On the Möbius function of semigroup posets

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

INdAM meeting: International meeting on numerical semigroups Cortona, Italy, September 10, 2014

Joint work : J.Chappelon, I. García Marco, L.P. Montejano.

Basics on posets

Let (\mathcal{P}, \leq) be a **locally finite poset**, i.e,

- ullet the set ${\mathcal P}$ is partially ordered by \leq , and
- for every $a, b \in \mathcal{P}$ the set $\{c \in \mathcal{P} \mid a \le c \le b\}$ is finite.

Basics on posets

Let (\mathcal{P}, \leq) be a **locally finite poset**, i.e,

- ullet the set ${\mathcal P}$ is partially ordered by \leq , and
- for every $a, b \in \mathcal{P}$ the set $\{c \in \mathcal{P} \mid a \leq c \leq b\}$ is finite.

A **chain** of length $l \ge 0$ between $a, b \in \mathcal{P}$ is

$$\{a = a_0 < a_1 < \cdots < a_l = b\} \subset \mathcal{P}.$$

We denote by $c_I(a, b)$ the number of chains of length I between a and b.

Basics on posets

Let (\mathcal{P}, \leq) be a **locally finite poset**, i.e,

- ullet the set ${\mathcal P}$ is partially ordered by \leq , and
- for every $a, b \in \mathcal{P}$ the set $\{c \in \mathcal{P} \mid a \le c \le b\}$ is finite.

A **chain** of length $l \ge 0$ between $a, b \in \mathcal{P}$ is

$$\{a = a_0 < a_1 < \cdots < a_l = b\} \subset \mathcal{P}.$$

We denote by $c_I(a, b)$ the number of chains of length I between a and b.

The **Möbius function** $\mu_{\mathcal{P}}$ is the function

$$\mu_{\mathcal{P}}: \mathcal{P} \times \mathcal{P} \longrightarrow \mathbb{Z}$$

$$\mu_{\mathcal{P}}(a,b) = \sum_{l>0} (-1)^l c_l(a,b).$$

Consider the poset $(\mathbb{N}, |)$ of nonnegative integers ordered by divisibility, i.e., $a | b \iff a$ divides b.

Consider the poset $(\mathbb{N}, |)$ of nonnegative integers ordered by divisibility, i.e., $a | b \iff a$ divides b. Let us compute $\mu_{\mathbb{N}}(2, 36)$.

Consider the poset $(\mathbb{N}, |)$ of **nonnegative integers ordered by divisibility**, i.e., $a | b \iff a$ divides b. Let us compute $\mu_{\mathbb{N}}(2,36)$. We observe that $\{c \in \mathbb{N}; \ 2 | c | 36\} = \{2,4,6,12,18,36\}$.

Consider the poset $(\mathbb{N}, |)$ of nonnegative integers ordered by divisibility, i.e., $a | b \iff a$ divides b. Let us compute $\mu_{\mathbb{N}}(2,36)$.

We observe that $\{c \in \mathbb{N}; \ 2 \mid c \mid 36\} = \{2, 4, 6, 12, 18, 36\}$. Chains of

$$\bullet \ \mbox{length} \ 1 \ \rightarrow \ \{2,36\}$$

• length 2
$$\begin{cases} \{2,4,36\} \\ \{2,6,36\} \\ \{2,12,36\} \\ \{2,18,36\} \end{cases}$$

Consider the poset $(\mathbb{N}, |)$ of nonnegative integers ordered by divisibility, i.e., $a | b \iff a$ divides b. Let us compute $\mu_{\mathbb{N}}(2, 36)$.

We observe that $\{c \in \mathbb{N}; \ 2 \mid c \mid 36\} = \{2, 4, 6, 12, 18, 36\}$. Chains of

$$\bullet \ \mbox{length} \ 1 \ \rightarrow \ \{2,36\}$$

• length 2
$$\begin{cases} \{2,4,36\} \\ \{2,6,36\} \\ \{2,12,36\} \\ \{2,18,36\} \end{cases}$$

Thus,

$$\mu_{\mathbb{N}}(2,36) = -c_1(2,36) + c_2(2,36) - c_3(2,36) = 1 - 4 + 3 = 0.$$

Möbius classical arithmetic function

Given $n \in \mathbb{N}$ the Möbius arithmetic function $\mu(n)$ is defined as

$$\mu(n) = \left\{ \begin{array}{ll} 1 & \text{if } n = 1, \\ (-1)^k & \text{if } n = p_1 \cdots p_k \text{ with } p_i \text{ distinct primes,} \\ 0 & \text{otherwise (i.e., } n \text{ admits at least one square factor bigger than one).} \end{array} \right.$$

Möbius classical arithmetic function

Given $n \in \mathbb{N}$ the Möbius arithmetic function $\mu(n)$ is defined as

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^k & \text{if } n = p_1 \cdots p_k \text{ with } p_i \text{ distinct primes,} \\ 0 & \text{otherwise (i.e., } n \text{ admits at least one square factor bigger than one).} \end{cases}$$

The inverse of the ζ Riemann function, $s \in \mathbb{C}, Re(s) > 0$

$$\zeta^{-1}(s) = \left(\sum_{n=1}^{+\infty} \frac{1}{n^s}\right)^{-1} = \prod_{p-primes} (1 - p^{-s}) = \sum_{n=1}^{+\infty} \frac{\mu(n)}{n^s}$$

$$Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}$$

$$Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}$$

Consider the poset $(\mathbb{N}, |)$.

$$Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}$$

Consider the poset $(\mathbb{N}, |)$.

