On the Möbius function of semigroup posets

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

INdAM meeting: International meeting on numerical semigroups

Cortona, Italy, September 10, 2014

Joint work : J.Chappelon, I. García Marco, L.P. Montejano.

On the Möbius function of semigroup posets

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

 2990

Basics on posets

Let (\mathcal{P}, \leq) be a locally finite poset, i.e,

- the set P is partially ordered by \leq , and
- for every $a, b \in \mathcal{P}$ the set $\{c \in \mathcal{P} \mid a \leq c \leq b\}$ is finite.

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

Basics on posets

- Let (\mathcal{P}, \leq) be a locally finite poset, i.e,
	- the set P is partially ordered by \leq , and
	- for every $a, b \in \mathcal{P}$ the set $\{c \in \mathcal{P} \mid a \leq c \leq b\}$ is finite.

A chain of length $l > 0$ between a, $b \in \mathcal{P}$ is

$$
\{a=a_0
$$

We denote by $c_l(a, b)$ the number of chains of length *l* between a and b.

つのへ

Basics on posets

- Let (\mathcal{P}, \leq) be a locally finite poset, i.e,
	- the set P is partially ordered by \leq , and
	- for every $a, b \in \mathcal{P}$ the set $\{c \in \mathcal{P} \mid a \leq c \leq b\}$ is finite.

A chain of length $l > 0$ between a, $b \in \mathcal{P}$ is

$$
\{a=a_0
$$

We denote by $c_l(a, b)$ the number of chains of length *l* between a and b.

The **Möbius function** $\mu_{\mathcal{P}}$ is the function

$$
\mu_{\mathcal{P}} : \mathcal{P} \times \mathcal{P} \longrightarrow \mathbb{Z}
$$

$$
\mu_{\mathcal{P}}(a, b) = \sum_{l \geq 0} (-1)^{l} c_{l}(a, b).
$$

J.L. Ramírez Alfonsín III. Alfonsín II. Alfonsín II. Alfonsín II. Alfonsín II. Alfonsín II. Alfonsín II. Alfonsín

つのへ

Consider the poset $(N, |)$ of nonnegative integers ordered by **divisibility**, i.e., $a \mid b \iff a$ divides b.

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

Consider the poset $(N, |)$ of nonnegative integers ordered by **divisibility**, i.e., a $|b \leftrightarrow a$ divides b. Let us compute $\mu_{\mathbb{N}}(2, 36)$.

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

Consider the poset $(N, |)$ of nonnegative integers ordered by **divisibility**, i.e., a $|b \leftrightarrow a$ divides b. Let us compute $\mu_{\mathbb{N}}(2, 36)$. We observe that $\{c \in \mathbb{N}; 2 | c | 36\} = \{2, 4, 6, 12, 18, 36\}.$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

Consider the poset $(N, |)$ of nonnegative integers ordered by **divisibility**, i.e., a $|b \leftrightarrow a$ divides b. Let us compute $\mu_{\mathbb{N}}(2, 36)$. We observe that $\{c \in \mathbb{N}; 2 | c | 36\} = \{2, 4, 6, 12, 18, 36\}.$ Chains of

• length $1 \rightarrow \{2, 36\}$ length 2 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ ${2, 4, 36}$ ${2, 6, 36}$ $\{2, 12, 36\}$ $\{2, 18, 36\}$ length 3 \int \int \mathcal{L} $\{2, 4, 12, 36\}$ $\{2, 6, 12, 26\}$ $\{2, 6, 18, 36\}$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

つのへ

Consider the poset $(N, |)$ of nonnegative integers ordered by **divisibility**, i.e., a $|b \leftrightarrow a$ divides b. Let us compute $\mu_{\mathbb{N}}(2, 36)$. We observe that $\{c \in \mathbb{N}; 2 \mid c \mid 36\} = \{2, 4, 6, 12, 18, 36\}.$ Chains of

Thus,

$$
\mu_{\mathbb{N}}(2,36)=-c_1(2,36)+c_2(2,36)-c_3(2,36)=1-4+3=0.
$$

On the Möbius function of semigroup posets

 2990

Möbius classical arithmetic function

Given $n \in \mathbb{N}$ the *Möbius arithmetic function* $\mu(n)$ is defined as

$$
\mu(n) = \begin{cases}\n1 & \text{if } n = 1, \\
(-1)^k & \text{if } n = p_1 \cdots p_k \text{ with } p_i \text{ distinct primes,} \\
0 & \text{otherwise (i.e., } n \text{ admits at least one square factor bigger than one)}.\n\end{cases}
$$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

 QQ

4 ロ ト 4 何 ト 4 ヨ ト

Möbius classical arithmetic function

Given $n \in \mathbb{N}$ the *Möbius arithmetic function* $\mu(n)$ is defined as

$$
\mu(n) = \begin{cases}\n1 & \text{if } n = 1, \\
(-1)^k & \text{if } n = p_1 \cdots p_k \text{ with } p_i \text{ distinct primes,} \\
0 & \text{otherwise (i.e., } n \text{ admits at least one square factor bigger than one)}.\n\end{cases}
$$

The inverse of the ζ Riemann function, $s \in \mathbb{C}$, $Re(s) > 0$

$$
\zeta^{-1}(s) = \left(\sum_{n=1}^{+\infty} \frac{1}{n^s}\right)^{-1} = \prod_{p-primes} (1 - p^{-s}) = \sum_{n=1}^{+\infty} \frac{\mu(n)}{n^s}
$$

