Riemann function, s ∈ C,Re(s) > 0

ζ−1(s) =

(
+∞∑
n=1

1

ns

)−1

=
∏

p−primes

(1− p−s) =
+∞∑
n=1

µ(n)

ns
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There are impressive results using µ, for instance, for an integer n

Pr(n do not contain a square factor) =
6

π2

Consider the poset (N, | ).
We have that if a | b then µN(a, b) = µ(b/a) for all a, b ∈ N

µN(a, b) =


(−1)r if b/a is a product of r distinct primes

0 otherwise

Example: µN(2, 36) = 0 because 36/2 = 18 = 2 · 32
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Basics notions on Posets and Möbius function General methods Explicit formulas Some general application

There are impressive results using µ, for instance, for an integer n

Pr(n do not contain a square factor) =
6

π2

Consider the poset (N, | ).
We have that if a | b then µN(a, b) = µ(b/a) for all a, b ∈ N

µN(a, b) =


(−1)r if b/a is a product of r distinct primes

0 otherwise

Example: µN(2, 36) = 0 because 36/2 = 18 = 2 · 32
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Basics notions on Posets and Möbius function General methods Explicit formulas Some general application

There are impressive results using µ, for instance, for an integer n

Pr(n do not contain a square factor) =
6

π2

Consider the poset (N, | ).
We have that if a | b then µN(a, b) = µ(b/a) for all a, b ∈ N

µN(a, b) =


(−1)r if b/a is a product of r distinct primes

0 otherwise

Example: µN(2, 36) = 0 because 36/2 = 18 = 2 · 32
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Möbius inversion formula

Theorem (Rota)

Let (P,≤) be a poset, let p be an element of P and consider
f : P → R a function such that f (x) = 0 for all x � p. Suppose
that

g(x) =
∑
y≤x

f (y) for all x ∈ P.

Then,
f (x) =

∑
y≤x

g(y) µP(y , x) for all x ∈ P.
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Compute the Euler function φ(n) (the number of integers smaller
or equal to n and coprime with n)

φ(n) = n
∑
d |n

µ(d)

d

Let D be a finite set and consider the poset of multisets over D

ordered by inclusion P. Then, for all A,B multisets over D we
have that

µP(A,B) =


(−1)|B\A| if A ⊂ B and B \ A is a set,

0 otherwise.

An immediate consequence is the classical inclusion-exclusion
counting formula !!
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Semigroup poset

Let S := 〈a1, . . . , an〉 denote the subsemigroup of Zm generated
by a1, . . . , an ∈ Nm, i.e.,

S := 〈a1, . . . , an〉 = {x1a1 + · · ·+ xnan | x1, . . . , xn ∈ N}.

The semigroup S induces a binary relation ≤S on Zm given by

x ≤S y ⇐⇒ y − x ∈ S.

It turns out that ≤S is an order iff S is pointed (i.e.,
S ∩ −S = {0}). Moreover, whenever S is pointed the poset
(Zm,≤S) is locally finite.
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Semigroup poset

We denote by µS the Möbius function associated to (Zm,≤S).

It is easy to check that µS(x , y) = µS(0, y − x), hence we shall
only consider the reduced Möbius function µS : Zm −→ Z defined
by

µS(x) := µS(0, x) for all x ∈ Zm.

Proposition (Key)

If S is a pointed semigroup, x ∈ Zm, then∑
b∈S

µS(x − b) =

{
1 if x = 0,
0 otherwise.
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We denote by µS the Möbius function associated to (Zm,≤S).

It is easy to check that µS(x , y) = µS(0, y − x), hence we shall
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Basics notions on Posets and Möbius function General methods Explicit formulas Some general application

Known results about µS

1 Deddens (1979).

For S = 〈a, b〉 ⊂ N where a, b ∈ Z+ are relatively prime:

µS(x) =


1 if x ≥ 0 and x ≡ 0 or a + b (mod ab),
−1 if x ≥ 0 and x ≡ a or b (mod ab),

0 otherwise.

