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Preface

During the early part of the last century, Ferdinand Georg Frobenius (1849-1917) raised, in his lec-
tures (according to [55]), the following problem (called the Frobenius Problem FP): given relatively

prime positive integers ay,...,a,, find the largest natural number (called the Frobenius number
and denoted by g(ai,...,a,)) that is not representable as a nonnegative integer combination of
al,...,0n.

At first glance, FP may look deceptively specialized. Nevertheless it crops up again and again in
the most unexpected places. It turned out that the knowledge of g(as,...,ay) has been extremely
useful to investigate many different problems.

A number of methods, from several areas of mathematics, have been used in the hope of finding
a formula giving the Frobenius number and algorithms to calculate it. The main intention of this
book is to highlight such ‘methods, ideas, viewpoints and applications’ for as wide an audience as
possible. The results on FP are quite scattered in the literature and, at present, there is no complete
or accessible source summarizing the progress on it. This book aims to provide a comprehensive
exposition of what is known today on FP.

Chapter 1 is devoted to the computational aspects of the Frobenius number. After discussing
a number of methods to solve FP when n = 3 (some of these procedures make use of diverse
concepts, such as the division remainder, continued fractions and maximal lattice free bodies) we
present a variety of algorithms to compute g(ai,...,a,) for general n. The main ideas of these
algorithms are based on concepts from graph theory, index of primitivity of nonnegative matrices
(see Appendix 9.6) and mathematical programming. While the running times of these algorithms
are super-polynomial, there does exists a method, due to R. Kannan, that solves FP in polynomial
time for any fized n. We describe this method, in which the covering radius concept is introduced.
We finally prove that FP is NP-hard under Turing reductions.

FP is easy to solve when n = 2. Indeed,

g(a1,a2) = ajas — a; — as. (1)

However the computation of a (simple) formula when n = 3 is much more difficult and has been
the subject of numerous research papers over a long period. F. Curtis has proved that the search
for such a formula is, in some sense, doomed to failure since the Frobenius number cannot be given
by ‘closed’ formulas of a certain type. Recently, an explicit formula for computing g(a1, ag, as) has
been found. After presenting four different proofs of equality (1), one of which uses the well-known
Pick’s theorem, Chapter 2 presents the result of Curtis, the general formula (whose algebraic proof
is given in Chapter 4) and summarizes the known upper bounds for g(ai, a2, as), as well as exact
formulas for particular triples.

Chapter 3 provides a systematic exposition of the known formulas, including upper and lower
bounds for g(ai,...,a,) for general n and for special sequences (for instance, when ai,...,a,
forms an arithmetic sequence). Results on the change in value of g(a1,...,a,), when an additional
element a, is inserted, are also given.



In 1857, while investigating the partition number function, James Joseph Sylvester (1814-1897)
[434] defined the function d(mj;as,...,a,), called the denumerant, as the number of nonnegative
integer representations of m by ai,...,a,, that is, the number of solutions of the form

n
m = E xT;a;
i=1

with integers x; > 0. Chapter 4 is devoted to the study of the denumerant and related functions.
After discussing briefly some basic properties of the partition function and its relation with denu-
merants, we analyze the general behaviour of d(m;ai,...,a,) and its connection to g(ay,...,ay).
Two interesting methods for computing denumerants, one based on a decomposition of the rational
fraction into partial fractions and a second due to E.T. Bell, are described. We prove an exact value
of d(m;p, q), first found by T. Popoviciu in 1953, and summarize the known results when n = 2 and
n = 3. We shall see how to calculate g(ai,...,ay,) by using Hilbert series via free resolutions and
use this approache to show an explicit formula for g(ai, as, as). We discuss the connection among
denumerants, FP and Ehrhart polynomial. Also, two variants of d(m;ay,...,a,) are studied. The
first is related to counting the number of lattice points lying in certain polytopes while the second
restricts the number of repetitions of the a;’s.