On the Möbius function of semigroup posets

 2990

$$
Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}
$$

 299 **K ロ ▶ K 伊 ▶ K**

J.L. Ramírez Alfonsín a strong a

$$
\Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}
$$

Consider the poset $(N, |)$.

$$
Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}
$$

Consider the poset $(N, |)$. We have that if a | b then $\mu_{\mathbb{N}}(a, b) = \mu(b/a)$ for all $a, b \in \mathbb{N}$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

$$
Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}
$$

Consider the poset $(\mathbb{N}, |)$. We have that if $a \mid b$ then $\mu_{\mathbb{N}}(a, b) = \mu(b/a)$ for all $a, b \in \mathbb{N}$

 $\mu_{\mathbb{N}}(\mathsf{a},\mathsf{b})=$ $\sqrt{ }$ $\left\vert \right\vert$ \mathcal{L} $(-1)^r$ if b/a is a product of r distinct primes 0 otherwise

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

つのへ

$$
Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}
$$

Consider the poset $(\mathbb{N}, |)$. We have that if a | b then $\mu_{\mathbb{N}}(a, b) = \mu(b/a)$ for all $a, b \in \mathbb{N}$

 $\mu_{\mathbb{N}}(\mathsf{a},\mathsf{b})=$ $\sqrt{ }$ $\left\vert \right\vert$ \mathcal{L} $(-1)^r$ if b/a is a product of r distinct primes 0 otherwise

Example: $\mu_{\mathbb{N}}(2,36) = 0$ because $36/2 = 18 = 2 \cdot 3^2$

On the Möbius function of semigroup posets

つのへ

Möbius inversion formula

Theorem (Rota)

Let (\mathcal{P}, \leq) be a poset, let p be an element of P and consider $f: \mathcal{P} \to \mathbb{R}$ a function such that $f(x) = 0$ for all $x \ngeq p$. Suppose that

$$
g(x) = \sum_{y \leq x} f(y) \text{ for all } x \in \mathcal{P}.
$$

Then,

$$
f(x) = \sum_{y \leq x} g(y) \mu_{\mathcal{P}}(y, x) \text{ for all } x \in \mathcal{P}.
$$

On the Möbius function of semigroup posets

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

 2990

4 ロ ト 4 何 ト 4 ヨ ト

Compute the Euler function $\phi(n)$ (the number of integers smaller or equal to n and coprime with n)

$$
\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d}
$$

4 ロ ▶ 4 何 ▶ 4 $2Q$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

Compute the *Euler function* $\phi(n)$ (the number of integers smaller or equal to n and coprime with n)

$$
\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d}
$$

Let D be a finite set and consider the **poset of multisets over** D ordered by inclusion P . Then, for all A, B multisets over D we have that

$$
\mu_{\mathcal{P}}(A,B) = \begin{cases}\n(-1)^{|B \setminus A|} & \text{if } A \subset B \text{ and } B \setminus A \text{ is a set,} \\
0 & \text{otherwise.} \n\end{cases}
$$

On the Möbius function of semigroup posets

 2990

Compute the *Euler function* $\phi(n)$ (the number of integers smaller or equal to n and coprime with n)

$$
\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d}
$$

Let D be a finite set and consider the **poset of multisets over** D ordered by inclusion P . Then, for all A, B multisets over D we have that

$$
\mu_{\mathcal{P}}(A,B) = \begin{cases}\n(-1)^{|B \setminus A|} & \text{if } A \subset B \text{ and } B \setminus A \text{ is a set,} \\
0 & \text{otherwise.} \n\end{cases}
$$

An immediate consequence is the classical inclusion-exclusion counting formula !!

On the Möbius function of semigroup posets

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

つのへ

Let $\mathcal{S} := \langle a_1, \ldots, a_n \rangle$ denote the subsemigroup of \mathbb{Z}^m generated by $a_1, \ldots, a_n \in \mathbb{N}^m$, i.e.,

$$
\mathcal{S} := \langle a_1, \ldots, a_n \rangle = \{ x_1 a_1 + \cdots + x_n a_n \, | \, x_1, \ldots, x_n \in \mathbb{N} \}.
$$

K ロ ト K 倒 ト K 差 ト K 差 QQ

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

Let $\mathcal{S} := \langle a_1, \ldots, a_n \rangle$ denote the subsemigroup of \mathbb{Z}^m generated by $a_1, \ldots, a_n \in \mathbb{N}^m$, i.e.,

$$
\mathcal{S} := \langle a_1, \ldots, a_n \rangle = \{ x_1 a_1 + \cdots + x_n a_n \, | \, x_1, \ldots, x_n \in \mathbb{N} \}.
$$

The semigroup $\overline{\mathcal{S}}$ induces a binary relation $\leq_{\mathcal{S}}$ on \mathbb{Z}^m given by

$$
x\leq_{\mathcal{S}} y \Longleftrightarrow y-x\in\mathcal{S}.
$$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

 200

K ロ ▶ K 御 ▶ K 君 ▶ K 君

Let $\mathcal{S} := \langle a_1, \ldots, a_n \rangle$ denote the subsemigroup of \mathbb{Z}^m generated by $a_1, \ldots, a_n \in \mathbb{N}^m$, i.e.,

$$
\mathcal{S} := \langle a_1, \ldots, a_n \rangle = \{ x_1 a_1 + \cdots + x_n a_n \, | \, x_1, \ldots, x_n \in \mathbb{N} \}.
$$

The semigroup $\overline{\mathcal{S}}$ induces a binary relation $\leq_{\mathcal{S}}$ on \mathbb{Z}^m given by

$$
x \leq_{\mathcal{S}} y \Longleftrightarrow y - x \in \mathcal{S}.
$$

It turns out that \leq_S is an order iff S is pointed (i.e., $S \cap -S = \{0\}$. Moreover, whenever S is pointed the poset $(\mathbb{Z}^m, \leq_{\mathcal{S}})$ is locally finite.