2 Chappelon and R.A. (2013).

A recursive formula for µS when
S = 〈a, a + d , . . . , a + kd〉 ⊂ N for some a, k, d ∈ Z+, and

a semi-explicit formula for S = 〈2q, 2q + d , 2q + 2d〉 ⊂ N
where q, d ∈ Z+ and gcd{2q, 2q + d , 2q + 2d} = 1.
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Basics notions on Posets and Möbius function General methods Explicit formulas Some general application

Goals

1 Provide general tools to study µS for every semigroup
S ⊂ Zm.

2 Provide explicit formulas for certain families of semigroups
S ⊂ Zm.
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Multigraded Hilbert series

• Let k be a field. A semigroup S = 〈a1, . . . , an〉 ⊂ Nm induces a
grading in the ring of polynomials k[x1, . . . , xn] by assigning
degS(xi ) := ai for all i ∈ {1, . . . , n}.

• The S-degree of the monomial m := xα1
1 · · · xαn

n is
degS(m) =

∑
αiai .

• A polynomial is S-homogeneous if all its monomials have the
same S-degree.

• For all b ∈ Nm, we denote by k[x1, . . . , xn]b the k-vector space
formed by all polynomials S-homogeneous of S-degree b.

• Consider I ⊂ k[x] an ideal generated by S-homogeneous
polynomials. For all b ∈ Nm we denote by Ib the k-vector space
formed by the S-homogeneous polynomials of I of S-degree b.
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Basics notions on Posets and Möbius function General methods Explicit formulas Some general application

The (multigraded) Hilbert function of M := k[x1, . . . , xn]/I is

HFM : Nm −→ N,

where HFM(b) := dimk(k[x1, . . . , xn]b)−dimk(Ib) for all b ∈ Nm.

We define the (multivariate) Hilbert series of M as the formal
power series in Z[[t1, . . . , tm]]:

HM(t) :=
∑
b∈Nm

HFM(b) tb

where tb denote the monomial tb1
1 · · · tbmm ∈ Z[t1, . . . , tm].

Theorem

HM(t) =
tαh(t)

(1− ta1) · · · (1− tan)
,

where α ∈ Zm and h(t) ∈ Z[t1, . . . , tm].
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We denote by IS the toric ideal of S, i.e., the kernel of the
homomorphism of k-algebras

ϕ : k[x1, . . . , xn] −→ k[t1, . . . , tm]

induced by ϕ(xi ) = tai for all i ∈ {1, . . . , n}.

It is well known that IS is generated by S-homogeneous
polynomials.

Proposition

Hk[x1,...,xn]/IS (t) =
∑
b∈S

tb.

From now on, we denote HS(t) := Hk[x1,...,xn]/IS (t) and we call it
the Hilbert series of S.
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Möbius function via Hilbert series

Example: For S = 〈2, 3〉 ⊂ N, we have that S = {0, 2, 3, 4, 5, . . .}
HS(t) = 1 + t2 + t3 + t4 + t5 + · · ·

t2HS(t) = t2 + t4 + t5 + · · ·

Then, (1− t2)HS(t) = 1 + t3 and HS(t) =
1 + t3

1− t2
.

Theorem (1 (Chappelon, Garćıa-Marco, Montejano, R.A. 2014) )

Let a1, . . . , ak nonzero vectors of Z and denote

(1− ta1) · · · (1− tan)HS(t) =
∑

b∈Zm

fbtb.

Then,∑
b∈Zm fb µ(x − b) = 0 for all x /∈ {

∑
i∈A ai |A ⊂ {1, . . . , n}}.
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Möbius function via Hilbert series

Example: For S = 〈2, 3〉 ⊂ N, we have that S = {0, 2, 3, 4, 5, . . .}
HS(t) = 1 + t2 + t3 + t4 + t5 + · · ·

t2HS(t) = t2 + t4 + t5 + · · ·

Then, (1− t2)HS(t) = 1 + t3 and HS(t) =
1 + t3

1− t2
.
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Example: S = 〈2, 3〉
We know that,

HS(t) =
1 + t3

1− t2
.

