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Abstract

One wishes to remove k−1 edges of a vertex-weighted tree T such that the weights

of the k induced connected components are approximately the same. How well can

one do it? In this paper, we investigate such k-separators for quasi-binary trees. We

show that, under certain conditions on the total weight of the tree, a particular k-

separator can be constructed such that the smallest (respectively the largest) weighted

component is lower (respectively upper) bounded. Examples showing optimality for

the lower bound are also given.
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1 Introduction

The seminal paper by Lipton and Tarjan [2] has inspired a number of separator-type

problems and applications (we refer the reader to [3] for a recent survey on separators and

to [4] for edge separators of graphs with bounded genus).

Let us consider the following question.
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One wishes to split a given embedding of a planar connected graph G into

blocks formed by weighted faces (weights might be thought of as the areas of

the faces) such that the dual of the planar graph induced by each block is

connected and the blocks’ weights are approximately the same. How well can

this be done?

One way to answer the latter is by considering k-separators on a spanning tree TG of

the vertex-weighted dual graph of G. Indeed, one may want to remove k − 1 edges of TG

such that the weights of the k induced connected components of TG are approximately the

same.

More formally, let T = (V,E) be a graph, and let ω : V (T ) −→ IR+ be a weight

function. Let ω(T ) =
∑

v∈V (T )
ω(v), and let 2 ≤ k ≤ |V | − 1 be an integer. A k-separator of

T is a set F ⊂ E(T ) with |F | = k−1 whose deletion induces k connected components, say

C1(F ), . . . , Ck(F ). If we let ω(Ci(F )) =
∑

v∈V (Ci(F ))
ω(v) then ω(T ) =

k∑
i=1

ω(Ci(F )). Let

βk(T ) := max
F⊆E,|F |=k−1

{
min
1≤i≤k

ω(Ci(F ))

}
and

αk(T ) := min
F⊆E,|F |=k−1

{
max
1≤i≤k

ω(Ci(F ))

}
.

An optimal k-separator is achieved when βk(T ) = αk(T ) = 1
kω(T ).

In this paper, we investigate the existence of k-separators with large (resp. small)

values for βk (resp. for αk) for the class of quasi-binary trees. A tree is called binary if the

degree of any vertex equals three except for pendant vertices (vertices of degree one) and

a root vertex (a vertex of degree two). A tree is say to be quasi-binary if it is a connected

subgraph of a binary tree. Notice that good k-separators in quasi-binary trees will lead to

good k-block separators for triangulated planar graphs in the above question.

Since, for any quasi-binary tree T , the degree d(v) of any v ∈ V (T ) is 1,2 or 3, we may

define, for each i = 1, 2, 3,

Vi := {v ∈ V (T )|d(v) = i}

and

ωi := max{ω(v)|v ∈ Vj for each i ≤ j ≤ 3}.

We will suppose that V2, V3 6= ∅ and therefore ω2, ω3 > 0. Notice that
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V (T ) = V1 ∪ V2 ∪ V3, ω1 ≥ ω2 ≥ ω3 and ω1n1 + ω2n2 + ω3n3 ≥ ω(T ). (1)

where ni = |Vi| for each i = 1, 2, 3.

Our main results are the following.

Theorem 1 Let T be a quasi-binary tree. Let k ≥ 2 be an integer and γ ∈ IR with

γ ≥ ω3 > 0. Let Mγ = max{ω1 + γ, 2ω2}. If

ω(T ) + kγ ≥ (k + 1)(k − 2)Mγ

(k − 1)

then

αk(T ) ≤ 2ω(T ) + (k − 1)γ

k + 1
·

Theorem 2 Let T be a quasi-binary tree. Let k ≥ 2 be an integer and γ ∈ IR with

γ ≥ ω3 > 0. Let Mγ = max{ω1 + γ, 2ω2}. If

ω(T ) + kγ ≥ (2k + 1)Mγ

(2)

then

βk(T ) ≥ ω(T )− (k − 1)γ

2k − 1
·

We note that the bounds for αk(T ) and βk(T ) are not necessarily reached by using the

same k-separator. The second author has studied k-separators in a more general setting

(for planar graphs with weights on vertices, edges, and faces), where a lower bound for

βk is obtained [5] . We noticed that the conditions given in [5] are different from those

presented in Theorem 2, whose proof is distinct (on the same line as that of Theorem 1).