On the Möbius function of semigroup posets

つのへ

K ロ ▶ K 倒 ▶ K ミ ▶ K

We denote by $\mu_{\mathcal{S}}$ the Möbius function associated to $(\mathbb{Z}^m, \leq_{\mathcal{S}})$.

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

We denote by $\mu_{\mathcal{S}}$ the Möbius function associated to $(\mathbb{Z}^m, \leq_{\mathcal{S}})$.

It is easy to check that $\mu_S(x, y) = \mu_S(0, y - x)$, hence we shall only consider the reduced Möbius function $\mu_{\mathcal{S}}:\mathbb{Z}^m\longrightarrow \mathbb{Z}$ defined by

 $\mu_{\mathcal{S}}(x) := \mu_{\mathcal{S}}(0,x)$ for all $x \in \mathbb{Z}^m$.

4 ロ ト 4 何 ト 4 ヨ ト 4 2990

We denote by $\mu_{\mathcal{S}}$ the Möbius function associated to $(\mathbb{Z}^m, \leq_{\mathcal{S}})$.

It is easy to check that $\mu_S(x, y) = \mu_S(0, y - x)$, hence we shall only consider the reduced Möbius function $\mu_{\mathcal{S}}:\mathbb{Z}^m\longrightarrow \mathbb{Z}$ defined by

$$
\mu_{\mathcal{S}}(x) := \mu_{\mathcal{S}}(0,x) \quad \text{for all } x \in \mathbb{Z}^m.
$$

Proposition (Key)

If S is a pointed semigroup, $x \in \mathbb{Z}^m$, then

$$
\sum_{b \in S} \mu_S(x - b) = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{otherwise.} \end{cases}
$$

On the Möbius function of semigroup posets

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

 2990

 4 ロ \rightarrow 4 \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow \rightarrow

Known results about $\mu_{\mathcal{S}}$

1 Deddens (1979).

For $S = \langle a, b \rangle \subset \mathbb{N}$ where $a, b \in \mathbb{Z}^+$ are relatively prime:

 $\mu_{\mathcal{S}}(x) =$ $\sqrt{ }$ $\left\vert \right\vert$ \mathcal{L} 1 if $x \geq 0$ and $x \equiv 0$ or $a + b$ (mod ab), -1 if $x \ge 0$ and $x \equiv a$ or b (mod ab), 0 otherwise.

2 Chappelon and R.A. (2013).

- A recursive formula for μ_S when $\mathcal{S} = \langle \mathsf{a}, \mathsf{a} + \mathsf{d}, \ldots, \mathsf{a} + \mathsf{k}\mathsf{d} \rangle \subset \mathbb{N}$ for some $\mathsf{a}, \mathsf{k}, \mathsf{d} \in \mathbb{Z}^+$, and
- **•** a semi-explicit formula for $S = \langle 2q, 2q + d, 2q + 2d \rangle \subset \mathbb{N}$ where $q, d \in \mathbb{Z}^+$ and $\gcd\{2q, 2q + d, 2q + 2d\} = 1$.

 2990

4 ロ ト 4 何 ト 4 ヨ ト 4

Goals

O Provide general tools to study μ_S for every semigroup $\mathcal{S} \subset \mathbb{Z}^m$.

 2990 **K ロ ▶ K 倒 ▶ K ミ ▶**

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

Goals

- **O** Provide general tools to study μ_S for every semigroup $\mathcal{S} \subset \mathbb{Z}^m$.
- **2** Provide explicit formulas for certain families of semigroups $\mathcal{S} \subset \mathbb{Z}^m$.

4 ロ ▶ 4 母 ▶ 4 글 QQ

• Let k be a field. A semigroup $\mathcal{S} = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}^m$ induces a grading in the ring of polynomials $k[x_1, \ldots, x_n]$ by assigning $\deg_{\mathcal{S}}(x_i) := a_i$ for all $i \in \{1, \ldots, n\}.$

• Let k be a field. A semigroup $\mathcal{S} = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}^m$ induces a grading in the ring of polynomials $k[x_1, \ldots, x_n]$ by assigning $\deg_{\mathcal{S}}(x_i) := a_i$ for all $i \in \{1, \ldots, n\}.$

• The S-degree of the monomial $m := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is $\deg_{\mathcal{S}}(m) = \sum \alpha_i a_i.$

> **4 ロ ト 4 何 ト 4 ヨ ト 4** つのへ

• Let k be a field. A semigroup $\mathcal{S} = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}^m$ induces a grading in the ring of polynomials $k[x_1, \ldots, x_n]$ by assigning $\deg_{\mathcal{S}}(x_i) := a_i$ for all $i \in \{1, \ldots, n\}.$

• The S-degree of the monomial $m := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is $\deg_{\mathcal{S}}(m) = \sum \alpha_i a_i.$

• A polynomial is S -homogeneous if all its monomials have the same S -degree.

つのへ

4 ロ ト 4 何 ト 4 ヨ ト 4

- Let k be a field. A semigroup $\mathcal{S} = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}^m$ induces a grading in the ring of polynomials $k[x_1, \ldots, x_n]$ by assigning $\deg_{\mathcal{S}}(x_i) := a_i$ for all $i \in \{1, \ldots, n\}.$
- The S-degree of the monomial $m := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is $\deg_{\mathcal{S}}(m) = \sum \alpha_i a_i.$

• A polynomial is S -homogeneous if all its monomials have the same S -degree.

