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Abstract. Let a1, . . . , an be relatively prime positive integers, and let S be the
semigroup consisting of all non-negative integer linear combinations of a1, . . . , an.
In this paper, we focus our attention on AA-semigroups, that is semigroups being
generated by almost arithmetic progressions. After some general considerations,
we give a characterization of the symmetric AA-semigroups. We also present
an efficient method to determine an Apéry set and the Hilbert series of an AA-
semigroup.

1. Introduction

Let a1, . . . , an be relatively prime positive integers, and let S = 〈a1, . . . , an〉 be
the set of all non-negative integer linear combinations of a1, . . . , an, that is,

S = {a1x1 + · · ·+ anxn | xi ∈ Z≥0}.

Then S is a numerical semigroup.
The largest integer not in S is called the Frobenius number of S, and denoted by

g = g(S). The number g + 1 is known as the conductor of S. The non-negative
integers not in S are called the gaps of S. The number of gaps of S is called the
genus of S, and denoted N(S).

The numerical semigroup S is symmetric if

S ∪ (g − S) = Z, (1)

where g − S = {g − s | s ∈ S}. Symmetric semigroups are of special interest
because of their rôle in the classification of plane algebraic branches, and because
they provide us with answers to questions about monomial curves being complete
intersections and also if certain rings are Gorenstein, cf. [21, p. 142].

The Apéry set of S with respect to a nonzero m ∈ S is defined as

Ap(S;m) = {s ∈ S | s−m 6∈ S}.
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To determine an Apéry set of a semigroup S is in general very difficult. For, if we
know the Apéry set, then, by (2) below, we know g(S). Ramı́rez Alfonśın [20] has,
however, shown that the computational complexity of g(S) is hard.

Finally, the Hilbert series of S is given by

H(S;x) =
∑
s∈S

xs.

The main intention of this paper is to study the Apéry sets and the Hilbert series
of almost arithmetic semigroups (AA-semigroups, for short); i.e., semigroups which
are generated by almost arithmetic progressions, that is, the cases where all but one
of the ai form an ordinary arithmetic progression.

In the following section we make some observations about the Apéry sets and the
Hilbert series of a general numerical semigroup, and we give simple proofs of some
known facts.

In Section 4 we consider AA-semigroups. Rødseth [24] gave an algorithm for
the computation of an Apéry set of an AA-semigroup, while Patil and Roberts
[19] considered AA-semigroups from a more algebraic point of view. In Section 4.1
we summarize some of Rødseth’s results, in terms of which we express the Hilbert
series of an AA-semigroup. In Section 4.2 we use Rødseth’s results to character-
ize a symmetric AA-semigroup. Rødseth’s algorithm works well on average, but,
unfortunately, not from a worst case point of view. For the Frobenius number of
an AA-semigroup with k = 1, that is, for g(a, b, c), a faster algorithm was given
by Greenberg [11]. In Section 4.3 we use Greenberg’s idea to speed up Rødseth’s
algorithm considerably, thus generalizing Greenberg’s result.

In the final section we comment on some of the literature on numerical semigroups.
Finite arithmetic progressions of positive integers with a common difference d

appear throughout the paper. For simplicity, we set d > 0. However, most of the
results also hold (or can be adjusted to hold) for d negative; see [24].

2. Apéry Sets and Hilbert Series

The Apéry set Ap(S;m) constitutes a complete set of residues mod m, and we
shall write w(i) for the unique w ∈ Ap(S;m) satisfying w ≡ i (mod m). We have

g(S) = maxAp(S;m)−m; (2)

a result essentially due to Brauer and Shockley [3] (the case m = a1). We also have

N(S) =
1

m

∑
w∈Ap(S;m)

w − 1

2
(m− 1); (3)

which is essentially due to Selmer [27] (the case m = a1).
Since

S = Ap(S;m) +mZ≥0,
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we have

H(S;x) =
∑
s∈S

xs =
∑

w∈Ap(S;m)

∞∑
i=0

xw+mi =
∑

w∈Ap(S;m)

xw

∞∑
i=0

xmi;

hence

H(S;x) =
1

1− xm

∑
w∈Ap(S;m)

xw. (4)

If the degree of a rational function ϕ(x)/ψ(x) is defined as degϕ(x) − degψ(x)
then, by (2) and (4), we have

degH(S;x) = maxAp(S;m)−m = g(S). (5)

In addition, we have ∑
s∈S

xs +
∑
s gap

xs =
1

1− x

and thus

G(S;x) =
1

1− x
−H(S;x)

for a polynomial G(S, x) of degree g(S) in x, and where G(S; 1) = N(S).
By (4), if we know Ap(S;m), then we also knowH(S;x) . It may, however, require

some effort to write H(S;x) as a simple rational function. Conversely, if H(S;x) is
known, then Ap(S;m) is completely determined by∑

w∈Ap(S;m)

xw = (1− xm)H(S;x).