By Theorem (1) we have that

µS(x) + µS(x − 3) = 0

for all x /∈ {0, 2}.

It is evident that µS(0) = 1. A direct computation yields
µS(2) = −1.

Hence

µS(x) =


1 if x ≡ 0 or 5 (mod 6),
−1 if x ≡ 2 or 3 (mod 6),

0 otherwise.
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On the Möbius function of semigroup posets
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Semigroup Nm

Let S = 〈e1, . . . , em〉 where {e1, . . . , em} denote the canonical
basis of Nm. Then,

µS(x) =


(−1)|A| if x =

∑
i∈A ei for some A ⊂ {1, . . . ,m}

0 otherwise

Proof #1.

We observe that Nm = S and thus
HS(t) =

∑
(b1,...,bm)∈Nm tb1

1 · · · tbmm = 1
(1−t1)···(1−tm) .

By Theorem (1) we have that µNm(x) = 0 for all
x /∈ {

∑
i∈A ei |A ⊂ {1, . . . ,m}}.

A direct computation yields µNm(
∑

i∈A ei ) = (−1)|A| for every
A ⊂ {1, . . . ,m}.
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Möbius function via Hilbert series

We consider GS the generating function of the Möbius
function, which is

GS(t) :=
∑
b∈Nm

µS(b) tb.

Theorem (2 (Chappelon, Garćıa-Marco, Montejano, R.A. 2014))

HS(t) GS(t) = 1.
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function, which is

GS(t) :=
∑
b∈Nm

µS(b) tb.
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Basics notions on Posets and Möbius function General methods Explicit formulas Some general application

Again semigroup S = Nm

µNm(x) =


(−1)|A| if x =

∑
i∈A ei for some A ⊂ {1, . . . ,m}

0 otherwise

Proof #2.

HS(t) =
∑

(b1,...,bm)∈Nm

tb1
1 · · · t

bm
m =

1

(1− t1) · · · (1− tm)
.

By Theorem (2) we have that

GS(t) = (1− t1) · · · (1− tm) =
∑

A⊂{1,...,m}

(−1)|A| t
∑

i∈A ei .
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Semigroups with unique Betti element

A semigroup S ⊂ Nm is said to be a semigroup with a unique
Betti element b ∈ Nm if IS is generated by polynomials of
S-degree b.

We denote d := dim(Q{a1, . . . , an}). In this setting we have the
following result.

Theorem (Chappelon, Garćıa-Marco, Montejano, R.A. 2014)

For S = 〈a1, . . . , am〉 ⊂ Nm with a unique Betti element b

µS(x) =
t∑

j=1

(−1)|Aj |
(
kj + n − d − 1

kj

)
,

if x =
∑

i∈A1
ai + k1 b = · · · =

∑
i∈At

ai + kt b.
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Numerical semigroups with unique Betti element

When S = 〈a1, . . . , an〉 ⊂ N is a semigroup with a unique Betti
element and gcd{a1, . . . , an} = 1, it is known that there exist
pairwise relatively prime different integers b1, . . . , bn ≥ 2 such that
ai :=

∏
j 6=i bj for all i ∈ {1, . . . , n}.

In this setting we can refine the previous Theorem to obtain the
following result.

Corollary (Chappelon, Garćıa-Marco, Montejano, R.A. 2014)

Set b :=
∏n

i=1 bi , then

µS(x) =


(−1)|A|

(k+n−2
k

) if x =
∑

i∈A ai + k b
for some A ⊂ {1, . . . , n}

0 otherwise
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Basics notions on Posets and Möbius function General methods Explicit formulas Some general application

Numerical semigroups with unique Betti element

When S = 〈a1, . . . , an〉 ⊂ N is a semigroup with a unique Betti
element and gcd{a1, . . . , an} = 1, it is known that there exist
pairwise relatively prime different integers b1, . . . , bn ≥ 2 such that
ai :=

∏
j 6=i bj for all i ∈ {1, . . . , n}.