• For all $b \in \mathbb{N}^m$, we denote by $k[x_1, \ldots, x_n]_b$ the *k*-vector space formed by all polynomials S -homogeneous of S -degree b.

つのへ

K ロ ▶ K 倒 ▶ K ミ ▶ K

- Let k be a field. A semigroup $\mathcal{S} = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}^m$ induces a grading in the ring of polynomials $k[x_1, \ldots, x_n]$ by assigning $\deg_{\mathcal{S}}(x_i) := a_i$ for all $i \in \{1, \ldots, n\}.$
- The S-degree of the monomial $m := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is $\deg_{\mathcal{S}}(m) = \sum \alpha_i a_i.$

• A polynomial is S -homogeneous if all its monomials have the same S -degree.

• For all $b \in \mathbb{N}^m$, we denote by $k[x_1, \ldots, x_n]_b$ the *k*-vector space formed by all polynomials S -homogeneous of S -degree b.

• Consider $I \subset k[x]$ an ideal generated by S-homogeneous polynomials. For all $b \in \mathbb{N}^m$ we denote by I_b the k-vector space formed by the S-homogeneous polynomials of I of S-degree b.

つのへ

4 ロ ト 4 何 ト 4 ヨ ト 4

The (multigraded) Hilbert function of $M := k[x_1, \ldots, x_n]/I$ is

 $HF_M : \mathbb{N}^m \longrightarrow \mathbb{N},$

where $HF_M(b) := \dim_k (k[x_1, \ldots, x_n]_b) - \dim_k (I_b)$ for all $b \in \mathbb{N}^m$.

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

The (multigraded) Hilbert function of $M := k[x_1, \ldots, x_n]/I$ is

 $HF_M : \mathbb{N}^m \longrightarrow \mathbb{N},$

where $HF_M(b) := \dim_k (k[x_1, \ldots, x_n]_b) - \dim_k (I_b)$ for all $b \in \mathbb{N}^m$. We define the (multivariate) Hilbert series of M as the formal power series in $\mathbb{Z}[[t_1,\ldots,t_m]]$:

> $\mathcal{H}_{M}(\mathbf{t}) := \ \sum \ H F_{M}(b) \ \mathbf{t}^{b}$ b∈N^m

where \mathbf{t}^b denote the monomial $t_1^{b_1}\cdots t_m^{b_m}\in \mathbb{Z}[t_1,\ldots,t_m].$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

 2990

K ロ ▶ K 倒 ▶ K 目 ▶ K 目

The (multigraded) Hilbert function of $M := k[x_1, \ldots, x_n]/l$ is

 $HF_M : \mathbb{N}^m \longrightarrow \mathbb{N},$

where $HF_M(b) := \dim_k (k[x_1, \ldots, x_n]_b) - \dim_k (I_b)$ for all $b \in \mathbb{N}^m$. We define the (multivariate) Hilbert series of M as the formal power series in $\mathbb{Z}[[t_1,\ldots,t_m]]$:

$$
\mathcal{H}_{\textit{M}}(\mathbf{t}):=\sum_{b\in\mathbb{N}^m}\mathsf{HF}_{\textit{M}}(b)\;\mathbf{t}^b
$$

where \mathbf{t}^b denote the monomial $t_1^{b_1}\cdots t_m^{b_m}\in \mathbb{Z}[t_1,\ldots,t_m].$

Theorem

$$
\mathcal{H}_M(\mathbf{t}) = \frac{\mathbf{t}^{\alpha} h(\mathbf{t})}{(1 - \mathbf{t}^{a_1}) \cdots (1 - \mathbf{t}^{a_n})},
$$

where $\alpha \in \mathbb{Z}^m$ and $h(\mathbf{t}) \in \mathbb{Z}[t_1,\ldots,t_m]$.

We denote by $I_{\mathcal{S}}$ the **toric ideal** of \mathcal{S} , i.e., the kernel of the homomorphism of k-algebras

$$
\varphi: k[x_1,\ldots,x_n] \longrightarrow k[t_1,\ldots,t_m]
$$

induced by $\varphi(x_i) = \mathbf{t}^{a_i}$ for all $i \in \{1, \ldots, n\}.$

It is well known that $I_{\mathcal{S}}$ is generated by S-homogeneous polynomials.

We denote by $I_{\mathcal{S}}$ the **toric ideal** of \mathcal{S} , i.e., the kernel of the homomorphism of k-algebras

$$
\varphi: k[x_1,\ldots,x_n] \longrightarrow k[t_1,\ldots,t_m]
$$

induced by $\varphi(x_i) = \mathbf{t}^{a_i}$ for all $i \in \{1, \ldots, n\}.$

It is well known that $I_{\mathcal{S}}$ is generated by S-homogeneous polynomials.

Proposition

$$
\mathcal{H}_{k[x_1,\ldots,x_n]/I_{\mathcal{S}}}(\mathbf{t})=\sum_{b\in\mathcal{S}}\mathbf{t}^b.
$$

On the Möbius function of semigroup posets

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

 2990

∢ ロ ▶ . ◀ 何 ▶ . ◀ ヨ ▶

We denote by $I_{\mathcal{S}}$ the **toric ideal** of \mathcal{S} , i.e., the kernel of the homomorphism of k-algebras

$$
\varphi: k[x_1,\ldots,x_n] \longrightarrow k[t_1,\ldots,t_m]
$$

induced by $\varphi(x_i) = \mathbf{t}^{a_i}$ for all $i \in \{1, \ldots, n\}.$

It is well known that $I_{\mathcal{S}}$ is generated by S-homogeneous polynomials.