So, information about g(S) and N(S) can be obtained from either H(S;x) or
Ap(S;m). Many papers about g(S) (and N(S)) do, in fact, study Ap(S;m) for
some m; usually m is taken as an ai. Thus results on H(S;x) are implicit in many
papers on g(S).

We set m = a1 in (4) to get

H(S;x) =
1

1− xa1

∑
w∈Ap(S;a1)

xw, (6)

so that

H(S;x) =
f(S;x)

(1− xa1) . . . (1− xan)

where f(S;x) is the polynomial with integer coefficients, given by

f(S;x) = (1− xa2) . . . (1− xan)
∑

w∈Ap(S;a1)

xw.

Notice that Ap(S; a1) ⊆ 〈a2, . . . , an〉. For if w(i) = a1x1 + · · ·+ anxn ∈ Ap(S; a1),
then x1 = 0, since w(i) − a1 6∈ Ap(S; a1). Let d be a positive common divisor of
a2, . . . , an, and set Sd = 〈a1, a2/d, . . . , an/d〉. If wd(i) ∈ Ap(Sd; a1), then wd(i) 7→
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dwd(i) = w(di) defines a bijection Ap(Sd; a1) → Ap(S; a1). This map is injective
since gcd(a1, d) = 1, and thus bijective since both Apéry sets contain exactly a1

elements. In short,
Ap(S; a1) = dAp(Sd; a1); (7)

that is, w ∈ Ap(Sd; a1) if and only if dw ∈ Ap(S; a1).
Now, by (4) and (7), we have

H(S;x) =
1− xda1

1− xa1
H(Sd;x

d), (8)

which may be written as
f(S;x) = f(Sd;x

d).

Moreover, using (5), we get the well-known result

g(S) = dg(Sd) + a1(d− 1), (9)

while the quickest way to its companion

N(S) = dN(Sd) +
1

2
(a1 − 1)(d− 1), (10)

is via (3) and (7); cf. [3, 13], [21, pp. 36, 47].
Putting d = b in (9) and (10), we get

g(a, b) = ab− a− b and N(a, b) =
1

2
(a− 1)(b− 1), (11)

two results usually attributed to Sylvester (and partly to Curran Sharp); cf. [21, pp.
31, 103, and 104]. Here we have written g(a, b) for g(〈a, b〉); we will use a similar
notation in other cases.

We close this section with a brief discussion of symmetry. In Section 4.2 we shall
make use of the following result, which is essentially a lemma due to Apéry [1]; see
[21, Lemma 7.2.16]. As before, m ∈ S, m 6= 0, and the elements of Ap(S;m) are
w(i).

Lemma 1 ([1]). A numerical semigroup S is symmetric if and only if there is an
i0, such that

w(i0)− w(i) = w(i0 − i) (12)

for all i.

Notice that if (12) holds for some (fixed) i0 and all i, then w(i0) = maxAp(S;m).
Also notice that Lemma 1 remains valid if we replace Eq. (12) by the inequality

w(i0)− w(i) ≥ w(i0 − i),

since the opposite inequality is always true.
As an easy consequence of Lemma 1 follows the well-known fact that S is sym-

metric if and only if
g(S) + 1 = 2N(S); (13)

cf. [21, Lemma 7.2.3].
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Fröberg, Gottlieb, and Häggkvist [10, Definition, p. 71] defines the derived semi-
group S ′ of S as the semigroup

S ′ =

〈
a1∏

j 6=1 dj

, . . . ,
an∏

j 6=n dj

〉
,

where di = gcd(a1, . . . , ai−1, ai+1, . . . , an) for each i = 1, . . . , n. Notice that in order
to determine H(S;x), repeated applications of Proposition (8) leave us with the
problem of determining H(S ′;x); similarly for Apéry sets, Frobenius number, and
genus.

By (11) and (13), S = 〈a, b〉 is always symmetric. It follows immediately by (9),
(10), and (13), that a general S is symmetric if and only if Sd is symmetric. Hence, S
is symmetric if and only if the derived semigroup S ′ is symmetric; see [10, Corollary,
p. 71].