We have that if $a\mid b$ then $\mu_{\mathbb{N}}(a,b)=\mu(b/a)$ for all $a,b\in\mathbb{N}$

$$Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}$$

Consider the poset $(\mathbb{N}, |)$.

We have that if $a\mid b$ then $\mu_{\mathbb{N}}(a,b)=\mu(b/a)$ for all $a,b\in\mathbb{N}$

$$\mu_{\mathbb{N}}(a,b) = \left\{ \begin{array}{ll} (-1)^r & \text{if } b/a \text{ is a product of } r \text{ distinct primes} \\ \\ 0 & \text{otherwise} \end{array} \right.$$

$$Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}$$

Consider the poset $(\mathbb{N}, |)$.

We have that if $a\mid b$ then $\mu_{\mathbb{N}}(a,b)=\mu(b/a)$ for all $a,b\in\mathbb{N}$

$$\mu_{\mathbb{N}}(a,b) = \left\{egin{array}{ll} (-1)^r & ext{if } b/a ext{ is a product of } r ext{ distinct primes} \\ 0 & ext{otherwise} \end{array}
ight.$$

Example: $\mu_{\mathbb{N}}(2,36) = 0$ because $36/2 = 18 = 2 \cdot 3^2$

Theorem (Rota)

Let (\mathcal{P}, \leq) be a poset, let p be an element of \mathcal{P} and consider $f: \mathcal{P} \to \mathbb{R}$ a function such that f(x) = 0 for all $x \ngeq p$. Suppose that

$$g(x) = \sum_{y \le x} f(y)$$
 for all $x \in \mathcal{P}$.

Then,

$$f(x) = \sum_{y \le x} g(y) \ \mu_{\mathcal{P}}(y, x) \ \text{for all } x \in \mathcal{P}.$$

Compute the *Euler function* $\phi(n)$ (the number of integers smaller or equal to n and coprime with n)

$$\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d}$$

Compute the Euler function $\phi(n)$ (the number of integers smaller or equal to n and coprime with n)

$$\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d}$$

Let D be a finite set and consider the **poset of multisets over** D **ordered by inclusion** \mathcal{P} . Then, for all A, B multisets over D we have that

$$\mu_{\mathcal{P}}(A,B) = \left\{ egin{array}{ll} (-1)^{|B\setminus A|} & ext{if } A\subset B ext{ and } B\setminus A ext{ is a set,} \\ 0 & ext{otherwise.} \end{array}
ight.$$

Compute the *Euler function* $\phi(n)$ (the number of integers smaller or equal to n and coprime with n)

$$\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d}$$

Let D be a finite set and consider the **poset of multisets over** D **ordered by inclusion** \mathcal{P} . Then, for all A, B multisets over D we have that

$$\mu_{\mathcal{P}}(A,B) = \left\{ egin{array}{ll} (-1)^{|B\setminus A|} & ext{if } A\subset B ext{ and } B\setminus A ext{ is a set,} \\ 0 & ext{otherwise.} \end{array}
ight.$$

An immediate consequence is the classical **inclusion-exclusion** counting formula !!

Let $S := \langle a_1, \dots, a_n \rangle$ denote the **subsemigroup** of \mathbb{Z}^m generated by $a_1, \dots, a_n \in \mathbb{N}^m$, i.e.,

$$S := \langle a_1, \ldots, a_n \rangle = \{x_1 a_1 + \cdots + x_n a_n \mid x_1, \ldots, x_n \in \mathbb{N}\}.$$

Let $S := \langle a_1, \dots, a_n \rangle$ denote the **subsemigroup** of \mathbb{Z}^m generated by $a_1, \dots, a_n \in \mathbb{N}^m$, i.e.,

$$S := \langle a_1, \ldots, a_n \rangle = \{x_1 a_1 + \cdots + x_n a_n \mid x_1, \ldots, x_n \in \mathbb{N}\}.$$

The semigroup S induces a binary relation \leq_S on \mathbb{Z}^m given by

$$x \leq_{\mathcal{S}} y \iff y - x \in \mathcal{S}.$$

Let $S := \langle a_1, \dots, a_n \rangle$ denote the **subsemigroup** of \mathbb{Z}^m generated by $a_1, \dots, a_n \in \mathbb{N}^m$, i.e.,

$$S := \langle a_1, \ldots, a_n \rangle = \{x_1 a_1 + \cdots + x_n a_n \mid x_1, \ldots, x_n \in \mathbb{N}\}.$$

The semigroup S induces a binary relation \leq_S on \mathbb{Z}^m given by

$$x \leq_{\mathcal{S}} y \iff y - x \in \mathcal{S}.$$

It turns out that $\leq_{\mathcal{S}}$ is an **order** iff \mathcal{S} is **pointed** (i.e., $\mathcal{S} \cap -\mathcal{S} = \{0\}$). Moreover, whenever \mathcal{S} is pointed the poset $(\mathbb{Z}^m, \leq_{\mathcal{S}})$ is locally finite.