Proposition

$$
\mathcal{H}_{k[x_1,\ldots,x_n]/I_{\mathcal{S}}}(\mathbf{t})=\sum_{b\in\mathcal{S}}\mathbf{t}^b.
$$

From now on, we denote $\mathcal{H}_{\mathcal{S}}(\mathbf{t}) := \mathcal{H}_{k[\mathsf{x}_1,...,\mathsf{x}_n]/\mathsf{l}_\mathcal{S}}(\mathbf{t})$ and we call it the Hilbert series of S .

On the Möbius function of semigroup posets

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

 2990

Example: For $S = \langle 2, 3 \rangle \subset \mathbb{N}$, we have that $S = \{0, 2, 3, 4, 5, \ldots\}$ $\mathcal{H}_{\mathcal{S}}(t) = 1 + t^2 + t^3 + t^4 + t^5 + \cdots$

> **K ロ ▶ K 御 ▶ K 重 ▶ K** QQ

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

Example: For $S = \langle 2, 3 \rangle \subset \mathbb{N}$, we have that $S = \{0, 2, 3, 4, 5, \ldots\}$ $\mathcal{H}_{\mathcal{S}}(t) = 1 + t^2 + t^3 + t^4 + t^5 + \cdots$ $t^2 \mathcal{H}_{\mathcal{S}}(t) = t^2 + t^4 + t^5 + \cdots$

> **K ロ ▶ K 御 ▶ K 重 ▶ K** QQ

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

Example: For $S = \langle 2, 3 \rangle \subset \mathbb{N}$, we have that $S = \{0, 2, 3, 4, 5, \ldots\}$ $\mathcal{H}_{\mathcal{S}}(t) = 1 + t^2 + t^3 + t^4 + t^5 + \cdots$ $t^2 \mathcal{H}_{\mathcal{S}}(t) = t^2 + t^4 + t^5 + \cdots$ Then, $\left(1-t^2\right)\mathcal{H}_{\mathcal{S}}(t)=1+t^3$ and $\mathcal{H}_{\mathcal{S}}(t)=\frac{1+t^3}{1-t^2}$ $\frac{1-t^2}{1-t^2}.$

> 2990

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

Example: For $S = \langle 2, 3 \rangle \subset \mathbb{N}$, we have that $S = \{0, 2, 3, 4, 5, \ldots\}$ $\mathcal{H}_{\mathcal{S}}(t) = 1 + t^2 + t^3 + t^4 + t^5 + \cdots$ $t^2 \mathcal{H}_{\mathcal{S}}(t) = t^2 + t^4 + t^5 + \cdots$ Then, $\left(1-t^2\right)\mathcal{H}_{\mathcal{S}}(t)=1+t^3$ and $\mathcal{H}_{\mathcal{S}}(t)=\frac{1+t^3}{1-t^2}$ $\frac{1-t^2}{1-t^2}.$

Theorem (1 (Chappelon, García-Marco, Montejano, R.A. 2014))

Let a_1, \ldots, a_k nonzero vectors of $\mathbb Z$ and denote $(1 - \mathbf{t}^{a_1}) \cdots (1 - \mathbf{t}^{a_n}) \mathcal{H}_{\mathcal{S}}(\mathbf{t}) = \sum f_b \mathbf{t}^b.$ b∈Z^m

Then,

$$
\sum_{b\in\mathbb{Z}^m}f_b\,\mu(x-b)=0\,\text{ for all }x\notin\{\sum_{i\in A}a_i\,|\,A\subset\{1,\ldots,n\}\}.
$$

On the Möbius function of semigroup posets

 2990

 4 ロ } 4 \overline{m} } 4 \overline{B} } 4 \overline{B}

Example: $S = \langle 2, 3 \rangle$

We know that,

$$
\mathcal{H}_{\mathcal{S}}(t)=\frac{1+t^3}{1-t^2}.
$$

By Theorem (1) we have that

$$
\mu_{\mathcal{S}}(x) + \mu_{\mathcal{S}}(x-3) = 0
$$

for all $x \notin \{0, 2\}$.

≮ロ ▶ ⊀ 伊 ▶ ⊀ $2Q$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

4 0 1

Example: $S = \langle 2, 3 \rangle$

We know that,

$$
\mathcal{H}_{\mathcal{S}}(t)=\frac{1+t^3}{1-t^2}.
$$

By Theorem (1) we have that

$$
\mu_{\mathcal{S}}(x) + \mu_{\mathcal{S}}(x-3) = 0
$$

for all $x \notin \{0, 2\}$.