Let N(ay,...,a,) be the number of integers without nonnegative integer representations by ay, ..., ay.
In Chapter 5, a thorough presentation of the function N(aq,...,a,) is given. In 1882, Sylvester
[435], obtained the exact value when n = 2,

N(ay, az) = %(al ~ 1)(ag - 1). ()

Later, in 1884, in the Educational Times journal, Sylvester [433] posed (as a recreational problem)
the question of finding such a formula. An ingenious solution was given by W.J. Curran Sharp.
It remains a mystery why the standard reference to this celebrated formula of Sylvester is the
solution given by Curran Sharp rather than its original appearance in [435, page 134]. In this
chapter, we reproduce the original page of this famous and much cited manuscript. We also give
two other proofs of equality (2). We then discuss the work of M. Nijenhuis and H.S. Wilf connecting
N(ay,...,ay,) to FP as well as to other concepts (such as the Gorenstein condition). We continue
by discussing some general bounds on N(ay,...,a,) and exact formulas for special sequences, for
instance the formula given by E.S. Selmer for almost arithmetic sequences. A generalization of
Sylvester’s formula due to @).J. Rgdseth, where the so-called Bernoulli numbers (see Appendix 9.5)
appeared, is treated. The final section of this chapter is devoted to two ‘integer representation’
games: the well-known Sylver Coinage, invented by J.C. Conway and the jugs problem which roots
can be traced back at least as far as Tartaglia, an Italian mathematician of the sixteenth century.

Let g(n,t) and h(n,t) be the largest and smallest of the Frobenius numbers when a; < --- < a, =t
and t = a1 < --- < ap, respectively. Chapter 6 reviews the results on these functions. It also
examines an algorithm that solves the modular change problem, a generalization of FP, due to
Z. Skupien, discribes the relation between FP and (a1, ...,a,)-trees, discusses the postage stamp
problem as well as a multidimensional generalization of FP.

Chapter 7 introduces the concept of numerical semigroups. We investigate several properties of the
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gaps and nongaps of a semigroup (which are closely related to N(aq,...,a,)) and point out the
importance of the role played by the Frobenius number (also known as conductor) in the study of
symmetric and pseudo-symmetric semigroups (and their connection to monomial curves). We prove
a number of results relating FP to telescopic semigroups, the famous Apéry Sets (used by R. Apéry
[13] in the study of algebroid planar branches), type sequences in semigroups, complete intersection
semigroups, y-hyperelliptic semigroups (motivated by the study of Weierstrass semigroups), the
Mobius function, and other related concepts.

Chapter 8 presents a number of applications of FP to a variety of problems. The complexity
analysis of the Shell-sort method was not well understood until J. Incerpi and R. Sedgewick nicely
observed that FPP can be used to obtain upper bounds for the running time of this fundamental
sorting algorithm. Chapter 8 starts by explaining this application. Then, it is explained how FP
may be applied to analyse Petri nets (a net model for discrete event systems), to study partitions
of wvector spaces (which can be considered as a generalization of partitions of abelian groups),
to compute ezxact resolutions via Rgdseth’s method for finding the Frobenius number when n =
3, to investigate Algebraic Geometric codes via the properties of special semigroups and their
corresponding conductors and to study tiling problems. Chapter 8 also discusses three applications
of the denumerant. One in relation with the calculation of the number of possible placements of
n different balls into r distinct cells under certain restrictions, another to investigate the solution
of some conjugate problems and the last one in relation with invariant cubature formulas. We also
present an application of the modular change problem to study nonhypohamiltonian graphs, and of
the vector generalization to give a new method for generating random vectors.

The book concludes with an appendix where some notation, definitions and basic of various topics
results are given.

This book attempts to place the reader at the frontier of what is known on FP. In the interests of
balance, we have chosen not to give a proof of each and every result (particularly of the numerous
bounds and formulas stated in Chapters 2 and 3). However, all the main theorems are either proved
or treated in some detail. We illustrate with examples most of the methods explained in Chapter
1. We always try to give exact references and appropriate credits for the proofs and results that
have been adapted from printed material. References to the literature where the reader may find
more complete treatments of the various topics, and some historical comments, are given at the
end of each chapter.

Despite many careful readings, errors will unavoidable remain. We plan to mantain an updated
list of corrections at the following WEB site pointer

http://www.ecp6.math. jussieu.fr/pageperso/ramirez/ramirez.html

The topics in this book are in a state of continual development. We also plan to note new progress
on FP in the same site.