We denote by $\mu_{\mathcal{S}}$ the Möbius function associated to $(\mathbb{Z}^m, \leq_{\mathcal{S}})$.

We denote by $\mu_{\mathcal{S}}$ the Möbius function associated to $(\mathbb{Z}^m, \leq_{\mathcal{S}})$.

It is easy to check that $\mu_{\mathcal{S}}(x,y) = \mu_{\mathcal{S}}(0,y-x)$, hence we shall only consider the reduced Möbius function $\mu_{\mathcal{S}}: \mathbb{Z}^m \longrightarrow \mathbb{Z}$ defined by

$$\mu_{\mathcal{S}}(x) := \mu_{\mathcal{S}}(0, x)$$
 for all $x \in \mathbb{Z}^m$.

We denote by $\mu_{\mathcal{S}}$ the Möbius function associated to $(\mathbb{Z}^m, \leq_{\mathcal{S}})$.

It is easy to check that $\mu_{\mathcal{S}}(x,y) = \mu_{\mathcal{S}}(0,y-x)$, hence we shall only consider the reduced Möbius function $\mu_{\mathcal{S}}: \mathbb{Z}^m \longrightarrow \mathbb{Z}$ defined by

$$\mu_{\mathcal{S}}(x) := \mu_{\mathcal{S}}(0, x)$$
 for all $x \in \mathbb{Z}^m$.

Proposition (Key)

If S is a pointed semigroup, $x \in \mathbb{Z}^m$, then

$$\sum_{b \in S} \mu_{S}(x - b) = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Known results about $\mu_{\mathcal{S}}$

• Deddens (1979).

For $S = \langle a, b \rangle \subset \mathbb{N}$ where $a, b \in \mathbb{Z}^+$ are relatively prime:

$$\mu_{\mathcal{S}}(x) = \left\{ \begin{array}{cc} 1 & \text{if } x \geq 0 \text{ and } x \equiv 0 \text{ or } a+b \text{ (mod ab)}, \\ -1 & \text{if } x \geq 0 \text{ and } x \equiv a \text{ or } b \text{ (mod ab)}, \\ 0 & \text{otherwise}. \end{array} \right.$$

- 2 Chappelon and R.A. (2013).
 - A recursive formula for $\mu_{\mathcal{S}}$ when $\mathcal{S} = \langle a, a+d, \ldots, a+kd \rangle \subset \mathbb{N}$ for some $a, k, d \in \mathbb{Z}^+$, and
 - a semi-explicit formula for $S = \langle 2q, 2q + d, 2q + 2d \rangle \subset \mathbb{N}$ where $q, d \in \mathbb{Z}^+$ and $\gcd\{2q, 2q + d, 2q + 2d\} = 1$.

Goals

① Provide **general tools** to study $\mu_{\mathcal{S}}$ for every semigroup $\mathcal{S} \subset \mathbb{Z}^m$.

Goals

- ① Provide **general tools** to study $\mu_{\mathcal{S}}$ for every semigroup $\mathcal{S} \subset \mathbb{Z}^m$.
- **2** Provide **explicit formulas** for certain families of semigroups $S \subset \mathbb{Z}^m$.

• Let k be a field. A semigroup $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}^m$ induces a **grading** in the **ring of polynomials** $k[x_1, \ldots, x_n]$ by assigning $\deg_S(x_i) := a_i$ for all $i \in \{1, \ldots, n\}$.

- Let k be a field. A semigroup $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}^m$ induces a grading in the ring of polynomials $k[x_1, \dots, x_n]$ by assigning $\deg_{S}(x_i) := a_i$ for all $i \in \{1, \ldots, n\}$.
- The S-degree of the monomial $m := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is $\deg_{\mathcal{S}}(m) = \sum \alpha_i a_i$.

- Let k be a field. A semigroup $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}^m$ induces a **grading** in the **ring of polynomials** $k[x_1, \ldots, x_n]$ by assigning $\deg_S(x_i) := a_i$ for all $i \in \{1, \ldots, n\}$.
- The S-degree of the monomial $m := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is $\deg_S(m) = \sum \alpha_i a_i$.
- A polynomial is S-homogeneous if all its monomials have the same S-degree.