It is evident that $\mu_S(0) = 1$. A direct computation yields $\mu_{\mathcal{S}}(2) = -1.$

Hence

$$
\mu_{\mathcal{S}}(x) = \left\{ \begin{array}{ll} 1 & \text{if } x \equiv 0 \text{ or } 5 \pmod{6}, \\ -1 & \text{if } x \equiv 2 \text{ or } 3 \pmod{6}, \\ 0 & \text{otherwise.} \end{array} \right.
$$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

 2990

Semigroup \mathbb{N}^m

Let $S = \langle e_1, \ldots, e_m \rangle$ where $\{e_1, \ldots, e_m\}$ denote the canonical basis of \mathbb{N}^m . Then,

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

Semigroup \mathbb{N}^m

Let
$$
S = \langle e_1, ..., e_m \rangle
$$
 where $\{e_1, ..., e_m\}$ denote the canonical
basis of N^m. Then,

$$
\mu_S(x) = \begin{cases} (-1)^{|A|} & \text{if } x = \sum_{i \in A} e_i \text{ for some } A \subset \{1, ..., m\} \\ 0 & \text{otherwise} \end{cases}
$$

イロト イ母 ト イミト イミト 2990

J.L. Ramírez Alfonsín i a statem a sta On the Möbius function of semigroup posets

Semigroup \mathbb{N}^m

Let
$$
S = \langle e_1, ..., e_m \rangle
$$
 where $\{e_1, ..., e_m\}$ denote the canonical
basis of \mathbb{N}^m . Then,

$$
\mu_S(x) = \begin{cases} (-1)^{|A|} & \text{if } x = \sum_{i \in A} e_i \text{ for some } A \subset \{1, ..., m\} \\ 0 & \text{otherwise} \end{cases}
$$

Proof $#1$.

We observe that $\mathbb{N}^m = \mathcal{S}$ and thus $\mathcal{H}_{\mathcal{S}}(\mathbf{t})=\sum_{(b_1,...,b_m)\in \mathbb{N}^m}t_1^{b_1}\cdots t_m^{b_m}=\frac{1}{(1-t_1)\cdots}$ $\frac{1}{(1-t_1)\cdots(1-t_m)}$. By Theorem (1) we have that $\mu_{\mathbb{N}^m}(x) = 0$ for all $x \notin \{\sum_{i\in A}e_i\,|\,A\subset\{1,\ldots,m\}\}.$ A direct computation yields $\mu_{\mathbb{N}^m}(\sum_{i\in A}e_i) = (-1)^{|A|}$ for every $A \subset \{1,\ldots,m\}.$ П つのへ

We consider $\mathcal{G}_{\mathcal{S}}$ the generating function of the Möbius function, which is

$$
\mathcal{G}_{\mathcal{S}}(\mathbf{t}) := \sum_{b \in \mathbb{N}^m} \mu_{\mathcal{S}}(b) \mathbf{t}^b.
$$

4 ロ ト 4 何 ト 4 ヨ ト QQ

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

We consider $\mathcal{G}_{\mathcal{S}}$ the generating function of the Möbius function, which is

$$
\mathcal{G}_{\mathcal{S}}(\mathbf{t}) := \sum_{b \in \mathbb{N}^m} \mu_{\mathcal{S}}(b) \mathbf{t}^b.
$$

Theorem (2 (Chappelon, García-Marco, Montejano, R.A. 2014))

 $\mathcal{H}_S(\mathbf{t}) \mathcal{G}_S(\mathbf{t}) = 1.$

On the Möbius function of semigroup posets

 2990

4 ロ ト 4 何 ト 4 ヨ ト 4

Again semigroup $\mathcal{S} = \mathbb{N}^m$

$$
\mu_{\mathbb{N}^m}(x) = \begin{cases}\n(-1)^{|A|} & \text{if } x = \sum_{i \in A} e_i \text{ for some } A \subset \{1, \dots, m\} \\
0 & \text{otherwise}\n\end{cases}
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 2990

J.L. Ramírez Alfonsín i a statem a sta On the Möbius function of semigroup posets

Again semigroup $\mathcal{S} = \mathbb{N}^m$

$$
\mu_{\mathbb{N}^m}(x) = \begin{cases}\n(-1)^{|A|} & \text{if } x = \sum_{i \in A} e_i \text{ for some } A \subset \{1, \dots, m\} \\
0 & \text{otherwise}\n\end{cases}
$$

Proof #2.

$$
\mathcal{H}_{\mathcal{S}}(\mathbf{t})=\sum_{(b_1,\ldots,b_m)\in\mathbb{N}^m}t_1^{b_1}\cdots t_m^{b_m}=\frac{1}{(1-t_1)\cdots(1-t_m)}.
$$

By Theorem (2) we have that

$$
\mathcal{G}_{\mathcal{S}}(\mathbf{t}) = (1-t_1)\cdots(1-t_m) = \sum_{A \subset \{1,\ldots,m\}} (-1)^{|A|} \, \mathbf{t}^{\sum_{i \in A} \mathbf{e}_i}.
$$

On the Möbius function of semigroup posets

J.L. Ramírez Alfonsín a strong in the Montpellier 2

 QQQ

Semigroups with unique Betti element

A semigroup $\mathcal{S} \subset \mathbb{N}^m$ is said to be a <mark>semigroup with a unique</mark> Betti element $b \in \mathbb{N}^m$ if $I_{\mathcal{S}}$ is generated by polynomials of S-degree b.

> 2000

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

Semigroups with unique Betti element

A semigroup $\mathcal{S} \subset \mathbb{N}^m$ is said to be a <mark>semigroup with a unique</mark> Betti element $b \in \mathbb{N}^m$ if $I_{\mathcal{S}}$ is generated by polynomials of S-degree b.

We denote $d := \dim(\mathbb{Q}\{a_1,\ldots,a_n\})$. In this setting we have the following result.