3. Generalized Arithmetic Progressions

In this section, we consider a semigroup SA generated by a generalized arithmetic
progression; that is, a sequence of relatively prime positive integers a, ha+d, . . . , ha+
kd, where also a, h, d, k are positive integers. Since the generators are relatively
prime, we have, in particular, gcd(a, d) = 1. The following lemma is due to Roberts
[22]; for a short proof see [24, Lemma 1].

Lemma 2. We have M ∈ 〈a, a + d, a + 2d, . . . , a + kd〉 if and only if there exist
integers x, y such that

M = ax+ dy with 0 ≤ y ≤ kx.

The next result follows by adjoining ha to the generators of SA.

Proposition 1 ([27]). We have

Ap(SA; a) =
{
ha

⌈ r
k

⌉
+ dr | 0 ≤ r < a

}
.

Proposition 1 was rediscovered by Matthews [15].
Let s be a non-negative integer, and set q = d(s − 1)/ke. An easy summation

gives
s−1∑
r=0

xadr/ke+dr =
Fs(a;x)

(1− xd)(1− xa+kd)
(14)

where
Fs(a;x) = (1− xa+kd)(1− xaq+ds)− xd(1− xa)(1− x(a+kd)q).

Using (4) with m = a, Proposition 1, and (14), we get the following result.

Proposition 2. We have

H(SA;x) =
Fa(ha;x)

(1− xa)(1− xd)(1− xha+kd)
·
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where

Fa(ha;x) = (1− xha+kd)(1− xhaq+ad)− xd(1− xha)(1− x(ha+kd)q).

The next theorem tells us when SA is symmetric; cf. Estrada and López [8], and
Matthews [14].

Theorem 1. The semigroup SA is symmetric if and only if a = 1 or a ≡ 2 (mod
k).

Numerical semigroups generated by generalized arithmetic progressions have also
been studied by Selmer [27], and Rødseth [24]; see [21] for further references. In
addition to Theorem 1, Matthews [14] gave similar results for SA being pseudo-
symmetric and also for having the Arf property.

4. Almost Arithmetic Progressions

A numerical AA-semigroup is a semigroup generated by relatively prime positive
integers a, a+d, a+2d, . . . , a+kd, c, where also a, d, k, c are positive integers. We shall
now consider the Apéry set Ap(S; a) and the Hilbert series H(S;x) of a numerical
AA-semigroup. We set gcd(a, d) = 1, which does not imply any loss of generality;
cf. Section 2.

4.1. A Finite Negative-Regular Continued Fraction. We first recall some no-
tions and results given in [24]. Let s−1 = a and determine s0 by

ds0 ≡ c (mod s−1), 0 ≤ s0 < s−1.

If s0 6= 0, we use the Euclidean algorithm with negative division remainders,

s−1 = q1s0 − s1, 0 ≤ s1 < s0;

s0 = q2s1 − s2, 0 ≤ s2 < s1;

s1 = q3s2 − s3, 0 ≤ s3 < s2;

. . .

sm−2 = qmsm−1 − sm, 0 ≤ sm < sm−1;

sm−1 = qm+1sm, 0 = sm+1 < sm.

If s0 = 0, we put m = −1. If m ≥ 0, we have

s−1

s0

= q1 −
1

q2 −
1

q3 −
1

. . .

qm − 1

qm+1

which is known as the Jung-Hirzebruch continued fraction of s−1/s0.
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We have sm = gcd(a, c). We define integers Pi by P−1 = 0, P0 = 1, and (if m ≥ 0),

Pi+1 = qi+1Pi − Pi−1, i = 0, . . . ,m.

Then, by induction on i,

siPi+1 − si+1Pi = a, i = −1, 0 . . . ,m,

and

−1 = P−1 < 0 = P0 < · · · < Pm+1 =
a

sm

.

In addition we have,

dsi ≡ cPi (mod a), i = −1, . . . ,m+ 1. (15)

Putting

Ri =
1

a
((a+ kd)si − kcPi) ,

we then see that all the Ri are integers. Moreover, we have R−1 = a + kd, R0 =
1

a
((a+ kd)s0 − kc), and

Ri+1 = qi+1Ri −Ri−1, i = 0, . . . ,m,

and again we see that all the Ri are integers. Furthermore,

− c

sm

= Rm+1 < Rm < · · · < R0 < R−1 = a+ kd,

so there is a unique integer v such that

Rv+1 ≤ 0 < Rv.