- Let k be a field. A semigroup $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}^m$ induces a **grading** in the **ring of polynomials** $k[x_1, \ldots, x_n]$ by assigning $\deg_S(x_i) := a_i$ for all $i \in \{1, \ldots, n\}$.
- The S-degree of the monomial $m := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is $\deg_S(m) = \sum \alpha_i a_i$.
- A polynomial is S-homogeneous if all its monomials have the same S-degree.
- For all $b \in \mathbb{N}^m$, we denote by $k[x_1, \dots, x_n]_b$ the k-vector space formed by all polynomials S-homogeneous of S-degree b.

- Let k be a field. A semigroup $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}^m$ induces a **grading** in the **ring of polynomials** $k[x_1, \ldots, x_n]$ by assigning $\deg_S(x_i) := a_i$ for all $i \in \{1, \ldots, n\}$.
- The S-degree of the monomial $m := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is $\deg_S(m) = \sum \alpha_i a_i$.
- A polynomial is \mathcal{S} -homogeneous if all its monomials have the same \mathcal{S} -degree.
- For all $b \in \mathbb{N}^m$, we denote by $k[x_1, \dots, x_n]_b$ the k-vector space formed by all polynomials S-homogeneous of S-degree b.
- Consider $I \subset k[\mathbf{x}]$ an ideal generated by S-homogeneous polynomials. For all $b \in \mathbb{N}^m$ we denote by I_b the k-vector space formed by the S-homogeneous polynomials of I of S-degree b.

The (multigraded) Hilbert function of $M := k[x_1, ..., x_n]/I$ is

$$HF_M: \mathbb{N}^m \longrightarrow \mathbb{N},$$

where $HF_M(b) := \dim_k(k[x_1, \dots, x_n]_b) - \dim_k(I_b)$ for all $b \in \mathbb{N}^m$.

The (multigraded) Hilbert function of $M := k[x_1, ..., x_n]/I$ is

$$HF_M: \mathbb{N}^m \longrightarrow \mathbb{N},$$

where $HF_M(b) := \dim_k(k[x_1, \ldots, x_n]_b) - \dim_k(I_b)$ for all $b \in \mathbb{N}^m$.

We define the (multivariate) Hilbert series of M as the formal power series in $\mathbb{Z}[[t_1,\ldots,t_m]]$:

$$\mathcal{H}_M(\mathbf{t}) := \sum_{b \in \mathbb{N}^m} HF_M(b) \; \mathbf{t}^b$$

where \mathbf{t}^b denote the monomial $t_1^{b_1} \cdots t_m^{b_m} \in \mathbb{Z}[t_1, \dots, t_m]$.

The (multigraded) Hilbert function of $M := k[x_1, ..., x_n]/I$ is

$$HF_M: \mathbb{N}^m \longrightarrow \mathbb{N},$$

where $HF_M(b) := \dim_k(k[x_1, \dots, x_n]_b) - \dim_k(l_b)$ for all $b \in \mathbb{N}^m$.

We define the (multivariate) Hilbert series of M as the formal power series in $\mathbb{Z}[[t_1,\ldots,t_m]]$:

$$\mathcal{H}_M(\mathbf{t}) := \sum_{b \in \mathbb{N}^m} HF_M(b) \; \mathbf{t}^b$$

where \mathbf{t}^b denote the monomial $t_1^{b_1} \cdots t_m^{b_m} \in \mathbb{Z}[t_1, \dots, t_m]$.

$\mathsf{Theorem}$

$$\mathcal{H}_M(\mathbf{t}) = \frac{\mathbf{t}^{\alpha} h(\mathbf{t})}{(1 - \mathbf{t}^{a_1}) \cdots (1 - \mathbf{t}^{a_n})},$$

where $\alpha \in \mathbb{Z}^m$ and $h(\mathbf{t}) \in \mathbb{Z}[t_1, \ldots, t_m]$.

Basics notions on Posets and Möbius function

We denote by I_S the **toric ideal** of S, i.e., the kernel of the homomorphism of k-algebras

$$\varphi: k[x_1,\ldots,x_n] \longrightarrow k[t_1,\ldots,t_m]$$

induced by $\varphi(x_i) = \mathbf{t}^{a_i}$ for all $i \in \{1, \dots, n\}$.

It is well known that I_S is generated by S-homogeneous polynomials.

$$\varphi: k[x_1,\ldots,x_n] \longrightarrow k[t_1,\ldots,t_m]$$

induced by $\varphi(x_i) = \mathbf{t}^{a_i}$ for all $i \in \{1, ..., n\}$.

It is well known that I_S is generated by S-homogeneous polynomials.

Proposition

$$\mathcal{H}_{k[x_1,...,x_n]/I_{\mathcal{S}}}(\mathbf{t}) = \sum_{b \in \mathcal{S}} \mathbf{t}^b.$$

We denote by $l_{\mathcal{S}}$ the **toric ideal** of \mathcal{S} , i.e., the kernel of the homomorphism of k-algebras

$$\varphi: k[x_1,\ldots,x_n] \longrightarrow k[t_1,\ldots,t_m]$$

induced by $\varphi(x_i) = \mathbf{t}^{a_i}$ for all $i \in \{1, \dots, n\}$.