The value αk is not treated in [5] at all. Two-separators for binary trees were also studied

in [1, Corollary 2.2] where it is proved that a binary tree T with at least λ + 1 vertices

admits an edge separating a forest F in T satisfying λ ≤ |V (F )| < 2λ for any real number

λ > 1
2 . In the same spirit, Theorem 1 (resp. Theorem 2) implies, by taking ω(v) = 1 for

all vertices v and γ = λ− 2 (resp. γ = λ), the existence of a 2-separator of a binary tree

with λ ≥ 1 vertices such that one of the two connected components has at most λ (resp.

at least 2
3λ) vertices.

In the following section, we present some preliminary results needed for the rest of

the paper. Main results are proved in Section 3. Finally, a family of quasi-binary trees

showing optimality of Theorem 2 is constructed in the last section.
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2 Preliminary results

Let T be a quasi-binary tree. We may suppose ω(T ) > 0 and that n = |V (T )| > 1

henceforth. For i ∈ {1, 2, 3}, let ni = |Vi|. We observe that

n1 + 2n2 + 3n3 = 2|E(T )| = 2(n− 1) = 2n1 + 2n2 + 2n3 − 2 and thus n1 = n3 + 2. (2)

Our main theorems will be proved by induction. We need the following result.

Lemma 1 Let T be a quasi-binary tree with n = |V (T )| > 1. Let γ, η ∈ IR be such that

γ ≥ ω3 and max
{
ω1−γ

2 , ω2 − γ
}
≤ η ≤ ω(T )

2 . Then, there exists an edge e ∈ E(T ) such

that

η ≤ ω(Cie) ≤ 2η + γ

for either C1
e or C2

e where C1
e , C

2
e denote the two connected components of T \ {e} .

Proof. The inequality η ≤ ω(Cie) holds for i = 1 or 2 and for any e ∈ E(T ), otherwise

ω(T ) = ω(T )
2 + ω(T )

2 ≥ 2η > ω(C1
e ) + ω(C2

e ) = ω(T ), which is a contradiction.

We now prove the right-hand side inequality. Without lost of generality, we suppose

that ω(C1
e ) ≥ η for each e ∈ E(T ). If we also have that ω(C2

e ) ≥ η then we choose indices

such that |V (C1
e )| ≤ |V (C2

e )|.
We proceed by contradiction. Suppose that ω(C1

e ) > 2η + γ for all e ∈ E(T ). Let

e = {v1, v2} with vi ∈ V (Cie) be the edge that minimizes |V (C1
e )|. We have three cases.

Case 1) If d(v1) = 1, then ω(C1
e ) = ω(v1) ≤ ω1. Since η ≥ ω1−γ

2 then 2η + γ ≥ ω1 ≥
ω(C2

e ), which is a contradiction.

Case 2) If d(v1) = 2, then we let f = {v1, u} ∈ E(T ), f 6= e be the other edge incident

to v1.

Let Cif , i = 1, 2 be the two connected components of T \{f}. Since |V (C1
f )| ≥ |V (C1

e )|
then V (C1

e )) = V (C2
f ) ∪ {v1} so ω(C2

f ) = ω(C1
e ) − ω(v1) > 2η + γ − ω2 ≥ η, and thus

|V (C2
f )| ≥ |V (C1

f )| ≥ |V (C1
e )|, which is a contradiction.

Case 3) If d(v1) = 3, then we let f1 = {v1, u}, f2 = {v1, v} ∈ E(T ), f1, f2 6= e be

the other two edges incident to v1 with V (C2
f1

) ∪ V (C2
f2

) = V (C1
e ) \ {v1}. So, ω(C2

f1
) +

ω(C2
f2

) = ω(C1
e )− ω(v1) > 2η + γ − ω3 ≥ 2η. Without loss of generality, we suppose that

ω(C2
f1

) ≥ ω(C2
f2

), and thus ω(C2
f1

) > η and |V (C2
f1

)| ≥ |V (C1
f1

)| ≥ |V (C1
e )| which is a

contradiction. ut
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3 Proofs of main results

We may now prove our main results.

