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Ehrhart theory

A Lattice polytope P C R? is a convex hull of a finite set of points
in Z9. For k € Z~o let Lp(k) := #(kP N Z9)
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Ehrhart theory

A Lattice polytope P C R? is a convex hull of a finite set of points
in Z9. For k € Z~o let Lp(k) := #(kP N Z9)

Q2 = conv{(0,0),(1,0),(0,1),(1,1)} ={x,y e R: 0 < x,y < 1}.
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Ehrhart theory

A Lattice polytope P C R? is a convex hull of a finite set of points
in Z9. For k € Z~o let Lp(k) := #(kP N Z9)

Q2 = conv{(0,0),(1,0),(0,1),(1,1)} ={x,y e R: 0 < x,y < 1}.
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Ehrhart theory

A Lattice polytope P C R? is a convex hull of a finite set of points
in Z9. For k € Z~o let Lp(k) := #(kP N Z9)

Example
Q2 = conv{(0,0),(1,0),(0,1),(1,1)} ={x,y e R: 0 < x,y < 1}.
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Ehrhart theory

A Lattice polytope P C R? is a convex hull of a finite set of points
in Z9. For k € Z~o let Lp(k) := #(kP N Z9)

Example
Q2 = conv{(0,0),(1,0),(0,1),(1,1)} ={x,y e R: 0 < x,y < 1}.
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Ehrhart theory

A Lattice polytope P C R? is a convex hull of a finite set of points
in Z9. For k € Z~o let Lp(k) := #(kP N Z9)

Example
@ = C_onv{((l,O), (_1,0),£0, D),(L,D)}={x,yeR:0<x,y <1}.

40,
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20,

&
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Ehrhart theory

A Lattice polytope P C R? is a convex hull of a finite set of points
in Z9. For k € Z~o let Lp(k) := #(kP N Z9)

Example
@ = C_onv{((l,O), (_1,0),£0, D),(L,D)}={x,yeR:0<x,y <1}.

40,

30,
20,

&

k |1]2][3]4
Lo,(k) [4]9]16]25

Lo(k) = (k+ 1)
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Ehrhart polynomial
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Ehrhart polynomial

d
Lo (k) = (k+1)9 = > (9K

i=0
Theorem (Ehrhart 1962) For any lattice polytope P, Lp(k) is a
polynomial in k of degree dim(P) with rational coefficients, with
leading term vol(P) and constant term 1.
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Ehrhart polynomial

d
Lo (k) = (k+1)9 = > (9K

i=0

Theorem (Ehrhart 1962) For any lattice polytope P, Lp(k) is a
polynomial in k of degree dim(P) with rational coefficients, with
leading term vol(P) and constant term 1.

Let P° denotes the interior of P.
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Ehrhart polynomial

d .
Lo, (k) = (k+ )¢ = 32 ()
Theorem (Ehrhart 1962) For any lattice polytope P, Lp(k) is a
polynomial in k of degree dim(P) with rational coefficients, with

leading term vol(P) and constant term 1.
Let P° denotes the interior of P.

Los(k) = (k—1)¢
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Ehrhart polynomial

d .
Lo, (k) = (k+ )¢ = 32 ()
Theorem (Ehrhart 1962) For any lattice polytope P, Lp(k) is a
polynomial in k of degree dim(P) with rational coefficients, with

leading term vol(P) and constant term 1.
Let P° denotes the interior of P.

Log(k) = (k= 1)7 = (-1)7(1 — k)?
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Ehrhart polynomial

d .
Lo, (k) = (k+ )¢ = 32 ()
Theorem (Ehrhart 1962) For any lattice polytope P, Lp(k) is a
polynomial in k of degree dim(P) with rational coefficients, with

leading term vol(P) and constant term 1.
Let P° denotes the interior of P.

Log(k) = (k= 1)7 = (-1)7(1 — k) = (-1)7Lq, (k)
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Ehrhart polynomial

Lo,(k) = (k1) = 3= (9

Theorem (Ehrhart 1962) For any lattice polytope P, Lp(k) is a
polynomial in k of degree dim(P) with rational coefficients, with
leading term vol(P) and constant term 1.

Let P° denotes the interior of P.