It is well known that $l_{\mathcal{S}}$ is generated by S-homogeneous polynomials.

Proposition

$$\mathcal{H}_{k[x_1,...,x_n]/I_{\mathcal{S}}}(\mathbf{t}) = \sum_{b\in\mathcal{S}} \mathbf{t}^b.$$

From now on, we denote $\mathcal{H}_{\mathcal{S}}(\mathbf{t}) := \mathcal{H}_{k[x_1,...,x_n]/I_{\mathcal{S}}}(\mathbf{t})$ and we call it the Hilbert series of S.

Example: For
$$S = \langle 2, 3 \rangle \subset \mathbb{N}$$
, we have that $S = \{0, 2, 3, 4, 5, \ldots\}$ $\mathcal{H}_{S}(t) = 1 + t^{2} + t^{3} + t^{4} + t^{5} + \cdots$

Example: For
$$S = \langle 2, 3 \rangle \subset \mathbb{N}$$
, we have that $S = \{0, 2, 3, 4, 5, \ldots\}$ $\mathcal{H}_{S}(t) = 1 + t^{2} + t^{3} + t^{4} + t^{5} + \cdots$ $t^{2} \mathcal{H}_{S}(t) = t^{2} + t^{4} + t^{5} + \cdots$

Example: For
$$\mathcal{S} = \langle 2, 3 \rangle \subset \mathbb{N}$$
, we have that $\mathcal{S} = \{0, 2, 3, 4, 5, \ldots\}$ $\mathcal{H}_{\mathcal{S}}(t) = 1 + t^2 + t^3 + t^4 + t^5 + \cdots$ $t^2 \mathcal{H}_{\mathcal{S}}(t) = t^2 + t^4 + t^5 + \cdots$ Then, $(1 - t^2) \mathcal{H}_{\mathcal{S}}(t) = 1 + t^3$ and $\mathcal{H}_{\mathcal{S}}(t) = \frac{1 + t^3}{1 - t^2}$.

Möbius function via Hilbert series

Example: For
$$S = \langle 2, 3 \rangle \subset \mathbb{N}$$
, we have that $S = \{0, 2, 3, 4, 5, \ldots\}$ $\mathcal{H}_{S}(t) = 1 + t^{2} + t^{3} + t^{4} + t^{5} + \cdots$ $t^{2}\mathcal{H}_{S}(t) = t^{2} + t^{4} + t^{5} + \cdots$

Then,
$$(1-t^2)\mathcal{H}_{\mathcal{S}}(t)=1+t^3$$
 and $\mathcal{H}_{\mathcal{S}}(t)=rac{1+t^3}{1-t^2}.$

Theorem (1 (Chappelon, García-Marco, Montejano, R.A. 2014)

Let a_1, \ldots, a_k nonzero vectors of \mathbb{Z} and denote

$$(1-\mathbf{t}^{a_1})\cdots(1-\mathbf{t}^{a_n})\mathcal{H}_{\mathcal{S}}(\mathbf{t})=\sum_{b\in\mathbb{Z}^m}f_b\mathbf{t}^b.$$

Then.

$$\sum_{b\in\mathbb{Z}^m}f_b\,\mu(x-b)=0 \text{ for all } x\notin\{\sum_{i\in A}a_i\,|\,A\subset\{1,\ldots,n\}\}.$$

Example: $S = \langle 2, 3 \rangle$

We know that,

$$\mathcal{H}_{\mathcal{S}}(t) = rac{1+t^3}{1-t^2}.$$

By **Theorem (1)** we have that

$$\mu_{\mathcal{S}}(x) + \mu_{\mathcal{S}}(x-3) = 0$$

for all $x \notin \{0, 2\}$.

Example: $S = \langle 2, 3 \rangle$

We know that,

$$\mathcal{H}_{\mathcal{S}}(t) = \frac{1+t^3}{1-t^2}.$$

By **Theorem (1)** we have that

$$\mu_{\mathcal{S}}(x) + \mu_{\mathcal{S}}(x-3) = 0$$

for all $x \notin \{0, 2\}$.