For each i, let τ(i) be the smallest integer for which there exist non-negative
integers y, z such that

τ(i) = (a+ kd)y + kcz, dy + cz ≡ i (mod a). (16)

If there are more than one such pair y, z for some i, choose the one with z minimal.
This gives us a unique set L of pairs of nonnegative integers, with |L| = a. The
set L consists of all lattice points in a closed L-shaped region in the y, z-plane.
(Sometimes the L-shape degenerates to a rectangle or an interval.) Rødseth [24]
proved that L = A ∪B, where

A = {(y, z) ∈ Z2 | 0 ≤ y < sv − sv+1, 0 ≤ z < Pv+1}, (17)

B = {(y, z) ∈ Z2 | 0 ≤ y < sv, 0 ≤ z < Pv+1 − Pv}. (18)

Rødseth also proved the following theorem.

Theorem 2 ([24]). For the numerical AA-semigroup S, we have

Ap(S; a) =
{
a

⌈y
k

⌉
+ dy + cz | (y, z) ∈ A ∪B

}
.

Now, we have the following result for the Hilbert series.
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Theorem 3. For the numerical AA-semigroup S, we have

H(S;x) =
Fsv(a;x)(1− xc(Pv+1−Pv)) + Fsv−sv+1(a;x)(x

c(Pv+1−Pv) − xcPv+1)

(1− xa)(1− xd)(1− xa+kd)(1− xc)
·

Proof. By (4) with m = a and Theorem 2, we have

H(S;x) =
1

1− xa

∑
(y,z)∈A∪B

xady/ke+dy+cz.

We split the sum like this,∑
(y,z)∈A∪B

=
sv−1∑
y=0

Pv+1−Pv−1∑
z=0

+

sv−sv+1−1∑
y=0

Pv+1−1∑
z=Pv+1−Pv

.

Then we use (14) on each sum with summation variable y, one in each of the two
parts, and the proof is easily completed. �

In particular, Theorem 3 implies the following result.

Theorem 4. Let a, b, c be positive integers with gcd(a, b) = 1. Then,

H(a, b, c;x) =
1− xbsv − xcPv+1 − xa(Rv−Rv+1) + xaRv+cPv+1 + xbsv−aRv+1

(1− xa)(1− xb)(1− xc)
·

Proof. We apply Theorem 3 with k = 1, b = a+d. In particular, we have Fs(a;x) =
(1− xd)(1− xbs). �

By Theorem 4, we obtain

g(a, b, c) = degH(a, b, c;x) = max{aRv + cPv+1, bsv − aRv+1} − a− b− c;

a result due to Rødseth [23, Theorem 1].
Several authors have proved Theorem 4 in one form or another. We say more

about this in Section 5.

4.2. Symmetry. We shall now see how to decide if an AA-semigroup S is symmet-
ric or not. We continue to use the notation and results from the previous section.
In particular, we still assume that gcd(a, d) = 1, which represents no restriction.

However, to gain some extra insight before we state our theorem and present
its proof, we first consider the case k = 1; that is S = 〈a, b, c〉 (with b = a + d).
In this case the set L was given in [23]. By Lemma 1, S is symmetric if the L-
shaped plane region degenerates to a rectangle (or an interval); that is, if v = −1
or v = m. Otherwise, if S is symmetric or not, depends on the two right upper
corners of the L-shaped region; that is, the lattice points (sv − 1, Pv+1 − Pv − 1)
and (sv − sv+1 − 1, Pv+1 − 1). The difference between the corresponding elements in
Ap(S; a) is

b(sv − 1) + c(Pv+1 − Pv − 1)− (b(sv − sv+1 − 1) + c(Pv+1 − 1))

= aRv+1 + c(Pv+1 − Pv),
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so that S is symmetric if Rv+1 = 0. It is easy to see that this is the only possibility
for symmetry in the non-degenerate case.

A simple check reveals that in each of the three cases v = −1, v = m, Rv+1 = 0,
the derived semigroup S ′ is generated by (at most) two of the three generators. Thus
S = 〈a, b, c〉 is symmetric if and only if its derived semigroup is generated by two
elements, a result due to Fröberg, Gottlieb, and Häggkvist [10, Corollary p. 77].

We now turn to general k ≥ 1.

Theorem 5. The numerical AA-semigroup S is symmetric if and only if one of the
following conditions is satisfied.

(i) sv = 1,
(ii) sv ≡ 2 (mod k) and sv+1 = 0,
(iii) sv ≡ 2 (mod k) and sv = a,
(iv) sv − sv+1 = 1 and Rv+1 = 1− k,
(v) sv ≡ 2 (mod k) and sv − sv+1 > 1 and Rv+1 = 0,
(vi) k ≥ 2 and sv+1 = k − 1 and Rv = 1.