Proof of Theorem 1. We first claim that ω(T ) > −kγ. Indeed, since (k+1)(k−2)
k−1 ≥ k−1

2

and ω1, ω2 > 0, we have

ω(T ) + kγ ≥ (k + 1)(k − 2)

k − 1
Mγ ≥

k − 1

2
Mγ > 0.

We now shall construct the desired k-separator as follows. Let Tk = T . We first find

an edge ek ∈ E(Tk) (by using Lemma 1) such that one of the connected components of

Tk \ {ek}, say Tk−1, has a suitable weight (the other connected component of Tk \ {ek},
say Rk−1, remains fixed for the rest of the construction). By a suitable weight we mean a

weight such that Lemma 1 can be applied to Tk−1 in order to find an edge ek−1 ∈ E(Tk−1)

such that one of the connected components of Tk−1\{ek−1}, say Tk−2, has again a suitable

weight (and again the other connected component of Tk−1 \ {ek−1}, say Rk−2, remains

fixed for the rest of the construction), and so on. We claim that the weight of component

Tj is suitable if

(j − 1)(k − 1)

(k + 1)(k − 2)
ω(T ) +

(
2(j − 1)

(k + 1)(k − 2)
− 1

)
γ ≤ ω(Tj) ≤

(j + 1)

(k + 1)
ω(T ) +

(k − j)
(k + 1)

γ· (3)

Now, to apply Lemma 1, we need to define an appropriate parameter ηj (that ensures

suitable weights throughout the construction). For each j = k, k − 1 . . . , 2, we set

ηj =
(k − 3)

2(2k − j − 3)
ω(Tj)−

(j − 3)(k − 1)

2(2k − j − 3)(k + 1)
ω(T )− (k + 3)(k − 2)− j(k − 1)

2(2k − j − 3)(k + 1)
γ· (4)

We first claim that

max

{
ω1 − γ

2
, ω2 − γ

}
≤ ηj ≤

ω(Tj)

2
·

For the lower bound we have

ηj = (k−3)
2(2k−j−3)ω(Tj)− (j−3)(k−1)

2(2k−j−3)(k+1)ω(T )− (k−3)(k−2)−j(k−1)
2(2k−j−3)(k+1) γ

≥ (k−3)
2(2k−j−3)

(
(j−1)(k−1)
(k+1)(k−2))

)
ω(T ) + (k−3)

2(2k−j−3)

(
2(j−3)

(k+1)(k−2) − 1
)
γ

− (j−3)(k−1)
2(2k−j−3)(k+1)ω(T )− (k−3)(k−2)−j(k−1)

2(2k−j−3)(k+1) γ

= (k−1)
2(k+1)(k−2)ω(T )− k2−k−4

2(k+1)(k−2)γ

≥ max
{
ω1
2 −

1
(k+1)(k−2)γ, ω2 − k(k−1)

2(k+1)(k−2)γ
}
− (k2−k−4)

2(k+1)(k−2)γ

= max
{ω1

2 −
γ
2 , ω2 − γ

}
.
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For the upper bound, we have

ηj = (k−3)
2(2k−j−3)ω(Tj)− (j−3)(k−1)

2(2k−j−3)(k+1)ω(T )− (k−3)(k−2)−j(k−1)
2(2k−j−3)(k+1) γ

=
ω(Tj)

2 − (k−j)
2(2k−j−3)ω(Tj)− (j−3)(k−1)

2(2k−j−3)(k+1)ω(T )− (k+3)(k−2)−j(k−1)
2(2k−j−3)(k+1) γ

≤ ω(Tj)
2 − (k−j)

2(2k−j−3)

(
(j−1)(k−1)
(k+1)(k−2)ω(T ) +

(
2(j−1)

(k+1)(k−2) − 1
)
γ
)

− (j−3)(k−1)
2(k−j−3)(k+1)ω(T )− (k+3)(k−2)−j(k−1)

2(2k−j−3)(k+1) γ

≤ ω(Tj)
2 − (j−2)

(k+1)(k−2)

(
(k−1)

2 ω(T ) + γ
)

=
ω(Tj)

2 − (j−2)
2k ω(T )− (j−2)

k(k+1)(k−2) (ω(T ) + kγ) ≤ ω(Tj)
2 ·

Therefore, by Lemma 1, one of the connected components of Tj \ {ej}, say Rj−1,

satisfies

ηj ≤ ω(Rj−1) ≤ 2ηj + γ, (5)

and thus, the weight of the other connected component of Tj \ {ej}, say Tj−1, satisfies

