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Apollonius of Perga

- Known as “the great geometer”
- His famous book Conics introduced the terms of hyperbola y
ellipse.
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Apollonius’ theorem

Theorem (Apollonius of Perga) Given 3 circles pairwise tangent
there exist exactly two circles tangent to all of three original circles.
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Apollonius’ theorem

Theorem (Apollonius of Perga) Given 3 circles pairwise tangent
there exist exactly two circles tangent to all of three original circles.
Proof (idea) : We take g a

SOROSeR S

g(p)=00
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Differents representations

Possibles representations of 4 circles pairwise tangent

H &

o OO
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Apollonian packings : construction

- Take 4 circles pairwise tangent
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Apollonian packings : construction

- Take 4 circles pairwise tangent
- Add new circles tangent to three of the four circles (by using
Apollonius’ theorem)
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Apollonian packings : construction

- Take 4 circles pairwise tangent

- Add new circles tangent to three of the four circles (by using
Apollonius’ theorem)

- Add new circles to this new configuration
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Apollonian packings : construction
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Apollonian packings : construction

- Take 4 circles pairwise tangent

- Add new circles tangent to three of the four circles (by using
Apollonius’ theorem)

- Add new circles to this new configuration

- Carry on this procedure indefinitly
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Curvatures

Each circle is labeled with its curvature : curv(C) = m
The curvature of the exterior circle is —1 (oriented to the exterior

so interiors are dijoints).
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Descartes’ theorem

An Apollonian packing is integral if all the curvatures are integers.
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Does there exists an integral Apollonian packing?
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Descartes’ theorem

An Apollonian packing is integral if all the curvatures are integers.

Does there exists an integral Apollonian packing?
Theorem (Descartes 1643) a, b, ¢, d are the curvatures of four
pairwise tangent circles if and only if they verify the quadratic
equation 2(a® + b2+ c® +d?) = (a+ b+ c+d)?
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Descartes’ theorem

An Apollonian packing is integral if all the curvatures are integers.

Does there exists an integral Apollonian packing?
Theorem (Descartes 1643) a, b, ¢, d are the curvatures of four
pairwise tangent circles if and only if they verify the quadratic
equation 2(a® + b2+ c® +d?) = (a+ b+ c+d)?

"je pense, donc j'existe"
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Related results

Theorem (Soddy 1936) If the first four circles of an Apollonian
packing P have integer curvatures then P is integral.
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Related results

Theorem (Soddy 1936) If the first four circles of an Apollonian
packing P have integer curvatures then P is integral.

Theorem (Soddy-Gosset 1937) The curvatures K1, ..., K442 of
d + 2 d-ball in IR? pairwise tangent verify

d(k3 + - Kg0) = (K14 + Kat2)?.
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Related results

Theorem (Soddy 1936) If the first four circles of an Apollonian
packing P have integer curvatures then P is integral.

Theorem (Soddy-Gosset 1937) The curvatures K1, ..., K442 of
d + 2 d-ball in IR? pairwise tangent verify

d(k3 + - Kg0) = (K14 + Kat2)?.

2((=1)2+22+224+32) =36 =(—1+2+2+3)?
2(22 + 62 4+ 32 4 232) = 1156 = (2 + 6 + 3 + 23)
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Packings by using inversions

From a Tetrahedron
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Other packings by using inversions

From an Octahedron
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From an Octahedron
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Other packings by using inversions

From an Octahedron

o9
&
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Three packings

From a Tetrahedron an Octahedron and a Cube

Figures done by a software created by |. Rasskin
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Some questions
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Some questions

It is natural to ask

Question 1 Which integers appears as curvatures in a packing?
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Some questions

It is natural to ask
Question 1 Which integers appears as curvatures in a packing?

Question 2 What can we say about packings with d-balls in IRY ?
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Some questions

It is natural to ask
Question 1 Which integers appears as curvatures in a packing?
Question 2 What can we say about packings with d-balls in IRY ?

Question 3 Are there others Descartes-type identities ?
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A bit of Lorenzian’s theory

Let d > 1. The Lorentzian space IL9t11, of dimension d + 2, is the
vector espace of dimension d + 2 endowed with Lorentzian product

(x,y) =x1y1 + -+ + Xd41Yd+1 — Xd4+2Yd+2, X, ¥ € Lo+t

J. L. Ramirez Alfonsin Apollonian packings, polytopes and Descartes-type identities



A bit of Lorenzian’s theory

Let d > 1. The Lorentzian space IL9t11, of dimension d + 2, is the
vector espace of dimension d + 2 endowed with Lorentzian product