A straightforward way to prove Theorem 5 would be to use Theorem 2 to deter-
mine g(S) and N(S), and then find necessary and sufficient conditions for (13) to
hold. However, this turns out to be rather complicated. We will avoid this by using
Lemma 1.

Proof of Theorem 5. We shall apply Lemma 1 with m = a. We set w(i) = w(y, z)
if i ≡ dy + cz (mod a) and (y, z) ∈ L = A ∪ B, for A,B given by (17) and (18). In
particular, we write w(i0) = w(y0, z0). By Theorem 2, we then have

w(y, z) = a
⌈y
k

⌉
+ dy + cz.

Also notice that

Ri = si + k
1

a
(dsi − cPi) ≡ si (mod k).

We consider four cases. In the first two cases, the L-shape of L degenerates, and
in each case there is only one possible choice of (y0, z0) such that i0 may satisfy (12).
Otherwise we have two possible choices for (y0, z0); one choice is covered by Case 3,
and the other is covered by Case 4.

Case 1. Suppose that sv+1 = 0. Then v = m, Pv+1 = a/sm, and

L = {(y, z) | 0 ≤ y < sm, 0 ≤ z < a/sm}.
Let w(i0) = w(sm − 1, a/sm − 1). Now, w(i0− i) = w(sm − 1− y, a/sm − 1− z), and
S is symmetric if and only if⌈

sm − 1

k

⌉
−

⌈y
k

⌉
=

⌈
sm − 1− y

k

⌉
for 0 ≤ y < sm;

that is, if and only if (i) or (ii) holds. (Notice that (i) implies sv+1 = 0.)
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Case 2. Suppose that sv = a and sv+1 6= 0. Then L = {(y, 0) | 0 ≤ y < a}. Let
(y0, z0) = (a − 1, 0). Then w(i0 − i) = w(a − 1 − y, 0), and, by Lemma 1, S is
symmetric if and only if⌈

a− 1

k

⌉
−

⌈y
k

⌉
=

⌈
a− 1− y

k

⌉
for 0 ≤ y < a,

or equivalently, if and only if a ≡ 2 (mod k). (We have a = sv 6= 1, since sv+1 6= 0.)

Case 3. Let sv 6= a and sv+1 6= 0. Assume that (y0, z0) = (sv − 1, Pv+1 − Pv − 1).
If 0 ≤ z < Pv+1−Pv and 0 ≤ y < sv, then w(i0−i) = w(sv−1−y, Pv+1−Pv−1−z),

and (12) holds if and only if⌈
sv − 1

k

⌉
−

⌈y
k

⌉
=

⌈
sv − 1− y

k

⌉
;

that is, if and only if sv ≡ 2 (mod k). (We have sv > sv+1 ≥ 1.)
If Pv+1 − Pv ≤ z < Pv+1, then 0 ≤ y < sv − sv+1. (Notice that Pv 6= 0 since

sv 6= a.) It is easily seen that w(i0 − i) = w(sv − sv+1 − 1− y, 2Pv+1 − Pv − 1− z),
and for sv ≡ 2 (mod k), Eq. (12) holds if and only if

1−
⌈y
k

⌉
=

⌈
1− y −Rv+1

k

⌉
for all 0 ≤ y < sv − sv+1. (19)

If sv − sv+1 = 1, then y = 0, and (19) holds if and only if Rv+1 ≥ 1− k. Since

Rv+1 ≡ sv+1 ≡ sv − 1 ≡ 1 (mod k),

Eq. (19) holds if and only if Rv+1 = 1− k.
If sv − sv+1 > 1, we first set y = 1, and find that Rv+1 = 0. Then it is easily seen,

that Eq. (19) holds if and only if Rv+1 = 0. Hence, in this case, S is symmetric if
and only if (iv) or (v) holds.

Case 4. Let sv 6= a, sv+1 6= 0, and assume that (y0, z0) = (sv − sv+1 − 1, Pv+1 − 1).
If 0 ≤ y < sv − sv+1, then we have w(i0 − i) = w(sv − sv+1 − 1− y, Pv+1 − 1− z),

and (12) holds if and only if⌈
sv − sv+1 − 1

k

⌉
−

⌈y
k

⌉
=

⌈
sv − sv+1 − 1− y

k

⌉
.