ω(Tj)− 2ηj − γ ≤ ω(Tj−1) ≤ ω(Tj)− ηj ·

So, the set of edges e1, . . . , ek−1 chosen as above gives a k-separator T where the

connected component with the largest weight is given by max
1≤i≤k

{ω(Tj)}. To obtain an

upper bound for the latter, we shall show that the components Tj , j = k, k−1, . . . , 1 have

suitable weights satisfying both inequalities of (3).

We proceed by induction on j. For j = k, the upper bound is obtained immediately.

For the lower bound we have,

ω(Tk) = ω(T ) = (k−1)(k−1)
(k+1)(k−2)ω(T ) +

(
2(k−1)

(k+1)(k−2) − 1
)
γ + (k−3)

(k+1)(k−2)(ω(T ) + kγ)

≥ (k−1)(k−1)
(k+1)(k−2)ω(T ) +

(
2(k−1)

(k+1)(k−2) − 1
)
γ. (6)

The latter inequality uses the fact that ω(T ) > −kγ. Suppose that inequalities hold

for some j ≤ k. By using 3,4 and 6, we have

ω(Rj−1) ≥ ω(Rj)− 2ηj − γ
= ω(Rj)− (k−3)

(2k−j−3)ω(Rj) + (j−3)(k−1)
(2k−j−3)(k+1)ω(T ) + (k−3)(k−2)−j(k−1)

(2k−j−3)(k+1) γ − γ
≥ (k−j)

(2k−j−3)

(
(j−1)(k−1)
(k+1)(k−2)

)
ω(T ) + (k−j)

(2k−j−3)

(
2(j−1)

(k+1)(k−2) − 1
)
γ

+ (j−3)(k−1)
(2k−j−3)(k+1)ω(T )− (k+3)(k−2)−j(k−1)

(2k−j−3)(k+1) γ − γ
= (j−3)(k−1)

(k+1)(k−2)ω(T ) +
(

2(j−2)
(k+1)(k−2) − 1

)
γ.
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And

ω(Rj−1) ≤ ω(Rj)− ηj
= ω(Rj)− (k−3)

2(2k−j−3)ω(Rj) + (j−3)(k−1)
2(2k−j−3)(k+1)ω(T ) + (k−3)(k−2)−j(k−1)

(2k−j−3)(k+1) γ

≤ (3k−2j−3)(j+1)
2(2k−j−3)(k+1)ω(T ) + (3k−2j−3)(k−j)

2(2k−j−3)(k+1)γ

+ (j−3)(k−1)
2(2k−j−3)(k+1)ω(T ) + (k+3)(k−2)−j(k−1)

2(2k−j−3)(k+1) γ

= j
(k+1)ω(T ) + (k−j+1)

(k+1) γ.

Therefore, (3) holds for all j = k, . . . , 2 when T is decomposed into the k components

T1, Rk, . . . , R2. So,

αk = max

{
max
2≤j≤k

{ω(Rj)} , ω(T1)

}
(5)

≤ max

{
max
2≤j≤k

{2ηj + γ} , ω(T1)

}
(4)
= max

{
max
2≤j≤k

{
(k−3)

(2k−j−3)ω(Tj)− (j−3)(k−1)
(2k−j−3)(k+1)ω(T ) + k2−2k+3−2j

(2k−j−3)(k+1)γ
}
, ω(T1)

}
(3)

≤ max

{
max
2≤j≤k

{
2

(k+1)ω(T ) + (k−1)
(k+1)γ

}
, 2
(k+1)ω(T ) + (k−1)

(k+1)γ

}
= 2

(k+1)ω(T ) + k
(k+1)γ,

as desired. ut
Proof of Theorem 2. We first claim that ω(T ) > −kγ. Indeed, since 2k+1

2 ≥ k−1
2 and

ω1, ω2 > 0, we have

ω(T ) + kγ ≥ 2k + 1

2
Mγ ≥

k − 1

2
Mγ > 0.

We shall construct the desired k-separator in a similar way as done in Theorem 1. Let