Log(k) = (k= 1)? = (-1)7(1 = k)¢ = (~1)Lo, (k)
Theorem (Macdonald 1971)
Lo(—k) = (~1)m(P)L . (k)
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Ehrhart polynomial

Lo,(k) = (k1) = 3= (9

Theorem (Ehrhart 1962) For any lattice polytope P, Lp(k) is a
polynomial in k of degree dim(P) with rational coefficients, with
leading term vol(P) and constant term 1.

Let P° denotes the interior of P.

Ly (K) = (k — 1) = (~1)°(1 — k) = (~1)?La,(~)
Theorem (Macdonald 1971)
Lo(—k) = (—1)(P) L (k) |
Therefore, (—1)9™(P)[ p(—k) enumerates the interior lattice points
in kP.
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Permutahedron

The d-dimensional permutahedron Py is defined as
Py := conv{(m(1) — 1,7(2) = 1,...,7(d) — 1) : m € S4}
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Permutahedron

The d-dimensional permutahedron Py is defined as
Py := conv{(m(1) — 1,7(2) = 1,...,7(d) — 1) : m € S4}

z

(0,1,2)

(0,2,1)

(2,0,1)

(2,1,0)
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Permutahedron

Theorem .
Lp (k)= fik!
i=0

where f; is the number of forests on {1,...,d} with i vertices.
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Permutahedron

Theorem p
LPd(k) = Z fiki
i=0
where f; is the number of forests on {1,...,d} with i vertices.

Remark fy4 is the number of spanning trees on the complete graph
Ky.
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Permutahedron

Theorem p
LPd(k) = Z fiki
i=0
where f; is the number of forests on {1,...,d} with i vertices.

Remark fy4 is the number of spanning trees on the complete graph
Ky.

fg = dd72
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Permutahedron

Theorem p
LPd(k) = Z fiki
i=0
where f; is the number of forests on {1,...,d} with i vertices.

Remark fy4 is the number of spanning trees on the complete graph
Ky.

fg = d92= vol(Py)
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Cyclic polytope

Let m(t) = (¢, t%,...,t%) be the moment curve in RY.
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Cyclic polytope

Let m(t) = (¢, t%,...,t%) be the moment curve in RY.

The d-dimensional Cyclic polytope Cy = Cy(t1, ..., t,) is defined
as
Cyq := conv{m(ty),...,m(t,)}

J.L. Ramirez Alfonsin Integer points and Ehrhart polynomial of LPM polytope



Cyclic polytope

Let m(t) = (¢, t%,...,t%) be the moment curve in RY.
The d-dimensional Cyclic polytope Cy = Cy(t1, ..., t,) is defined
as

Cyq := conv{m(ty),...,m(t,)}
Theorem

d
Le (k)= fik!
i=0

where f; = vol(Ci(t1, ..., tn)).
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Ehrhart series

The standard d-simplex

A :{xeRdzo:xl—é—‘--—degl}
= conv{(0,....,0),(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}

La(t) = <t—;d>
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Ehrhart series

The standard d-simplex

A :{xeRdzo:xl—é—‘--—degl}
= conv{(0,....,0),(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}

La(t) = <t—;d>

La(t) comes with the friedly generating function

> ()

>0
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Ehrhart series

The standard d-simplex

A :{xeRdzo:xl—é—‘--—degl}
= conv{(0,....,0),(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}

La(t) = <t—;d>

La(t) comes with the friedly generating function

S () =

>0
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Ehrhart series

The standard d-simplex

A :{xeRdzo:xl—é—‘--—degl}
= conv{(0,....,0),(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}

La(t) = <t—;d>

La(t) comes with the friedly generating function
Z t+d St 1

d B (1— z)d+1
t>0

This motivate to define the Ehrhart serie of the lattice polytope P
as

Ehrp(z) :=1+ Z Lp(t)z"
t>1
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Ehrhart series

Ehrhart's theorem (Equivalent) For any lattice polytope P,
Ehrp(z) is a rational function of the form

hez® 4+ he_1z5 1 4+ -+ + hg
(]_ _ Z)dim(P)+1
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Ehrhart series

