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Bracket polynomial

For any link diagram D define a Laurent polynomial < D > in one
variable A which obeys the following three rules where U denotes
the unknot :
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Theorem For any link L the bracket polynomial is independent of
the order in which rules (i)− (iii) are applied to the crossings.
Further, it is invariant under the Reidemeister moves II and III

but it is not invariant under Reidemeister move I ! !

The writhe of an oriented link diagram D is the sum of the signs
at the crossings of D (denoted by ω(D)).
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Theorem For any link L define the Laurent polynomial

fD(A) = (−A3)ω(D) < L >

Then, fD(A) is an invariant of ambient isotopy.

Now, define for any link L

VL(t) = fD(t−1/4)

where D is any diagram representing L. Then VL(t) is the Jones
polynomial of the oriented link L.
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Matroids

Let E a finite set. A matroid is a family B of subsets of E
verifying certain axioms (the family B is called the bases of the
matroid)

There is a natural way to obtain a matroid M from a graph G (the
set of bases on M is given by the family of all spanning trees of G ).
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J. Raḿırez Alfonśın Combinatorics for Knots



Basic notions
Matroid

Knot coloring and the unknotting problem
Oriented matroids

Spatial graphs
Ropes and thickness

The Tutte polynomial of a matroid M(E ) is defined to be the
2-variable polynomial

T (M; x , y) =
∑
A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)

where r is the rank function of M.

Remark :The evaluation of the Tutte polynomial in certain points
may count something.

Example : T (1, 1) counts the number of bases in the matroid.
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J. Raḿırez Alfonśın Combinatorics for Knots



Basic notions
Matroid

Knot coloring and the unknotting problem
Oriented matroids

Spatial graphs
Ropes and thickness

The Tutte polynomial of a matroid M(E ) is defined to be the
2-variable polynomial

T (M; x , y) =
∑
A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)

where r is the rank function of M.

Remark :The evaluation of the Tutte polynomial in certain points
may count something.

Example : T (1, 1) counts the number of bases in the matroid.
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A link diagram is alternating if the crossings alternate
under-over-under-over ... as the link is traversed.

A link is alternating if there is an alternating link diagram
representing L.

Theorem (Thistlethwaite 1987) If D is an oriented alternating link
diagram and G denotes its associated unsigned ‘blackface’ graph
then

VL(t) = (t−1/4)3ω(D)−2T (M(G );−t,−t−1)

where M(G ) is the matroid associated to G .
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J. Raḿırez Alfonśın Combinatorics for Knots



Basic notions
Matroid

Knot coloring and the unknotting problem
Oriented matroids

Spatial graphs
Ropes and thickness

A link diagram is alternating if the crossings alternate
under-over-under-over ... as the link is traversed.

A link is alternating if there is an alternating link diagram
representing L.

Theorem (Thistlethwaite 1987) If D is an oriented alternating link
diagram and G denotes its associated unsigned ‘blackface’ graph
then

VL(t) = (t−1/4)3ω(D)−2T (M(G );−t,−t−1)

where M(G ) is the matroid associated to G .
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Knot coloring

A knot diagram K is called colorable if each arc can be drawn
using one of three colors (say, red, blue, green) in such a way that
1) at least two of the colors are used and
2) at any crossing at which two colors appear, all three appear.
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A knot diagram K is called colorable mod n if each arc can be
labeled with an integer from 0 to p − 1 such a way that
1) at least two labels are distinct and
2) at each crossing the relation 2x − y − z = 0 mod p holds where
x is the label on the overcrossing and y and z the other two labels.
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Theorem If a diagram of a knot K is colorable mod n then every
diagram of K is colorable mod n.

Corollary There exist non-trivial knots.

Corollary If a link is splittable then it is colorable mod 3.
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[UP] Unknotting problem : Given a knot diagram K , decide
whether K is trivial.

Tait 1877 Knot classification.
Papakyriakopoulos 1957 A knot is trivial if and only if the
fundamental group of its complement is abelian.

Haken 1961 [UP] is decidible.
Hass, Lagarias and Pippenger 1999 [UP] is NP.

Is there a good method to simplify diagrams ?
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Question (Welsh) Is there a function f such that any diagram of
the trivial knot with n crossngs can be transformed to a a diagram
without crossing by using at most f (n) Reidemeister moves ?

Theorem (Hass and Lagarias 2001) f (n) = 2cn where c = 1011.
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Oriented matroids

Let E a finite set. An oriented matroid is a family C of signed
subsets of E verifying certain axioms (the family C is called the
circuits of the oriented matroid).