(x,y) =x1y1 + -+ + Xd41Yd+1 — Xd4+2Yd+2, X, ¥ € Lo+t

The vector v € IL9*11 is called space-like if (v, v) > 0 and
normalized if |(v,v)| = 1.
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A bit of Lorenzian’s theory

Let d > 1. The Lorentzian space IL9t11, of dimension d + 2, is the
vector espace of dimension d + 2 endowed with Lorentzian product

(X,¥) = xay1 + - + Xd41Yd41 — Xd42Ydi2, X,y € LITH
The vector v € IL9*11 is called space-like if (v, v) > 0 and
normalized if |(v,v)| = 1.

e There exists a bijection between the space of d-balls Ball(]f{d)
en 7 := RY U {oo} and the set of space-like normalized vectors
of TLA+11.
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A bit of Lorenzian’s theory

Let d > 1. The Lorentzian space IL9t11, of dimension d + 2, is the
vector espace of dimension d + 2 endowed with Lorentzian product

(x,y) =x1y1 + -+ + Xd41Yd+1 — Xd4+2Yd+2, X, ¥ € Lo+t

The vector v € IL9*11 is called space-like if (v, v) > 0 and
normalized if |(v,v)| = 1.

e There exists a bijection between the space of d-balls Ball(]f{d)
en 7 := RY U {oo} and the set of space-like normalized vectors
of ]Ld+1’1.

e The Mébius group Méb(lf{d) is the group generated by the
inversions of d-balls.
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Arrangement of balls

Let P be a (d + 1)-polytope sphere-exterior
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Arrangement of balls

Let P be a (d + 1)-polytope sphere-exterior
The arrangement of balls projected from P, B(P), is the collection
of d-balls where the source light are the vertices of P.
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Arrangement of balls

Let P be a (d + 1)-polytope sphere-exterior
The arrangement of balls projected from P, B(P), is the collection
of d-balls where the source light are the vertices of P.

If Pis a (d+ 1)-polytope edge-inscribed (i.e., all the edges of P
are tangent to S) then B(P) is a packing of d-balls Bp.
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Polytopal packings

A packing of d-balls Bp is called polytopal if there exists
1 eMBb(IR”) such that (B,) = B(P).
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Polytopal packings

A packing of d-balls Bp is called polytopal if there exists
1 eMBb(IR”) such that (B,) = B(P).
Remark Not all packings of d-balls are polytopal
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Polytopal packings
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Central projections of packings

Take an edge-inscribed realisation of a regular (d + 1)-polytope.
A central projection is the colection of projections of the balls with
one k-face which barycentre is in the ray generated from the North

pole.
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Central projections of packings

Take an edge-inscribed realisation of a regular (d + 1)-polytope.
A central projection is the colection of projections of the balls with
one k-face which barycentre is in the ray generated from the North

pole.
Edge-scribed realization | Vertex centered at oo Edge centered at co Face centered at co
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Central projections of packin
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- Let P be a (d + 1)-polytope edge-inscribed.
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- Let P be a (d + 1)-polytope edge-inscribed.

- Let Py be a realization of P containing the origen.
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- Let P be a (d + 1)-polytope edge-inscribed.
- Let Py be a realization of P containing the origen.

- Bp the polytopal packing of d-balls.
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- Let P be a (d + 1)-polytope edge-inscribed.

- Let Py be a realization of P containing the origen.

- Bp the polytopal packing of d-balls.

- There is a Mdbius transformation p such that u(Bp) = B(Po).
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- Let P be a (d + 1)-polytope edge-inscribed.

- Let Py be a realization of P containing the origen.

- Bp the polytopal packing of d-balls.

- There is a Mdbius transformation p such that u(Bp) = B(Po).
- The dual of Bp is the arrangement of balls B}, := u~1(B(P*)).
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- Let P be a (d + 1)-polytope edge-inscribed.

- Let Py be a realization of P containing the origen.

- Bp the polytopal packing of d-balls.

- There is a Mdbius transformation p such that u(Bp) = B(Po).

- The dual of Bp is the arrangement of balls B}, := u~1(B(P*)).

- Since Py is edge-inscribed then Pj is ridge-scribed ((d — 1)-face
inscribed).
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- Let P be a (d + 1)-polytope edge-inscribed.

- Let Py be a realization of P containing the origen.

- Bp the polytopal packing of d-balls.

- There is a Mdbius transformation p such that u(Bp) = B(Po).

- The dual of Bp is the arrangement of balls B}, := u~1(B(P*)).

- Since Py is edge-inscribed then Pj is ridge-scribed ((d — 1)-face
inscribed).

- d = 2, Py is also edge-inscribed and thus Bp and Bj are both
discs packings.
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- Let P be a (d + 1)-polytope edge-inscribed.

- Let Py be a realization of P containing the origen.