It is evident that $\mu_{\mathcal{S}}(0) = 1$. A direct computation yields $\mu_{\mathcal{S}}(2) = -1.$

Hence

$$\mu_{\mathcal{S}}(x) = \left\{ \begin{array}{cc} 1 & \textit{if } x \equiv 0 \textit{ or } 5 \textit{ (mod } 6), \\ -1 & \textit{if } x \equiv 2 \textit{ or } 3 \textit{ (mod } 6), \\ 0 & \textit{otherwise}. \end{array} \right.$$

Let $S = \langle e_1, \dots, e_m \rangle$ where $\{e_1, \dots, e_m\}$ denote the canonical basis of \mathbb{N}^m . Then,

Let
$$\mathcal{S} = \langle e_1, \dots, e_m \rangle$$
 where $\{e_1, \dots, e_m\}$ denote the canonical basis of \mathbb{N}^m . Then,
$$\mu_{\mathcal{S}}(x) = \begin{cases} (-1)^{|A|} & \text{if } x = \sum_{i \in A} e_i \text{ for some } A \subset \{1, \dots, m\} \\ 0 & \text{otherwise} \end{cases}$$

Semigroup \mathbb{N}^m

Let $S = \langle e_1, \dots, e_m \rangle$ where $\{e_1, \dots, e_m\}$ denote the canonical basis of \mathbb{N}^m . Then.

$$\mu_{\mathcal{S}}(x) = \begin{cases} (-1)^{|A|} & \text{if } x = \sum_{i \in A} e_i \text{ for some } A \subset \{1, \dots, m\} \\ 0 & \text{otherwise} \end{cases}$$

Proof #1.

We observe that $\mathbb{N}^m = \mathcal{S}$ and thus

$$\mathcal{H}_{\mathcal{S}}(\mathbf{t}) = \sum_{(b_1,...,b_m) \in \mathbb{N}^m} t_1^{b_1} \cdots t_m^{b_m} = \frac{1}{(1-t_1)\cdots(1-t_m)}.$$

By Theorem (1) we have that $\mu_{\mathbb{N}^m}(x) = 0$ for all $x \notin \{\sum_{i \in A} e_i \mid A \subset \{1, \dots, m\}\}.$

A direct computation yields $\mu_{\mathbb{N}^m}(\sum_{i\in A}e_i)=(-1)^{|A|}$ for every $A \subset \{1,\ldots,m\}.$

We consider $\mathcal{G}_{\mathcal{S}}$ the generating function of the Möbius function, which is

$$\mathcal{G}_{\mathcal{S}}(\mathbf{t}) := \sum_{b \in \mathbb{N}^m} \mu_{\mathcal{S}}(b) \, \mathbf{t}^b.$$

We consider $\mathcal{G}_{\mathcal{S}}$ the **generating function of the Möbius** function, which is

$$\mathcal{G}_{\mathcal{S}}(\mathbf{t}) := \sum_{b \in \mathbb{N}^m} \mu_{\mathcal{S}}(b) \mathbf{t}^b.$$

Theorem (2 (Chappelon, García-Marco, Montejano, R.A. 2014))

$$\mathcal{H}_{\mathcal{S}}(\mathbf{t}) \ \mathcal{G}_{\mathcal{S}}(\mathbf{t}) = 1.$$

Again semigroup $S = \mathbb{N}^m$

$$\mu_{\mathbb{N}^m}(x) = \left\{ egin{array}{ll} (-1)^{|A|} & ext{if } x = \sum_{i \in A} e_i ext{ for some } A \subset \{1,\dots,m\} \ \\ 0 & ext{otherwise} \end{array}
ight.$$

Again semigroup $S = \mathbb{N}^m$

$$\mu_{\mathbb{N}^m}(x) = \left\{ egin{array}{ll} (-1)^{|A|} & ext{if } x = \sum_{i \in A} e_i ext{ for some } A \subset \{1,\dots,m\} \ & 0 & ext{otherwise} \end{array}
ight.$$

Proof #2.

$$\mathcal{H}_{\mathcal{S}}(\mathbf{t}) = \sum_{(b_1,\ldots,b_m)\in\mathbb{N}^m} t_1^{b_1}\cdots t_m^{b_m} = \frac{1}{(1-t_1)\cdots(1-t_m)}.$$

By Theorem (2) we have that

$$\mathcal{G}_{\mathcal{S}}(\mathbf{t}) = (1-t_1)\cdots(1-t_m) = \sum_{A\subset\{1,\ldots,m\}} (-1)^{|A|} \, \mathbf{t}^{\sum_{i\in A} e_i}.$$

Semigroups with unique Betti element

A semigroup $S \subset \mathbb{N}^m$ is said to be a **semigroup with a unique** Betti element $b \in \mathbb{N}^m$ if I_S is generated by polynomials of S-degree b.

Semigroups with unique Betti element

A semigroup $S \subset \mathbb{N}^m$ is said to be a **semigroup with a unique Betti element** $b \in \mathbb{N}^m$ if I_S is generated by polynomials of S-degree b.

We denote $d := \dim(\mathbb{Q}\{a_1, \ldots, a_n\})$. In this setting we have the following result.

Theorem (Chappelon, García-Marco, Montejano, R.A. 2014)

For $\mathcal{S} = \langle a_1, \dots, a_m \rangle \subset \mathbb{N}^m$ with a unique Betti element b

$$\mu_{\mathcal{S}}(x) = \sum_{j=1}^{l} (-1)^{|A_j|} \binom{k_j + n - d - 1}{k_j},$$

if
$$x = \sum_{i \in A_1} a_i + k_1 b = \cdots = \sum_{i \in A_t} a_i + k_t b$$
.