Tk = T . We find an edge ek ∈ E(Tk) (by using Lemma 1) such that one of the connected

components of Tk \{ek}, say Rk, has a prescribed weight, which will be fixed for the rest of

the construction. By applying Lemma 1 to the other component of Tk \{ek}, say Tk−1, we

find an edge ek−1 ∈ E(Tk−1) such that one of the connected components of Tk−1 \ {ek−1},
say Rk−2, has a prescribed weight and which will be fixed for the rest of the construction,

and so on. The only difference with the procedure in the proof of Theorem 1 is that the

value ηj is now fixed for any step of the construction

ηj = η = ω(T )−(k−1)γ
2k−1 for all j = k, k − 1, . . . , 2.

First, we claim that η ≥ max
{
ω1−γ

2 , ω2 − γ
}

. Indeed,

η = ω(T )−(k−1)γ
2k−1

≥ max
{
(2k−1)ω1−γ

2(2k−1) , (2k−1)ω2−kγ
2(2k−1)

}
− (k−1)γ

2k−1

= max
{
ω1−γ

2 , ω2 − γ
}
.
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Therefore, at each step (by Lemma 1) one of the connected components of Tj \ {ej},
say Rj−1 satisfies

η =
ω(T )− (k − 1)γ

2k − 1
≤ ω(Rj−1) ≤

2ω(T ) + γ

2k − 1
= 2η + γ.

The weight of the other connected component of Tj \ {ej}, say Tj−1 satisfies

ω(Tj)−
2ω(T )− ω

2k − 1
≤ ω(Tj−1) ≤ ω(Tj)−

ω(T )− (k − 1)γ

2k − 1
.

Since ω(Tk) = ω(T ), we obtain

ω(Tj) ≥ ω(T )− (k − j)2ω(T ) + γ

2k − 1
=

(2j − 1)ω(T )− (k − j)γ
2k − 1

, j = k, k − 1, . . . , 1.

We claim that η ≤ ω(Tj)
2 for each j = k, k − 1, . . . , 2. Indeed,

ω(Tj)
2 ≥ (2j−1)ω(T )−(k−j)γ

2(2k−1)
= ω(T )−(k−1)γ

2k−1 + (2j−3)ω(T )+(k+j−2)γ
2(2k−1)

= ω(T )−(k−1)γ
2k−1 + (j−2)

2k ω(T ) + (k+j−2)
2k(2k−1)(ω(T ) + kγ)

≥ ω(T )−(k−1)γ
2k−1 = η.

So, the set of edges {ek, ek−1, . . . , e2} chosen as above forms a k-separator Sk of T ,

where the connected component with the smallest weight is given by

β(Sk) = min{ω(Rk−1), ω(Rk−2), . . . , ω(R1), ω(T1)} ≥
ω(T )− (k − 1)ω

2k − 1

as desired. ut

4 Tightness

In this section, we show that the lower bound presented in Theorem 2 is optimal. We

consider the quasi-binary tree Tk consisting of a root vertex r joined by k − 1 different

paths to k − 1 vertices x1, . . . , xk−1, each of which is adjacent to exactly two vertices of

degree one, see Figure 1.

We set ω(xi) = ω > 0 for all i, ω(r) = ω(v) = ω′ ≥ ω > 0 where d(v) = 1 and the

weight of any other vertex equals zero. So,

ω(Tk) = (k − 1)ω + 2(k − 1)ω′ + ω′ = (k − 1)ω + (2k − 1)ω′.

Let F be an optimal k-separator of T . We have that either F contains one of the edges

{xi, v}, 1 ≤ i ≤ k− 1 with v a pending vertex (so vertex v will be a connected component
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k=5k=4k=3

Figure 1: Quasi-binary trees T2, T3 and T3

itself in the separator and thus βk = ω′) or F contains no such edges in which case we

find (by an easy analysis of Tk) that the root vertex r will be in a connected component

containing just vertices of weight zero in any optimal separator (obtaining again that

βk = ω′).

The lower bound of Theorem 2 gives

βk ≥
1

2k − 1
ω(Tk)−

(
k − 1

2k − 1

)
ω3 =

1

2k − 1

(
(k − 1)ω + (2k − 1)ω′

)
−
(
k − 1

2k − 1

)
ω = ω′

showing the desired optimality.
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