- Bp the polytopal packing of d-balls.

- There is a Mdbius transformation p such that u(Bp) = B(Po).

- The dual of Bp is the arrangement of balls B}, := u~1(B(P*)).

- Since Py is edge-inscribed then Pj is ridge-scribed ((d — 1)-face
inscribed).

- d = 2, Py is also edge-inscribed and thus Bp and Bj are both
discs packings.

- The union of Bp U By is called primal-dual representation of P.
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Duality for d = 2

Theorem (Brightwell, Scheinerman) There exists a unique
representation (up tu a Md&bius transformation) primal-dual for any
polyhedra.
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Duality for d = 2

Theorem (Brightwell, Scheinerman) There exists a unique
representation (up tu a Md&bius transformation) primal-dual for any
polyhedra.

- This can be considered as an stronger version of the well known
circle packing theorem by Koebe-Andreev-Thurston.
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Duality for d = 2

Theorem (Brightwell, Scheinerman) There exists a unique
representation (up tu a Md&bius transformation) primal-dual for any
polyhedra.

- This can be considered as an stronger version of the well known
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Two d-balls packings B and B’ are Mébius equivalent if one can
be obtained from the other via a Mdbius transformation.
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Two d-balls packings B and B’ are Mébius equivalent if one can
be obtained from the other via a Mdbius transformation.

An edge-inscribed (d + 1)-polytope is Mobius unique if the
projected arrangement of balls of all its edge-scribed realizations
are Mobius equivalent.
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Two d-balls packings B and B’ are Mébius equivalent if one can
be obtained from the other via a Mdbius transformation.

An edge-inscribed (d + 1)-polytope is Mobius unique if the
projected arrangement of balls of all its edge-scribed realizations
are Mobius equivalent.

Theorem (Rasskin + R.A. 2021)

a) The triangle is the only polygone Mdbius unique.

b) The (d + 1)-simplex is Mobius unique, for all d > 1.

c) The (d + 1)-cube is M&bius unique for all d > 2.
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Two d-balls packings B and B’ are Mébius equivalent if one can
be obtained from the other via a Mobius transformation.

An edge-inscribed (d + 1)-polytope is Mobius unique if the
projected arrangement of balls of all its edge-scribed realizations
are Mobius equivalent.

Theorem (Rasskin + R.A. 2021)

a) The triangle is the only polygone Mdbius unique.

b) The (d + 1)-simplex is Mobius unique, for all d > 1.

c) The (d + 1)-cube is M&bius unique for all d > 2.

Proof (idea) : B is Mdbius equivalent to B’ iff

Gram(B) = Gram(B') where

(vi,vi) +++ (v1,vp)
Gram(B) = : ' :
<Vn>V1> <V1>Vn>

B = {Vl7 ce Vn} C La+11
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Result on curvatures

Let Bp be a polytopal d-balls packing.
The Symmetric group : Sym(Bp) := (u € Mob(IR)|u(Bp) = Bp)
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Result on curvatures

Let Bp be a polytopal d-balls packing.

The Symmetric group : Sym(Bp) := (1 € Mob(IR)|u(Bp) = Bp)
The Apollonian group : A(Bp) := (S(Bj)) where S(Bj) is the set
of inversions of d-balls of B
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Result on curvatures

Let Bp be a polytopal d-balls packing.

The Symmetric group : Sym(Bp) := (1 € Mob(IR)|u(Bp) = Bp)
The Apollonian group : A(Bp) := (S(Bj)) where S(Bj) is the set
of inversions of d-balls of B

The Super Symmetric Apollonian group :

SSA(Bp) = (Sym(Bp) U A(Bp) U A(BE))
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Result on curvatures

Let Bp be a polytopal d-balls packing.

The Symmetric group : Sym(Bp) := (1 € Mob(IR)|u(Bp) = Bp)
The Apollonian group : A(Bp) := (S(Bj)) where S(Bj) is the set
of inversions of d-balls of B

The Super Symmetric Apollonian group :

SSA(Bp) := (Sym(Bp) U A(Bp) U A(Bp))

Theorem (Rasskin + R.A. 2021)

There exist tetrahedral, cubic and dodechaedral Apollonian
packings with curvatures containing all the perfect squares.
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Tetrahedral packing
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Cubic packing
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Dodecahedral packing

: 1+v5
¢ is the golden number =52
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Lorentzian curvature of polytopes

For all x € IL9T11 we define
K(x) = —(xn, X)

where xy = (eg.1 + €4.42) with e; canonical vector of L9511,
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Lorentzian curvature of polytopes