Ehrhart's theorem (Equivalent) For any lattice polytope P,
Ehrp(z) is a rational function of the form

hez® 4+ he_1z5 1 4+ -+ + hg
(]_ _ Z)dim(P)+1

The h-vector are the coefficients of

h(z) = hsz® + he_12° 1 4+ - + hg
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Ehrhart series

Ehrhart's theorem (Equivalent) For any lattice polytope P,
Ehrp(z) is a rational function of the form

hez® 4+ he_1z5 1 4+ -+ + hg
(]_ _ Z)dim(P)+1

The h-vector are the coefficients of

h(z) = hsz® + he_12° 1 4+ - + hg

o Lp(t) =20 o hi("T77)
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Ehrhart series

Ehrhart's theorem (Equivalent) For any lattice polytope P,
Ehrp(z) is a rational function of the form

hez® 4+ he_1z5 1 4+ -+ + hg
(]_ _ Z)dim(P)+1

The h-vector are the coefficients of

h(z) = hsz® + he_12° 1 4+ - + hg

o Lp(t) = X7 o bi(*T77)
e h(0) =1 and h(1) = dim(P)!vol(P)
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Ehrhart series

Ehrhart's theorem (Equivalent) For any lattice polytope P,
Ehrp(z) is a rational function of the form

hez® 4+ he_1z5 1 4+ -+ + hg
(]_ _ Z)dim(P)+1

The h-vector are the coefficients of

h(z) = hsz® + he_12° 1 4+ - + hg
o Lp(t) =7 o hi(*77)

e h(0) =1 and h(1) = dim(P)!vol(P)
o hy=#(P°NZ%) and hy = #(PNZ9) —d -1
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Ehrhart series

Ehrhart's theorem (Equivalent) For any lattice polytope P,
Ehrp(z) is a rational function of the form

hez® 4+ he_1z5 1 4+ -+ + hg
(]_ _ Z)dim(P)+1

The h-vector are the coefficients of

h(z) = hsz® + he_12° 1 4+ - + hg

o Lp(t) = 27 hi(*177)

e h(0) =1 and h(1) = dim(P)!vol(P)

o hy=#(P°NZ%) and hy = #(PNZ9) —d -1

e Theorem (Stanley 1980) ho, ..., hy are nonnegative integers
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Independents

A matroid M is an ordered pair (E,Z) where E is a finite set
(E={1,...,n}) and Z is a family of subsets of E verifying the

following conditions :

(1) 0 ez,

(12) If I €T and I C I then I’ € T,

(I13) If h,h € T and || < |l| then there exists e € h\/; such that
LhUueel.
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Independents

A matroid M is an ordered pair (E,Z) where E is a finite set
(E={1,...,n}) and Z is a family of subsets of E verifying the

following conditions :

(1) 0 ez,

(I2) If l€Z and I" C | then I € Z,

(I13) If h,h € T and || < |l| then there exists e € h\/; such that
LhUueel.

The members in 7 are called the independents of M. A subset in E

not belonging to Z is called dependent.
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Independents

A matroid M is an ordered pair (E,Z) where E is a finite set
(E={1,...,n}) and Z is a family of subsets of E verifying the
following conditions :

(1) 0 ez,
(12) If I €T and I' C | then I € T,

(I13) If h,h € T and || < |l| then there exists e € h\/; such that
LhUueel.

The members in 7 are called the independents of M. A subset in E
not belonging to Z is called dependent.
The rank of a set X C E is defined by

m(X) =max{]Y|: Y C X,Y €T}
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Bases

A base of a matroid is a maximal independent set.
We denote by B the set of all bases of a matroid.
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Bases

A base of a matroid is a maximal independent set.
We denote by B the set of all bases of a matroid.

Lemma All the bases of a matroid have the same cardinality r.
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Bases

A base of a matroid is a maximal independent set.
We denote by B the set of all bases of a matroid.

Lemma All the bases of a matroid have the same cardinality r.

The rank of a matroid M, denoted by r(M), is the rank of one of
its bases.

J.L. Ramirez Alfonsin Integer points and Ehrhart polynomial of LPM polytope



Bases

A base of a matroid is a maximal independent set.
We denote by B the set of all bases of a matroid.

Lemma All the bases of a matroid have the same cardinality r.

The rank of a matroid M, denoted by r(M), is the rank of one of
its bases.