4 D > 4 A > 4 B > 4 B >

Numerical semigroups with unique Betti element

When $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}$ is a **semigroup with a unique Betti element** and $\gcd\{a_1, \ldots, a_n\} = 1$, it is known that there exist pairwise relatively prime different integers $b_1, \ldots, b_n \geq 2$ such that $a_i := \prod_{i \neq j} b_i$ for all $i \in \{1, \ldots, n\}$.

Numerical semigroups with unique Betti element

When $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}$ is a **semigroup with a unique Betti element** and $\gcd\{a_1, \ldots, a_n\} = 1$, it is known that there exist pairwise relatively prime different integers $b_1, \ldots, b_n \geq 2$ such that $a_i := \prod_{j \neq i} b_j$ for all $i \in \{1, \ldots, n\}$.

In this setting we can refine the previous Theorem to obtain the following result.

Numerical semigroups with unique Betti element

When $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}$ is a **semigroup with a unique Betti element** and $\gcd\{a_1, \ldots, a_n\} = 1$, it is known that there exist pairwise relatively prime different integers $b_1, \ldots, b_n \geq 2$ such that $a_i := \prod_{j \neq i} b_j$ for all $i \in \{1, \ldots, n\}$.

In this setting we can refine the previous Theorem to obtain the following result.

Corollary (Chappelon, García-Marco, Montejano, R.A. 2014)

Set
$$b := \prod_{i=1}^n b_i$$
, then

$$\mu_{\mathcal{S}}(x) = \left\{ egin{array}{ll} (-1)^{|A|} inom{k+n-2}{k} & ext{if } x = \sum_{i \in A} a_i + k \ b & ext{for some } A \subset \{1, \dots, n\} \ 0 & ext{otherwise} \end{array}
ight.$$

Whenever $S := \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ with $\gcd\{a_1, a_2, a_3\} = 1$, we say that S is a **complete intersection** if there exists two S-homogeneous polynomials f_1, f_2 such that $I_S = (f_1, f_2)$.

Whenever $S := \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ with $\gcd\{a_1, a_2, a_3\} = 1$, we say that S is a **complete intersection** if there exists two S-homogeneous polynomials f_1, f_2 such that $I_S = (f_1, f_2)$.

Theorem (Herzog (1970))

$$\mathcal{S}$$
 is a complete intersection $\iff \frac{\gcd\{a_i,a_j\}a_k \in \langle a_i,a_j\rangle, \text{ where }}{\{i,j,k\}=\{1,2,3\}.}$

Whenever $S := \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ with $\gcd\{a_1, a_2, a_3\} = 1$, we say that S is a **complete intersection** if there exists two S-homogeneous polynomials f_1, f_2 such that $I_S = (f_1, f_2)$.

Theorem (Herzog (1970))

$$\mathcal{S}$$
 is a complete intersection $\iff \frac{\gcd\{a_i,a_j\}a_k \in \langle a_i,a_j\rangle, \text{ where }}{\{i,j,k\} = \{1,2,3\}.}$

We aim at presenting a formula for $S = \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ complete intersection and $\gcd\{a_1, a_2, a_3\} = 1$, so we assume that $da_1 \in \langle a_2, a_3 \rangle$, where $d := \gcd\{a_2, a_3\}$.

For every $x \in \mathbb{Z}$ and every $B = (b_1, \dots, b_k) \subset (\mathbb{Z}^+)^k$, the **Sylvester denumerant** $d_B(x)$ is the number of non-negative integer solutions $(x_1, \dots, x_k) \in \mathbb{N}^k$ to the equation $x = \sum_{i=1}^k x_i b_i$.

General methods

For every $x \in \mathbb{Z}$ and every $B = (b_1, \ldots, b_k) \subset (\mathbb{Z}^+)^k$, the **Sylvester denumerant** $d_B(x)$ is the number of non-negative integer solutions $(x_1, \ldots, x_k) \in \mathbb{N}^k$ to the equation $x = \sum_{i=1}^k x_i b_i$. For every $x \in \mathbb{Z}$ we denote by $\alpha(x)$ the only integer such that $0 < \alpha(x) < d-1$ and $\alpha(x) a_1 \equiv x \pmod{d}$.

For every $x \in \mathbb{Z}$ and every $B = (b_1, \dots, b_k) \subset (\mathbb{Z}^+)^k$, the **Sylvester denumerant** $d_B(x)$ is the number of non-negative integer solutions $(x_1, \dots, x_k) \in \mathbb{N}^k$ to the equation $x = \sum_{i=1}^k x_i b_i$.

For every $x \in \mathbb{Z}$ we denote by $\alpha(x)$ the only integer such that $0 \le \alpha(x) \le d-1$ and $\alpha(x) a_1 \equiv x \pmod{d}$.