This is if and only if sv − sv+1 = 1 or sv − sv+1 ≡ 2 (mod k).
Moreover, if sv − sv+1 ≤ y < sv, then w(i0 − i) = w(2sv − sv+1 − 1 − y, Pv+1 −

Pv − 1− z). For (12) to be satisfied, we must have⌈
sv − sv+1 − 1

k

⌉
−

⌈y
k

⌉
=

⌈
sv − sv+1 − 1− y +Rv

k

⌉
. (20)

Suppose that sv − sv+1 = 1. We have sv > sv+1 ≥ 1, and (20) gives for y = 1,

−1 =

⌈
−1 +Rv

k

⌉
,
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so that Rv ≤ 0, which is impossible.
If sv − sv+1 > 1, we consider the case sv − sv+1 ≡ 2 (mod k). Then (20) becomes

1−
⌈y
k

⌉
=

⌈
1− y +Rv

k

⌉
. (21)

For S to be symmetric, this identity must be satisfied for sv − sv+1 ≤ y < sv. For
y = sv − sv+1, Eq. (21) holds if and only if k ≥ 2 and Rv = 1. (Notice that Rv = 1
implies sv ≡ 1 (mod k).) If the conditions k ≥ 2 and Rv = 1 are satisfied, Eq. (21)
implies that y 6≡ 1 (mod k). Now it follows easily that S is symmetric if and only if
(vi) holds. �

If S is symmetric, then g(S) is odd by (13). For g(S) even, we have the corre-
sponding notion of S being a pseudo-symmetric semigroup, which holds if and only
if

S ∪ (g − S) = Z \ {g/2}.

For pseudo-symmetric semigroups, we have a result corresponding to Lemma 1,
which can be used as a starting point for a study of pseudo-symmetric AA-semigroups,
using the machinery above.

4.3. Speeding up the AA-Algorithm. We continue our considerations of the
numerical AA-semigroup S generated by a, a+ d, . . . , a+ kd, c. Also in this section
we use the notation of Sections 4.1 and 4.2.

If gcd(a, d) = 1, then, as soon as we know the values of sv, sv+1, Pv, Pv+1, we can
plug these into the theorems in Sections 4.1 and 4.2, and get out the Apéry set
Ap(S; a) and the Hilbert series H(S;x). Moreover, we get the Frobenius number,
the genus, and we can easily decide whether S is symmetric or not.

So, we first apply the Euclidean algorithm (with positive division remainders) to
remove a possible gcd(a, d) > 1 to make a and d coprime, and at the same time we
compute s0.

With the goal of determining Ap(S; a) and H(S;x), we now need to know the
values of sv, sv+1, Pv, Pv+1. Note that we do not need to know v. We may proceed
as described in Section 4.1, where we applied the Euclidean algorithm with negative
division remainders to the quotient s−1/s0 until we got the stop order Rv+1 ≤ 0.
This algorithm works well on average; cf. [18, p. 423]. Unfortunately, the number
m of steps in the Euclidean algorithm with negative division remainders can be as
large as a − 2. We now avoid this by using the Euclidean algorithm with positive
division remainders instead of negative, thus limiting the number of steps in this
Euclidean algorithm to O(log a). This approach was first used by Greenberg [11] for
the computation of g(a, b, c).

We now present the algorithm for the determination of sv, sv+1, Pv, Pv+1, using
the Euclidean algorithm with positive division remainders.
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Algorithm Apéry

Input: a, d, c, k, s0

Output: sv, sv+1, Pv, Pv+1

1. r−1 = a, r0 = s0

2. ri−1 = κi+1ri + ri+1, κi+1 = bri−1/ric, 0 = rµ+1 < rµ < · · · < r−1

3. pi+1 = κi+1pi + pi−1, p−1 = 0, p0 = 1

4. Ti+1 = −κi+1Ti + Ti−1, T−1 = a+ kd, T0 =
1

a
((a+ kd)r0 − kc)

5. If there is a minimal u such that T2u+2 ≤ 0, Then(
sv Pv

sv+1 Pv+1

)
=

(
γ 1

γ − 1 1

) (
r2u+1 −p2u+1

r2u+2 p2u+2

)
, γ =

⌊
−T2u+2

T2u+1

⌋
+ 1

6. Else sv = rµ, sv+1 = 0, Pv = pµ, Pv+1 = pµ+1.

Usually we do not need to know the value of Pv in step 6.
We now prove the correctness of Algorithm Apéry.

Theorem 6. Algorithm Apéry determines precisely the quantities sv, sv+1, Pv, Pv+1,
as defined in Section 4.1, in O(log a) steps.

Proof. From steps 1–4 in the algorithm and induction on i, we get

ripi+1 + ri+1pi = a, (22)

dri − (−1)icpi ≡ 0 (mod a), (23)

Ti =
1

a

(
(a+ kd)ri − (−1)ikcpi

)
. (24)

Thus T2i+1 > 0. We have two cases.