The family B verifies the following conditions :
(B1) B#0,

(B2) ( ) Bi, B> € B and x € B;\ By then there
exist y € By\Bj such that (B1\x)Uy € B.
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Bases

Theorem B is the set of basis of a matroid if and only if it verifies
(B1) and (B2).
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Bases

Theorem B is the set of basis of a matroid if and only if it verifies
(B1) and (B2).

o let U= (['r’]) (i.e., the family of all r-sets of {1,...,n}).
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Bases

Theorem B is the set of basis of a matroid if and only if it verifies
(B1) and (B2).

o let U= (['r’]) (i.e., the family of all r-sets of {1,...,n}).
Ur,n is a matroid (called the uniform matroid of rank r on n
elements).
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Bases

Theorem B is the set of basis of a matroid if and only if it verifies
(B1) and (B2).

o let U= (['r’]) (i.e., the family of all r-sets of {1,...,n}).
Ur,n is a matroid (called the uniform matroid of rank r on n
elements).

e Let G = (V,E) be a graph with |V| = n and |E| = m. Let B be
the set of all maximal forest in G.
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Bases

Theorem B is the set of basis of a matroid if and only if it verifies
(B1) and (B2).

o Let U, = (['r’]) (i.e., the family of all r-sets of {1,...,n}).

Ur,n is a matroid (called the uniform matroid of rank r on n
elements).

e Let G = (V,E) be a graph with |V| = n and |E| = m. Let B be
the set of all maximal forest in G.

Then, M(G) = (B, E) is a matroid with r(M(G)) = n — c where ¢
is the number of connected components of G.
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Matroid base polytope

Let M = (B, E) with |E| = n. For each base B € B, the incident
vector eg € RE is defined by

e = E (H

ieB

where e; denotes it standard base vector in R”.
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Matroid base polytope

Let M = (B, E) with |E| = n. For each base B € B, the incident
vector eg € RE is defined by

e = E (H

ieB

where e; denotes it standard base vector in R”.

The base polytope of M, denoted by Py, is defined as

Py = conv {eg : B € B}
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Matroid base polytope

Let M = (B, E) with |E| = n. For each base B € B, the incident
vector eg € RE is defined by

e = E (H

ieB

where e; denotes it standard base vector in R”.
The base polytope of M, denoted by Py, is defined as

Py = conv {eg : B € B}

Let Ag be the simplexe in RE e,

AE:conv(e,-:ieE):{XE]RE:Zx,-:L x; > 0forall i€ E}
i€cE
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Matroid base polytope

Theorem For M = (B, E)

e Py C rAg where r = r(M) (implying that dim(P) < n—1)
e Each edge of Py is a translation of conv(e;, ;) pour
ijEE,i#]
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Matroid base polytope

Theorem For M = (B, E)
e Py C rAg where r = r(M) (implying that dim(P) < n—1)
e Each edge of Py is a translation of conv(e;, ;) pour
ijEE,i#]

Py,, = conv{(1,1,0),(1,0,1),(0,1,1)}
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Matroid base polytope

Theorem For M = (B, E)
e Py C rAg where r = r(M) (implying that dim(P) < n—1)
e Each edge of Py is a translation of conv(e;, ;) pour
ijEE,i#]

Py,, = conv{(1,1,0),(1,0,1),(0,1,1)}

2e,
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Matroid base polytope

PU274 = conv c R?

cCOoO R R
H;Ol—l
= O RO
»—u—joo
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Matroid base polytope

PU274 = conv c R?

cCo R R
_ OO R
oOrR RO
—OoRro
== oo

2e,
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Lattice path matroid

(8.5)

(0,0)

J.L. Ramirez Alfonsin Integer points and Ehrhart polynomial of LPM polytope



Lattice path matroid

(8.5)

U=NEENNEEENENEE

L=EEEENEENENENN

(0,0)
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Lattice path matroid

(8.5)

U={1,4,59,11}
U-NEENNEEENENEE

L={5,8,10,12,13}
L=EEEENEENENENN

(0,0)
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Lattice path matroid

(8.5)