In this setting we can refine the previous Theorem to obtain the
following result.
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3-generated numerical semigroups complete intersection

Whenever S := 〈a1, a2, a3〉 ⊂ N with gcd{a1, a2, a3} = 1, we say
that S is a complete intersection if there exists two
S-homogeneous polynomials f1, f2 such that IS = (f1, f2).

Theorem (Herzog (1970))

S is a complete intersection ⇐⇒ gcd{ai , aj}ak ∈ 〈ai , aj〉, where
{i , j , k} = {1, 2, 3}.

We aim at presenting a formula for S = 〈a1, a2, a3〉 ⊂ N complete
intersection and gcd{a1, a2, a3} = 1, so we assume that
da1 ∈ 〈a2, a3〉, where d := gcd{a2, a3}.
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3-generated numerical semigroups complete intersection

For every x ∈ Z and every B = (b1, . . . , bk) ⊂ (Z+)k , the
Sylvester denumerant dB(x) is the number of non-negative
integer solutions (x1, . . . , xk) ∈ Nk to the equation x =

∑k
i=1 xibi .

For every x ∈ Z we denote by α(x) the only integer such that
0 ≤ α(x) ≤ d − 1 and α(x) a1 ≡ x (mod d).

For S = 〈a1, a2, a3〉 complete intersection and gcd{a1, a2, a3} = 1,
we have the following result.

Theorem (Chappelon, Garćıa-Marco, Montejano, R.A. 2014)

µS(x) = 0 if α(x) ≥ 2, or
µS(x) = (−1)α (dB(x ′)−dB(x ′−a2)−dB(x ′−a3)+dB(x ′−a2−a3))
otherwise, where x ′ := x − α(x) a1 and B := (da1, a2 a3/d).
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integer solutions (x1, . . . , xk) ∈ Nk to the equation x =

∑k
i=1 xibi .

For every x ∈ Z we denote by α(x) the only integer such that
0 ≤ α(x) ≤ d − 1 and α(x) a1 ≡ x (mod d).

For S = 〈a1, a2, a3〉 complete intersection and gcd{a1, a2, a3} = 1,
we have the following result.

Theorem (Chappelon, Garćıa-Marco, Montejano, R.A. 2014)

µS(x) = 0 if α(x) ≥ 2, or
µS(x) = (−1)α (dB(x ′)−dB(x ′−a2)−dB(x ′−a3)+dB(x ′−a2−a3))
otherwise, where x ′ := x − α(x) a1 and B := (da1, a2 a3/d).
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How general are semigroup posets?

Let D = {d1, . . . , dm} be a finite set and let us consider (P,⊂),
the poset of all multisets of D ordered by inclusion.

For the semigroup S := Nm, we consider the map

ψ : (P,⊂) → (Nm,≤Nm)
A 7→ (mA(d1), . . . ,mA(dm)),

where mA(di ) denotes the number of times that di belongs to A.

It is easy to check that ψ is an order isomorphism (an order
preserving and order reflecting bijection).
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How general are semigroup posets?

Hence,

µP(A,B) = µNm(ψ(A), ψ(B)),

and we can recover the formula for µP by means of µNm .

µP(A,B) =


(−1)|B\A| if A ⊂ B and B \ A is a set

0 otherwise
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Take p1, . . . , pm the m first prime numbers, and consider
Nm := {pα1

1 · · · pαm
m |α1, . . . , αm ∈ N} ⊂ N.

Let us consider the poset (Nm, |), i.e., Nm partially ordered by
divisibility.

For the semigroup S := Nm, we consider the order isomorphism

ψ : (Nm, |) → (Nm,≤Nm)
pα1

1 · · · pαm
m 7→ (α1, . . . , αm).

Hence,

µNm(a, b) = µNm(ψ(a), ψ(b)),

and we can recover the formula for µNm by means of µNm .

µNm(a, b) =


(−1)r if b/a is a product of r distinct primes

0 otherwise
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