There is a natural way to obtain an oriented matroid from a
configuration of points in IRd .

If C ∈ C conv(pos. elements C ) ∩ conv(neg. elements C ) 6= ∅.
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Example : d = 3.
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Cyclic Polytope

Let t1, . . . , tn ∈ IR. The cyclic polytope of dimension d with n
vertices is defined as

Cd(t1, . . . , tn) := conv(x(t1), . . . , x(tn))

where x(ti ) = (ti , t
2
i , . . . , td

i ) are points of the moment curve

Cd(t1, . . . , tn) → Cd(n)

Upper bound theorem (McMullen 1970) The number of j-faces of
a d-dimensional polytope with n vertices is maximal for Cd(n).
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Theorem (R.A. 2009) Let D(K ) be a diagram of a knot K on n
crossings. Then, there exists a cycle in C3(m) isotopic to K where
m ≤ 7n.
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Geometric algorithm

Given a diagram of a knot K .

Construct a cycle C in C3(m) isotopic to K .

Detect useless edges in C by using the circuits of the oriented
matroid associated to C3(m).

Theorem (R.A. 2010) This method detect if a diagram with n
crossing is trivial and its order is O(2cn) where c is a constant.
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Spatial graphs

A spatial representation of a graph G is an embedding of G in IR3

where the vertices of G are points and edges are represented by
simple Jordan curves.
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A spatial representation of a graph G is an embedding of G in IR3

where the vertices of G are points and edges are represented by
simple Jordan curves.
Spatial representation of K5.
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Let m(L) be the smallest integer such that any spatial
representation of Kn with n ≥ m(L) contains cycles isotopic to L.
Theorem (Conway and Gordon 1983)
• For any spatial representation of K6, it holds∑

(λ1,λ2)

lk(λ1, λ2) ≡ 1 mod 2

where (λ1, λ2) is a 2-component link contained in K6

and lk denotes the linking number.
• For any spatial representation of K7, it holds∑

λ

Arf (λ) ≡ 1 mod 2

where λ is a 7-cycle of K7 and Arf denotes the Arf invariant.
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A spatial representation is linear if the curves are line segments.

Let m̄(L) be the smallest integer such that any spatial linear
representation of Kn with n ≥ m̄(L) contains cycles isotopic to L.
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Theorem (Negami 1991) m̄(L) exists and it is finite for any link L.

Theorem (R.A. 1998) m̄(T or T ∗) = 7.

Theorem (R.A. 2000) m̄(42
1) > 7.

Theorem (R.A. 2009) m̄(F8),m(T (5, 2)) > 8.

Theorem (R.A. 2009) Let D(L) be a diagram of link L with n
crossings. Then,

m̄(L) ≤ 227n
.
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Knots physical models

For a given diameter, one needs certain minimum length of rope in
order to tie a (nontrivial) knot.

Moreover, the more complicated the knot you want to tie, the
more rope you need.

Question (Siebenmenn 1985) Can you tie a knot in a 30 cm length
of 3 cm rope ?
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A number r > 1 is nice if for any distinct points x and y on K we
have D(x , r) ∩ D(y , r) = ∅. The disk thickness of K is defined to
be t(K ) = sup{r |r is nice}.
A thick realization K0 of K is a knot of unit thickness which is of
the same type as K .

The rope length L(K ) of K is the infimum of the length of K0

taken over all thick realizations of K .

Theorem (Cantarella, Kusner and Sullivan 2002) L(K ) exists.
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Theorem (Diao, Ernst and Yu 2004) There exists a constant c
such that for any knot K

L(K ) ≤ c · (Cr(K ))3/2

where Cr(K ) is the crossing number of K .

The cubic lattice consists of all points in IR3 with integral
coordinates and all unit line segments joining these points.

A cubic lattice knot is a polygonal knot represented in the cubic
lattice.
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The trefoil represented in the cubic lattice.
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Theorem (Diao, Ernst and Yu 2004) Let K be a knot. Then, K can
be embedded into the cubic lattice with length at most

136 (Cr(K ))3/2 + 84Cr(K ) + 22
√

Cr(K ) + 11.
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Theorem (R.A. 2010) Let K be a knot. Then, K can be embedded
into the cubic lattice with length at most O(Cr(K )).

Theorem (R.A. 2010) There exists a constant c such that for any
knot K

L(K ) ≤ c · (Cr(K ))

where Cr(K ) is the crossing number of K .
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