Case 1. Assume Ti ≤ 0 for some −1 ≤ i ≤ µ + 1. Then, by (24), i is even. Let u
be minimal such that

T2u+2 ≤ 0.

Since T2i+1 > 0, we have, by step 4,

T2i+2 − T2i = −κ2i+2T2i+1 < 0,

T2i+1 − T2i−1 = −κ2i+1T2i,

so that

· · · < T2u+4 < T2u+2 ≤ 0 < T2u < T2u−2 < . . . ,

· · · > T2u+5 > T2u+3 ≥ T2u+1 < T2u−1 < T2u−3 < . . .

Let

−T2u+2 = (γ − 1)T2u+1 + T ∗, 0 ≤ T ∗ < T2u+1, (25)

with

γ =

⌊
−T2u+2

T2u+1

⌋
+ 1.
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If u ≥ 0, then by step 4,

κ2u+2T2u+1 = T2u − T2u+2 > −T2u+2 = (γ − 1)T2u+1 + T ∗ ≥ (γ − 1)T2u+1.

Since T2u+1 > 0, we thus have κ2u+2 > γ − 1; that is, 1 ≤ γ ≤ κ2u+2. It follows by
step 3 that

p2u+2 − γp2u+1 ≥ p2u+2 − κ2u+2p2u+1 = p2u > 0.

Thus p2u+2 > γp2u+1, which is trivially true also if u = −1.
Now recall the definition of w(i) given at the beginning of Section 2. Also recall

that τ(i) is the smallest integer for which there exist nonnegative integers y, z sat-
isfying (16). If there are more than one such pair for some i, we chose the one with
z minimal. The set of such pairs y, z is L = A ∪B for A,B given by (17), (18).

By (16), (25), and (24), we have

τ(i)− aT ∗ = (a+ kd)(y + (γ − 1)r2u+1 + r2u+2) + kc(z + (γ − 1)p2u+1 − p2u+2),

and, by (23),

d(y + (γ − 1)r2u+1 + r2u+2) + c(z + (γ − 1)p2u+1 − p2u+2) ≡ i (mod a).

By the minimality of τ(i), we thus have if T ∗ > 0,

z < p2u+2 − (γ − 1)p2u+1,

which is also true if T ∗ = 0, because of the minimality of z.
Similarly,

τ(i)− a(T2u+1 − T ∗) = τ(i)− a(γT2u+1 + T2u+2)

= (a+ kd)(y − γr2u+1 − r2u+2) + kc(z − γp2u+1 + p2u+2),

and it follows that
y < γr2u+1 + r2u+2.

Finally, we have

τ(i)− aT2u+1 = (a+ kd)(y − r2u+1) + kc(z − p2u+1),

so that
y < r2u+1 or z < p2u+1.

Let us set

A1 = {(y, z) | 0 ≤ y < r2u+1, 0 ≤ z < p2u+2 − (γ − 1)p2u+1},
B1 = {(y, z) | 0 ≤ y < γr2u+1 + r2u+2, 0 ≤ z < p2u+1}.

Then L ⊆ A1 ∪B1. Now, |A1 ∪B1| = a by (22), and it follows by the uniqueness of
L, that A1 = A, B1 = B. Hence we have the results in step 5.

Case 2. If Ti > 0 for i = −1, 0, . . . , µ+ 1 then by putting i = µ in (22), we see that
pµ+1 = a/rµ. Moreover, by (24) with i = µ+ 1 (recall that rµ+1 = 0), we get

Tµ+1 = (−1)µkc

rµ

.
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Hence, µ is even in this case, and (24) with i = µ gives us

Tµ =
1

a
((a+ kd)rµ − kcpµ) .

Now,

w(i)− aTµ = (a+ kd)(y − rµ) + kc(z + pµ),

where

d(y − rµ) + c(z + pµ) ≡ i (mod a),

because of (23) and the fact that µ is even. By the minimality of τ(i), we thus have

y < rµ.

Similarly,

τ(i)− aTµ+1 = (a+ kd) y + kc

(
z − a

rµ

)
gives

z <
a

rµ

·

Thus we have a pairs y, z satisfying (16). Since dy + cz form a complete residue
system modulo a, we have

L = {(y, z) | 0 ≤ y < rµ, 0 ≤ z <
a

rµ

}.

By the uniqueness of L, we now have sv = rµ, so that v = m. Moreover, sv+1 = 0
and Pv+1 = a/rµ = pµ+1. In addition, by (15) and (23), both x = Pv and x = pµ

satisfy
c

rµ

x ≡ d (mod
a

rµ

), 0 ≤ x <
a

rµ

,

so that Pv = pµ, and we have the results in step 6.