U={1,4,59,11}
U=NEENNEEENENEE

B={4,5,9,10,13}
u B=EEENNEEENNEEN

1=1{5,8,10,12,13}
L=EEEENEENENENN

(0,0)
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Lattice path matroid

(8.5)

U={1,4,59,11}
U=NEENNEEENENEE

B={4,5,9,10,13}
u B=EEENNEEENNEEN

L={5,8,10,12,13}
B L=EEEENEENENENN

(0,0)

MU, L] lattice path matroid (LPM) of rank r (# rows) on r + m
(# rows + # columns) elements.
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LPM base exchange base

(8.5)

U={1,4,59,11}
U-NEENNEEENENEE

B={4,5,9,10,13}
B=EEENNEEENNEEN

(0,0)
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LPM base exchange base

(8.5)

U={14,59,11}
U=NEENNEEENENEE

B={4,5,9,10,13}
B=EEENNEEENNEEN

(0,0)
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LPM base exchange base

(8.5)

10

(0,0)

U={14,59,11}
U=NEENNEEENENEE

B=1{4,59,10,13}
B=EEENNEEENNEEN
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LPM base exchange base

(8.5)

U={14,59,11}
U=NEENNEEENENEE

B=1{4,59,10,13}
B=EEENNEEENNEEN

C={1,5,9,10,11}
C=NEEENEEENNEEN

(0,0)
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Generalized lattice path
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Generalized lattice

N\ N\ N
N N N
\ \ N
N\ N\ N
\ \ N
N\ AN A
A N N
\ \ \
N A A
N N N
N N N
N N N
N N N
N N\ N\
N N N
N \ \
N N N N
N N N N
N N N N
N N N N
N AN AN \\
N N N
N N N N
N \ \ N
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Generalized lattice

N\ N\ N
N N N
\ \ N
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N N N
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N N N
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Generalized lattice

\ \ N
N N N
\ \ N
\ \ N
N \ S
N \ N
N \ \
N \ N
N N N
N N N
N N N
N N N
N N N
N \ \
N N N
N \ \
N N N N
N N N N
\ N N N
N N N N
N N N N
N
L~ AN N
\ \ \ N
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Generalized lattice p

N\ N\ N
N \ N
\ \ N
N\ N\ N
\ \ N
N\ AN A
A N N
\ \ \
N A A
N N N
N N N
N N N
N N N
N N\ N\
N N N
N \ \
N N N N
N N N N
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Generalized lattice
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Generalized lattice p
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Generalized lattice path

A generalized path P starts at (0,0) and ends at (r,r + m) and it
is monotonously increasing x; < x;11 and y; < yji1.

ENDNENN S \\
/\\—l—\(\ (5.35) .
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Generalized lattice path

A generalized path P starts at (0,0) and ends at (r,r + m) and it
is monotonously increasing x; < x;11 and y; < yji1.

ENDNENN S \\
/\\—l—\(\ (5.35)

Let st(P) = (p1,--.,Pr+m) Where pj11 = yjr1 — y; for each i.
We call st(P) step vector of P.
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Characterizing step vectors

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)
Let M[U, L] be a LPM of rank r on r + m elements.
Let st(L) = (h,...,lr+m) and st(U) = (u1, ..., Ursrm)-

J.L. Ramirez Alfonsin Integer points and Ehrhart polynomial of LPM polytope



Characterizing step vectors

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)

Let M[U, L] be a LPM of rank r on r + m elements.

Let st(L) = (h,...,lr+m) and st(U) = (u1, ..., Ursrm)-

Let Cpy be the family of step vectors of all generalized lattice path
in M[U, L].
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Characterizing step vectors

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)

Let M[U, L] be a LPM of rank r on r + m elements.

Let st(L) = (h,...,lr+m) and st(U) = (u1, ..., Ursrm)-

Let Cpy be the family of step vectors of all generalized lattice path
in M[U, L]. Then,

i i i
Cu=qpeRMMI0<p <L Y [<Y p<) Vi
j=1 j=1 j=1
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Characterizing step vectors

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)

Let M[U, L] be a LPM of rank r on r + m elements.

Let st(L) = (h,...,lr+m) and st(U) = (u1, ..., Ursrm)-

Let Cpy be the family of step vectors of all generalized lattice path
in M[U, L]. Then,

i i i
Cu=qpeRMMI0<p <L Y [<Y p<) Vi
j=1 j=1 j=1

e 0<y1—yi<1
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Characterizing step vectors

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)

Let M[U, L] be a LPM of rank r on r + m elements.