Theorem (Chappelon, García-Marco, Montejano, R.A. 2014)

For $\mathcal{S} = \langle a_1, \ldots, a_m \rangle \subset \mathbb{N}^m$ with a unique Betti element b

$$
\mu_{\mathcal{S}}(x) = \sum_{j=1}^t (-1)^{|A_j|} {k_j + n - d - 1 \choose k_j},
$$

$$
if x = \sum_{i \in A_1} a_i + k_1 b = \cdots = \sum_{i \in A_t} a_i + k_t b.
$$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

つのへ

 4 O \rightarrow 4 \overline{e} \rightarrow 4 \overline{e} \rightarrow 4

Numerical semigroups with unique Betti element

When $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}$ is a semigroup with a unique Betti element and $gcd{a_1, ..., a_n} = 1$, it is known that there exist pairwise relatively prime different integers $b_1, \ldots, b_n > 2$ such that $a_i := \prod_{j \neq i} b_j$ for all $i \in \{1, \ldots, n\}.$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

Numerical semigroups with unique Betti element

When $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}$ is a semigroup with a unique Betti element and $gcd{a_1, ..., a_n} = 1$, it is known that there exist pairwise relatively prime different integers $b_1, \ldots, b_n > 2$ such that $a_i := \prod_{j \neq i} b_j$ for all $i \in \{1, \ldots, n\}.$ In this setting we can refine the previous Theorem to obtain the

following result.

つのへ

Numerical semigroups with unique Betti element

When $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}$ is a semigroup with a unique Betti element and $gcd{a_1, ..., a_n} = 1$, it is known that there exist pairwise relatively prime different integers $b_1, \ldots, b_n \geq 2$ such that $a_i := \prod_{j \neq i} b_j$ for all $i \in \{1, \ldots, n\}.$

In this setting we can refine the previous Theorem to obtain the following result.

Corollary (Chappelon, García-Marco, Montejano, R.A. 2014)

Set
$$
b := \prod_{i=1}^{n} b_i
$$
, then

$$
\mu_{\mathcal{S}}(x) = \begin{cases} (-1)^{|A|} \binom{k+n-2}{k} \\ 0 \end{cases}
$$

$$
if x = \sum_{i \in A} a_i + k b
$$

for some $A \subset \{1, ..., n\}$

0 otherwise

On the Möbius function of semigroup posets

J.L. Ramírez Alfonsín III. II. Announce a component a component and the Montpellier 2

 2000

Whenever $\mathcal{S} := \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ with $\gcd\{a_1, a_2, a_3\} = 1$, we say that S is a **complete intersection** if there exists two S-homogeneous polynomials f_1, f_2 such that $I_S = (f_1, f_2)$.

Whenever $\mathcal{S} := \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ with $\gcd\{a_1, a_2, a_3\} = 1$, we say that S is a **complete intersection** if there exists two S-homogeneous polynomials f_1, f_2 such that $I_S = (f_1, f_2)$.

Theorem (Herzog (1970))

S is a complete intersection \Longleftrightarrow

$$
\gcd\{a_i, a_j\}a_k \in \langle a_i, a_j \rangle, \text{ where }\\ \{i, j, k\} = \{1, 2, 3\}.
$$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

つのへ

Whenever $\mathcal{S} := \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ with $\gcd\{a_1, a_2, a_3\} = 1$, we say that S is a **complete intersection** if there exists two S-homogeneous polynomials f_1, f_2 such that $I_s = (f_1, f_2)$.

Theorem (Herzog (1970))

S is a complete intersection \Longleftrightarrow $\gcd \{ {\sf a}_i,{\sf a}_j \} {\sf a}_{\sf k} \in \langle {\sf a}_i,{\sf a}_j \rangle,$ where ${i, j, k} = {1, 2, 3}.$

We aim at presenting a formula for $S = \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ complete intersection and $gcd{a_1, a_2, a_3} = 1$, so we assume that $da_1 \in \langle a_2, a_3 \rangle$, where $d := \gcd\{a_2, a_3\}.$

つのへ

4 ロ ト 4 何 ト 4 ヨ ト 4

For every $x\in\mathbb{Z}$ and every $B=(b_1,\ldots,b_k)\subset(\mathbb{Z}^+)^k$, the **Sylvester denumerant** $d_B(x)$ is the number of non-negative integer solutions $(x_1, \ldots, x_k) \in \mathbb{N}^k$ to the equation $x = \sum_{i=1}^k x_i b_i$.

For every $x\in\mathbb{Z}$ and every $B=(b_1,\ldots,b_k)\subset(\mathbb{Z}^+)^k$, the **Sylvester denumerant** $d_B(x)$ is the number of non-negative integer solutions $(x_1, \ldots, x_k) \in \mathbb{N}^k$ to the equation $x = \sum_{i=1}^k x_i b_i$. For every $x \in \mathbb{Z}$ we denote by $\alpha(x)$ the only integer such that $0 \leq \alpha(x) \leq d-1$ and $\alpha(x) a_1 \equiv x \pmod{d}$.

つのへ

For every $x\in\mathbb{Z}$ and every $B=(b_1,\ldots,b_k)\subset(\mathbb{Z}^+)^k$, the **Sylvester denumerant** $d_B(x)$ is the number of non-negative integer solutions $(x_1, \ldots, x_k) \in \mathbb{N}^k$ to the equation $x = \sum_{i=1}^k x_i b_i$. For every $x \in \mathbb{Z}$ we denote by $\alpha(x)$ the only integer such that $0 \leq \alpha(x) \leq d-1$ and $\alpha(x) a_1 \equiv x \pmod{d}$. For $S = \langle a_1, a_2, a_3 \rangle$ complete intersection and $\gcd\{a_1, a_2, a_3\} = 1$,

we have the following result.