Finally, it is well known how to use Fibonacci numbers to show that the index
µ in step 2 satisfies µ ≤ log a/ logα, where α = (1 +

√
5)/2. Therefore, the index

u and all the intermediate quantities needed to determine sv, sv+1, Pv, Pv+1 can be
found in at most O(log a) steps. �

As an alternative to what we have done in this section, we could instead try to
use a procedure for translating a negative-regular continued fraction into a regular
one; cf. [18, Lemma 1]. Here may be something interesting hiding, since Dedekind
sums appear in [18] and could perhaps be connected to numerical semigroups in this
way. On the other hand, we already know from the book of Beck and Robins [2]
that there is a connection to Dedekind sums.
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5. Closing Comments

We have used combinatorial methods to study the numerical semigroup S =
〈a1, . . . , an〉. However, in the study of S, many authors use algebraic methods in
the following way:

For a field k, let R = k[x1, . . . , xn] be the polynomial ring graded by deg xi = ai

for i = 1, . . . , n. Then H(S;x) is the Hilbert series of this graded ring R. Let
A[S] = k[ta1 , . . . , tan ] be the semigroup algebra associated with S. Let the map
π : R −→ A[S] be induced by π(xi) = tai , and let I = ker π. Then A[S] ∼= R/I.
The toric ideal I is principal if n = 2. Herzog [12] showed that for n = 3, I has
at most three generators. Then the situation changes dramatically, as Bresinsky [4]
shows that for any (fixed) n ≥ 4 and any m ≥ 1, there exist a1, . . . , an for which I
requires at least m generators. Bresinsky’s result implies that, for any (fixed) n ≥ 4
and any m ≥ 1, there exist a1, . . . , an such that f(S;x) contains at least m terms.

In between the nice situation n = 2 and the unwieldy situation n ≥ 4, we have
the case n = 3. The case S = 〈a1, a2, a3〉 has been the subject of many papers, with
much overlap. The results are mainly expressed in two ways: Either implicitly, that
is, in terms of quantities Li and sij, where each Li is the minimum positive integer
for which the equation aiLi =

∑
j 6=i ajsij admits a solution in non-negative integers

sij, or semi-explicitly1, that is, algorithmically.
In the semi-explicit case the solution contains an algorithm for the computation

of the Li and the sij. For example, three integers always form an almost arithmetic
progression. So, by putting b = a + d and k = 1, Section 4.1 (and Section 4.3)
contain semi-explicit results for S = 〈a, b, c〉. The following proposition, which
is essentially [21, Claim 8.4.3], shows that the algorithms in Section 4.1 and in
Section 4.3 determine the Li and the sij.

Proposition 3. For gcd(a, b) = 1, we have

a(Rv −Rv+1) = b(sv − sv+1) + c(Pv+1 − Pv),

bsv = aRv + cPv if Rv+1 6= 0,

bsv+1 = cPv+1 if Rv+1 = 0,

cPv+1 = a(−Rv+1) + bsv+1,

where the left hand sides are the least positive multiples of a, b, b, c belonging to 〈b, c〉,
〈a, c〉, 〈a, c〉, 〈a, b〉, respectively.

Implicit results for n = 3 were given by Johnson [13], Brauer and Shockley [3], Fel
[9], Herzog [12], Rosales and Garćıa-Sánchez [26], and others. A result by Selmer
and Beyer [28] was the forerunner for the semi-explicit results of Rødseth [23] and
Greenberg [11]. Various variants of Greenberg’s result have been given in several
papers, including [5, 6, 25]. Several results on the case n = 3, both implicit and
semi-explicit, can be found in the monograph [21].

1We have borrowed this term from [2, p. 16].
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Herzog [12] showed that the monomial curve C = k[ta, tb, tc], considered as an
R-module (with n = 3), has resolution

0 −→ R2 M−→ R3 −→ R −→ C −→ 0.

Herzog expressed the matrix M implicitly, and so did Denham [7], while Morales
[16] gave M on a semi-explicit form, using the results of [23]. The Hilbert series of
the graded ring C is then easily computed from M . The results show that f(S;x)
has at most four terms if S = 〈a, b, c〉 is symmetric, and at most six terms otherwise.
(This is also clear from Theorem 4 and the beginning of Section 4.2.)

Finally, let us mention that Morales [17] used his results in [16] to construct a
large class of monomial curves, where each curve is defined by an ideal P in R such
that the symbolic Rees ring R(P ) is Noetherian.
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