Let st(L) = (h,...,lr+m) and st(U) = (u1, ..., Ursrm)-

Let Cpy be the family of step vectors of all generalized lattice path
in M[U, L]. Then,

i i i
Cu=qpeRMMI0<p <L Y [<Y p<) Vi
j=1 j=1 j=1

e 0<yip1—yi<l1
e Any generalized path stay between U and L.
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Points in LPM polytope

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)
Let M = M[U, L] be a LPM of rank r on r + m elements.Then,
Py =Cm.
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Points in LPM polytope

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)

Let M = M[U, L] be a LPM of rank r on r + m elements.Then,
Py = Cp.

Proof (idea).

P = conv{ characteristic vectors of B(M)}C conv{Cy} = Cpm.
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Points in LPM polytope

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)

Let M = M[U, L] be a LPM of rank r on r + m elements.Then,
Py = Cp.

Proof (idea).

P = conv{ characteristic vectors of B(M)}C conv{Cy} = Cpm.

Py 2 Cp by induction on the number of elements.
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Points in LPM polytope

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)

Let M = M[U, L] be a LPM of rank r on r + m elements.Then,
Py = Cp.

Proof (idea).

P = conv{ characteristic vectors of B(M)}C conv{Cy} = Cpm.

Py 2 Cp by induction on the number of elements.

Corollary (Knauer, Martinez-Sandoval, R.A., 2017)
Let C,’\‘/, be the family of step vectors of all generalized paths P in
M = [U, L] such that each (x;,y;) in P satisfy kx;, ky; € Z.
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Points in LPM polytope

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)

Let M = M[U, L] be a LPM of rank r on r + m elements.Then,
Py = Cp.

Proof (idea).

P = conv{ characteristic vectors of B(M)}C conv{Cy} = Cpm.

Py 2 Cp by induction on the number of elements.

Corollary (Knauer, Martinez-Sandoval, R.A., 2017)
Let C,’\‘/, be the family of step vectors of all generalized paths P in
M = [U, L] such that each (x;,y;) in P satisfy kx;, ky; € Z.Then,

kPy NZ+™ = ck,
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Integer points in LPM polytopes

Consider Py, ,

a=(1,10)
b=(1,0,1)
c=(0,1,1)
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Integer points in LPM polytopes

A2
Construct paths in CU2’3

\\\\\\(1/2,3/2)
‘o,

'S _ \‘.,

S22
.

a=(1,1,0) d=(1,1/2,1/2)
b=(1,0,1) e=(1/2,1,1/2)
c=(0,1,1) f=(1/2,1/2,1)

J.L. Ramirez Alfonsin Integer points and Ehrhart polynomial of LPM polytope



Integer points in LPM polytopes

2PU273
2
2
i ¢
2b
1
2e
22
! 2
1\ ‘
| J
2a

2a=(22.0) 2d=(2.1,1)
2b=202) 2e=(12,1)
2c=(022) 2f=(1,12)
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Integer points in LPM polytopes

Let us consider kPy, ,
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Integer points in LPM polytopes

Let us consider kPy, ,

k
CU2,3
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Integer points in LPM polytopes

Let us consider kPy, ,

Cl,,= 3(k +1)(k+2)
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Integer points in LPM polytopes

Let us consider kPy, ,

Ch, = 3(k+1)(k+2)=3k> + 3k +1
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Integer points in LPM polytopes

Let us consider kPy, ,

Clka.3: %(k + 1)(k + 2): %kz + %k +1= kPU2,3 nz3
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Integer points in LPM polytopes

Let us consider kPy, ,

c@m: Mk+1)(k+2)=2Kk2+ 3k +1= kPy, , N Z3= LPU2’3(/<)
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Integer points in LPM polytopes

Let S(a, b) be the matroid associated to
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Integer points in LPM polytopes

Let S(a, b) be the matroid associated to

k . .
at+k—-1—i\/b+k—-1—i
L5<a»b><k’:.2< a1 >< b—1 )
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Distributive polytopes

A polytope P C R" is called distributive if for all x,y € P also
their componentwise maximum and minimum max(x, y) and
min(x, y) are in P.
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Distributive polytopes

A polytope P C R" is called distributive if for all x,y € P also
their componentwise maximum and minimum max(x, y) and
min(x, y) are in P.