For all x € IL9T11 we define
K(x) = —(xn, X)

where xy = (eg.1 + €4.42) with e; canonical vector of L9511,

We observe that if x is space-like normalized then
(curvature of b)  k(b) = —(xn, Xp)
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Lorentzian curvature of polytopes

For all x € IL9T11 we define
K(x) = —(xn, X)

where xy = (eg.1 + €4.42) with e; canonical vector of L9511,

We observe that if x is space-like normalized then
(curvature of b)  k(b) = —(xn, Xp)
Let P C E9t1 be sphere-exterior. The Lorentzian barycenter of P

IS
1
X = R 2 X
Fo(P), Fte)

where b(v) is the illuminated region from vertex v.
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Lorentzian curvature of polytopes

The Lorentzian curvature of P is defined as

kp = Kk(xp)

J. L. Ramirez Alfonsin Apollonian packings, polytopes and Descartes-type identities



Lorentzian curvature of polytopes

The Lorentzian curvature of P is defined as

kp = Kk(xp)

By linearity, we have that

1
Kp ::m Z k(b(v))
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Descartes-type identities result

Theorem (Rasskin + R.A. 2021) Let d > 1. We take an
edge-scribed realization of a regular (d + 1)-polytope P with
Schlafli's symbols {p1, ..., pq}. The Lorentzianas' curvatures of
the flag (fo, fi, ..., fy, fg11 = P) verifies

d

2
2 — Io(d 1 ('Liﬁ - "iﬁ#l)
wp = Le(d+ ); Lo(i+1) — Lp(7)

con
Lp(i) := 0 i1

Ca oy f2<i<d+1

where f{pl ..... pio1} is the half of the edge length of the

edge-scribed realization of the regular face f;.
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Integral Octahedral packing

Proposition (Rasskin + R.A. 2021) Let k1, k2, k3 be the
curvatures of three discs pairwise tangent in a octahedral polytopal
packing Bo. If k1, ko, k3 and \/2(k1ko + K1k3 + Kok3) are
integers then the Apollonian packing generated from Bg is integral.
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Integral Octahedral packing

Proposition (Rasskin + R.A. 2021) Let k1, k2, k3 be the
curvatures of three discs pairwise tangent in a octahedral polytopal
packing Bo. If k1, ko, k3 and \/2(k1ko + K1k3 + Kok3) are
integers then the Apollonian packing generated from Bg is integral.
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Integral Cubic packing

Proposicién (Rasskin + R.A. 2021) Let x;_1, kj, ki1 be the
curvatures of three discs consecutively tangent in a cubic polytopal
packing B¢. If kj_1, ki, kit1 and

\/—/@,2 + KjKkit1 + Kiki—1 + Ki_1Kkj11 are integers then the
Apollonian packing generated from B¢ is integral.
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Integral Cubic packing

Proposicién (Rasskin + R.A. 2021) Let x;_1, kj, ki1 be the
curvatures of three discs consecutively tangent in a cubic polytopal
packing B¢. If kj_1, ki, kit1 and

\/—/@,2 + KjKkit1 + Kiki—1 + Ki_1Kkj11 are integers then the
Apollonian packing generated from B¢ is integral.
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Integral Icosahedral packing

Proposition (Rasskin + R.A. 2021) Let k1, k2, k3 be the curvatures
of three discs pairwise tangent in a icosahedral polytopal packing
By. If k1, kK2, k3 and \//‘L]_F{Q + K1Kk3 + KpKk3 are in Z[(p] then the
Apollonian packing generated from B; is (p-integral.
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Integral Icosahedral packing

Proposition (Rasskin + R.A. 2021) Let k1, k2, k3 be the curvatures
of three discs pairwise tangent in a icosahedral polytopal packing
By. If k1, K2, k3 and \//‘L]_F{Q + K1Kk3 + KpKk3 are in Z[(p] then the
Apollonian packing generated from B; is (p-integral.
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Integral Dodecahedral packing

Proposition (Rasskin + R.A. 2021) Let k;_1, kj, kj+1 be the
curvatures of three discs consecutively tangent in a dodecahedral
polytopal packing Bp. If kj_1, ki, kiy+1 and

\/—992/-;,2 + Kikit1 + Kiki—1 + Ki—1Kjt+1 are in Z[p] then the
Apollonian packing generated from Bp es p-integral.
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Integral Dodecahedral packing

Proposition (Rasskin + R.A. 2021) Let k;_1, kj, kj+1 be the
curvatures of three discs consecutively tangent in a dodecahedral
polytopal packing Bp. If kj_1, ki, kiy+1 and

\/—992/-;,2 + Kikjt1 + Kiki—1 + Ki_1ki+1 are in Z[yp] then the
Apollonian packing generated from Bp es p-integral.
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Thanks

for your attention




J. L. Ramirez Alfonsi