For $S = \langle a_1, a_2, a_3 \rangle$ complete intersection and $gcd\{a_1, a_2, a_3\} = 1$, we have the following result.

Theorem (Chappelon, García-Marco, Montejano, R.A. 2014)

$$\mu_{\mathcal{S}}(x) = 0$$
 if $\alpha(x) \geq 2$, or $\mu_{\mathcal{S}}(x) = (-1)^{\alpha} (d_B(x') - d_B(x' - a_2) - d_B(x' - a_3) + d_B(x' - a_2 - a_3))$ otherwise, where $x' := x - \alpha(x)$ a₁ and $B := (da_1, a_2, a_3/d)$.

Let $D = \{d_1, \dots, d_m\}$ be a finite set and let us consider (\mathcal{P}, \subset) , the **poset of all multisets of** D **ordered by inclusion**.

Let $D = \{d_1, \dots, d_m\}$ be a finite set and let us consider (\mathcal{P}, \subset) , the **poset of all multisets of** D **ordered by inclusion**.

For the semigroup $\mathcal{S} := \mathbb{N}^m$, we consider the map

$$\psi: (\mathcal{P}, \subset) \rightarrow (\mathbb{N}^m, \leq_{\mathbb{N}^m})$$

 $A \mapsto (m_A(d_1), \ldots, m_A(d_m)),$

where $m_A(d_i)$ denotes the number of times that d_i belongs to A.

Let $D = \{d_1, \ldots, d_m\}$ be a finite set and let us consider (\mathcal{P}, \subset) , the **poset of all multisets of** D **ordered by inclusion**.

For the semigroup $\mathcal{S} := \mathbb{N}^m$, we consider the map

$$\psi: (\mathcal{P}, \subset) \rightarrow (\mathbb{N}^m, \leq_{\mathbb{N}^m})$$

 $A \mapsto (m_A(d_1), \ldots, m_A(d_m)),$

where $m_A(d_i)$ denotes the number of times that d_i belongs to A.

It is easy to check that ψ is an **order isomorphism** (an order preserving and order reflecting bijection).

Hence,

$$\mu_{\mathcal{P}}(A,B) = \mu_{\mathbb{N}^m}(\psi(A),\psi(B)),$$

and we can recover the formula for $\mu_{\mathcal{P}}$ by means of $\mu_{\mathbb{N}^m}$.

$$\mu_{\mathcal{P}}(A,B) = \left\{ egin{array}{ll} (-1)^{|B\setminus A|} & ext{if } A\subset B ext{ and } B\setminus A ext{ is a set} \\ & 0 & ext{otherwise} \end{array}
ight.$$

Let us consider the **poset** $(\mathbb{N}_m, |)$, i.e., \mathbb{N}_m partially ordered by divisibility.

General methods

Take p_1, \ldots, p_m the m first prime numbers, and consider $\mathbb{N}_m := \{ p_1^{\alpha_1} \cdots p_m^{\alpha_m} \mid \alpha_1, \dots, \alpha_m \in \mathbb{N} \} \subset \mathbb{N}.$

Let us consider the **poset** $(\mathbb{N}_m, |)$, i.e., \mathbb{N}_m partially ordered by divisibility.

For the semigroup $\mathcal{S} := \mathbb{N}^m$, we consider the **order isomorphism**

$$\psi: \quad (\mathbb{N}_m, |) \quad \to \quad (\mathbb{N}^m, \leq_{\mathbb{N}^m}) \\ p_1^{\alpha_1} \cdots p_m^{\alpha_m} \quad \mapsto \quad (\alpha_1, \dots, \alpha_m).$$

Take p_1, \ldots, p_m the m first prime numbers, and consider $\mathbb{N}_m := \{p_1^{\alpha_1} \cdots p_m^{\alpha_m} \mid \alpha_1, \ldots, \alpha_m \in \mathbb{N}\} \subset \mathbb{N}.$

Let us consider the **poset** $(\mathbb{N}_m, |)$, i.e., \mathbb{N}_m partially ordered by divisibility.

For the semigroup $\mathcal{S} := \mathbb{N}^m$, we consider the **order isomorphism**

$$\psi: \quad (\mathbb{N}_m, |) \quad \to \quad (\mathbb{N}^m, \leq_{\mathbb{N}^m}) \\ p_1^{\alpha_1} \cdots p_m^{\alpha_m} \quad \mapsto \quad (\alpha_1, \dots, \alpha_m).$$

Hence,

$$\mu_{\mathbb{N}_m}(a,b) = \mu_{\mathbb{N}^m}(\psi(a),\psi(b)),$$

and we can recover the formula for $\mu_{\mathbb{N}_m}$ by means of $\mu_{\mathbb{N}^m}$.

$$\mu_{\mathbb{N}_m}(a,b) = \left\{egin{array}{ll} (-1)^r & ext{if } b/a ext{ is a product of } r ext{ distinct primes} \\ 0 & ext{otherwise} \end{array}
ight.$$