A distributive polytope in R?.

¥ max(x,y)

min(x,y)
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Distributive polytopes

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)
Let M = M[U, L] be a rank r LPM on r 4+ m elements (we suppose
that M is connected, i.e., dim(P) =r+ m—1).
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Distributive polytopes

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)

Let M = M[U, L] be a rank r LPM on r 4+ m elements (we suppose
that M is connected, i.e., dim(P) = r + m — 1).Then,

there exists a bijective affine transformation taking Py, C R™t™
into a full-dimensional distributive integer polytope Qu C R/+m—1
such that Lp,,(t) = Lg,,(t).
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Distributive polytopes

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)

Let M = M[U, L] be a rank r LPM on r 4+ m elements (we suppose
that M is connected, i.e., dim(P) = r + m — 1).Then,

there exists a bijective affine transformation taking Py, C R™t™
into a full-dimensional distributive integer polytope Qu C R/+m—1
such that Lp,,(t) = Lg,,(t).

Proof (idea). Recall that st(L) = (h,...,/r+m). Check that

m: Py CRT™ — Rrm-L
p:(pl,...,pr+m) — (pl_llavzjri_{n_l(pj_lj))

is suitable transformation.
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Distributive polytopes

{ 7777777777777777777777777777777777777 ,,{:‘YI(L) y
| | TTw
hsi(B) e Uas .
: (@)
a 12 °
T
1/4
QUZ,!
: M)
1 u=sl(U) T 1a 7 x
We have 7(a) = (3, 1), 7(b) = (1,0) and 7(c) = (3, 1

420 ’ 7 4)
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Order polytopes

Let X be a poset on {1,...,n} such that this labeling is natural,
i.e., if i <x jthen i <j.
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Order polytopes

Let X be a poset on {1,...,n} such that this labeling is natural,
i.e., if i <x jthen i <j.

The order polytope O(X) of X is defined as the set of those
x € R" such that

0<x; <1, forall i € X and
xi > xj, if i <jinX
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Order polytopes

Let X be a poset on {1,...,n} such that this labeling is natural,
i.e., if i <x jthen i <j.
The order polytope O(X) of X is defined as the set of those
x € R" such that
0<x; <1, forall i € X and
xi > xj, if i <jinX

Remark O(X) is a bounded convex polytope
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Snake polytopes

H

o

[y |

L

Snake S(ay, az, as, as)
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Snake polytopes

H

o

[y |

L

Snake S(ay, az, as, as)
Theorem (Knauer, Martinez-Sandoval, R.A., 2017)
Let a1,...,ax > 2 be integers. Then, a connected LPM M is the
snake S(ai1, ... ak) if and only if Qu is the order polytope of the
zig-zag chain poset on ay, ..., ak.
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Snake polytopes

Recall that the Ehrhart serie is given by

hsz® + hs_1z5 1+ - + hg
Ehrp(z) =1+ Z Lp(1)z" = (1 — z)dim(P)+1

t>1
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Snake polytopes

Recall that the Ehrhart serie is given by

hsz® + hs_1z5 1+ - + hg
Ehrp(z) =1+ Z Lp(1)z" = (1 — z)dim(P)+1

t>1

Conjecture (De Loera, Haws, Koppe, 2009) The h-vector of base
matroid polytopes are unimodal, i.e.,

hg < hgy <--- < hj>hjy1>--- > ho for some j
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Snake polytopes

Recall that the Ehrhart serie is given by

hsz® + hs_1z5 1+ - + hg
Ehrp(z) =1+ Z Lp(1)z" = (1 — z)dim(P)+1

t>1

Conjecture (De Loera, Haws, Koppe, 2009) The h-vector of base
matroid polytopes are unimodal, i.e.,

hg < hgy <--- < hj>hjy1>--- > ho for some j

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)
Let a, b > 2 be integers. The h-vectors of the snake polytopes
Ps(a,....a) and Ps, p) are unimodal.
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