Theorem (Chappelon, García-Marco, Montejano, R.A. 2014)

 $\mu_{\mathcal{S}}(x) = 0$ if $\alpha(x) > 2$, or $\mu_S(x) = (-1)^{\alpha} (d_B(x') - d_B(x' - a_2) - d_B(x' - a_3) + d_B(x' - a_2 - a_3))$ otherwise, where $x' := x - \alpha(x)$ a₁ and $B := (da_1, a_2, a_3/d)$.

J.L. Ram´ırez Alfons´ın I3M, Universit´e Montpellier 2

つのへ

4 ロ ト 4 何 ト 4 ヨ ト 4

Let $D = \{d_1, \ldots, d_m\}$ be a finite set and let us consider (\mathcal{P}, \subset) , the poset of all multisets of D ordered by inclusion.

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

Let $D = \{d_1, \ldots, d_m\}$ be a finite set and let us consider (\mathcal{P}, \subset) , the poset of all multisets of D ordered by inclusion.

For the semigroup $\mathcal{S} := \mathbb{N}^m$, we consider the map

$$
\begin{array}{rcl}\psi:&(\mathcal{P},\subset)&\to&(\mathbb{N}^m,\leq_{\mathbb{N}^m})\\&A&\mapsto& (m_A(d_1),\ldots,m_A(d_m)),\end{array}
$$

where $m_A(d_i)$ denotes the number of times that d_i belongs to A.

つのへ

イロト イ母ト イヨト

Let $D = \{d_1, \ldots, d_m\}$ be a finite set and let us consider (\mathcal{P}, \subset) , the poset of all multisets of D ordered by inclusion.

For the semigroup $\mathcal{S} := \mathbb{N}^m$, we consider the map

$$
\begin{array}{rcl}\psi:&(\mathcal{P},\subset)&\to&(\mathbb{N}^m,\leq_{\mathbb{N}^m})\\&A&\mapsto& (m_A(d_1),\ldots,m_A(d_m)),\end{array}
$$

where $m_A(d_i)$ denotes the number of times that d_i belongs to A.

It is easy to check that ψ is an **order isomorphism** (an order preserving and order reflecting bijection).

On the Möbius function of semigroup posets

つのへ

K ロ ⊁ K 倒 ≯ K 差 ≯ K

Hence,

$$
\mu_{\mathcal{P}}(A,B)=\mu_{\mathbb{N}^m}(\psi(A),\psi(B)),
$$

and we can recover the formula for $\mu_{\mathcal{P}}$ by means of $\mu_{\mathbb{N}^m}$.

 $\mu_{\mathcal{P}}(\mathsf{A}, \mathsf{B}) =$ $\sqrt{ }$ \int \mathcal{L} $(-1)^{|B\setminus A|}$ if $A\subset B$ and $B\setminus A$ is a set 0 otherwise

On the Möbius function of semigroup posets

 2990

Take p_1, \ldots, p_m the m first prime numbers, and consider $\mathbb{N}_m := \{p_1^{\alpha_1} \cdots p_m^{\alpha_m} \, | \, \alpha_1, \ldots, \alpha_m \in \mathbb{N} \} \subset \mathbb{N}.$ Let us consider the **poset** $(\mathbb{N}_m, |)$, i.e., \mathbb{N}_m **partially ordered by** divisibility.

> **K ロ ▶ K 倒 ▶ K ミ ▶ K** 2000

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 On the Möbius function of semigroup posets

Take p_1, \ldots, p_m the m first prime numbers, and consider $\mathbb{N}_m := \{p_1^{\alpha_1} \cdots p_m^{\alpha_m} \, | \, \alpha_1, \ldots, \alpha_m \in \mathbb{N} \} \subset \mathbb{N}.$ Let us consider the **poset** $(\mathbb{N}_m, |)$, i.e., \mathbb{N}_m **partially ordered by** divisibility.

For the semigroup $S := \mathbb{N}^m$, we consider the **order isomorphism**

$$
\psi: \quad (\mathbb{N}_m, |) \rightarrow (\mathbb{N}^m, \leq_{\mathbb{N}^m}) \n\rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} \rightarrow (\alpha_1, \ldots, \alpha_m).
$$

K ロ ⊁ K 倒 ≯ K ミ ≯ K 2000

Take p_1, \ldots, p_m the m first prime numbers, and consider $\mathbb{N}_m := \{p_1^{\alpha_1} \cdots p_m^{\alpha_m} \, | \, \alpha_1, \ldots, \alpha_m \in \mathbb{N} \} \subset \mathbb{N}.$ Let us consider the poset $(\mathbb{N}_m, |)$, i.e., \mathbb{N}_m partially ordered by divisibility.

For the semigroup $S := \mathbb{N}^m$, we consider the **order isomorphism**

$$
\psi: \quad (\mathbb{N}_m, |) \rightarrow (\mathbb{N}^m, \leq_{\mathbb{N}^m}) \n\quad p_1^{\alpha_1} \cdots p_m^{\alpha_m} \rightarrow (\alpha_1, \ldots, \alpha_m).
$$

Hence,

$$
\mu_{\mathbb{N}_m}(a,b)=\mu_{\mathbb{N}^m}(\psi(a),\psi(b)),
$$

and we can recover the formula for $\mu_{\mathbb{N}_m}$ by means of $\mu_{\mathbb{N}^m}$.

 $\mu_{\mathbb{N}_m}(\mathsf{a},\mathsf{b})=$ $\sqrt{ }$ \int \mathcal{L} $(-1)^r$ if b/a is a product of r distinct primes 0 otherwise

On the Möbius function of semigroup posets

J.L. Ram´ırez Alfons´ın I3M, Universit´e Montpellier 2

つのへ

K ロ ▶ K 倒 ▶ K 目 ▶ K 目