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Introduction

Let a1,...,a, be positive integers with gcd(ai,...,a,) =1, find
the largest integer (called the Frobenius number and denoted by
g(a1,...,an)) that is not representable as a nonnegative integer

combination of ay,...,a,.
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Let a1,...,a, be positive integers with gcd(ai,...,a,) =1, find
the largest integer (called the Frobenius number and denoted by
g(a1,...,an)) that is not representable as a nonnegative integer
combination of ay,...,a,.

Example : If a1 = 3 and a» = 8 then

1234567891011 1213141516------
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Introduction

Let a1,...,a, be positive integers with gcd(ai,...,a,) =1, find
the largest integer (called the Frobenius number and denoted by
g(a1,...,an)) that is not representable as a nonnegative integer
combination of ay,...,a,.

Example : If a1 = 3 and a» = 8 then
1234567891011 1213141516+-----
So, g(3,8) = 13.
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Introduction

Let a1,...,a, be positive integers with gcd(ai,...,a,) =1, find
the largest integer (called the Frobenius number and denoted by
g(a1,...,an)) that is not representable as a nonnegative integer
combination of ay,...,a,.

Example : If a1 = 3 and a» = 8 then

1234567891011 1213141516------

So, g(3,8) = 13.
We denote by (ai, ..., a,) the numerical semigroup generated by
dl,...,dp.

J.L. Ramirez Alfonsin 13M, Université Montpellier 2

Apéry sets and Hilbert Series for Almost Arithmetic Semigroups



Introduction

Graph theory

Discrete Optimisation problems (Knapsack problem)
Additive number theory

Index of primitivity of matrix

Geometry of numbers (covering radius)

Quantifier elimination

Ehrhar polynomial

Hilbert series

Mobius function
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Theorem (Sylvester, 1882) g(a, b) = ab—a — b.
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Introduction

Theorem (Sylvester, 1882) g(a, b) = ab—a — b.
Theorem (R.A., 1996) Computing g(az, ..., an) is N'P-hard.
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Introduction

Theorem (Sylvester, 1882) g(a, b) = ab—a — b.
Theorem (R.A., 1996) Computing g(az, ..., an) is N'P-hard.

Theorem (Kannan, 1992) There is a polynomial time algorithm to
compute g(a1,...,a,) when n > 2 is fixed.
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Introduction

For n=3
e Selmer and Bayer, 1978
e Rgdseth, 1978
e Davison, 1994
e Scarf and Shallcross, 1993
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Introduction

For n=3
e Selmer and Bayer, 1978
e Rgdseth, 1978
e Davison, 1994
e Scarf and Shallcross, 1993

For n> 4
e Heap and Lynn, 1964
e Wilf, 1978
e Nijenhuis, 1979
e Greenberg, 1980
e Killingbergtg, 2000
e Einstein, Lichtblau, Strzebonski and Wagon, 2007
e Roune, 2008
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Einstein, Lichtblau, Strzebonski and Wagon, 2007
Find g(a1, ..., as) involving 100-digit numbers in about one second
Find g(a1, ..., ai0) involving 10-digit numbers in two days
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Einstein, Lichtblau, Strzebonski and Wagon, 2007

Find g(a1, ..., as) involving 100-digit numbers in about one second
Find g(a1,. .., ai0) involving 10-digit numbers in two days

Roune, 2008

Find g(a1,. .., as) involving 10, 000-digit numbers in few seconds
Find g(a1,...,a13) involving 10-digit numbers in few days
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Einstein, Lichtblau, Strzebonski and Wagon, 2007

Find g(a1, ..., as) involving 100-digit numbers in about one second
Find g(a1,. .., ai0) involving 10-digit numbers in two days

Roune, 2008

Find g(a1,. .., as) involving 10, 000-digit numbers in few seconds
Find g(a1,...,a13) involving 10-digit numbers in few days
Package

http ://www.broune.com/frobby/
http ://www.math.ruu.nl/people/beukers/frobenius/
http ://cmup.fc.up.pt/cmup/mdelgado/numericalsgps/

http ://reference.wolfram.com/mathematica/ref/FrobeniusNumber.html
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Hilbert series and Apéry set

Let A[S] = K[z?,...,z%] be the semigroup ring over K (of
characteristic 0) associated to the semigroup S = (a1,..., an).
Then, the Hilbert series of A[S] is

H(A[S], z) = ZZ Q(Z)(l — zn)

i€S
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Hilbert series and Apéry set

Let A[S] = K[z?,...,z%] be the semigroup ring over K (of
characteristic 0) associated to the semigroup S = (a1,..., an).
Then, the Hilbert series of A[S] is

HOASLD) = Y2 =

ar)...
i€S Zl)

g(a1,...,an) = degree of H(A[S], 2)
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Hilbert series and Apéry set

Let A[S] = K[z?,...,z%] be the semigroup ring over K (of
characteristic 0) associated to the semigroup S = (a1,..., an).
Then, the Hilbert series of A[S] is

HAISL?) = 322 = (= s

i€S

g(a1,...,an) = degree of H(A[S], 2)
Theorem (Herzog 1970, Morales 1987) Formula for H(A[S], z)
when S = (a, b, ¢)
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Hilbert series and Apéry set

The Apéry set of S = (a1,...,a,) for me Sis

Ap(S;m)={seS|s—m¢gS}
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Hilbert series and Apéry set

The Apéry set of S = (a1,...,a,) for me Sis

Ap(S;m)={seS|s—m¢gS}

S = Ap(S:m) + mZso, H(S:z) = 1_# O

m
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Hilbert series and Apéry set

The Apéry set of S = (a1,...,a,) for me Sis

Ap(S;m)={seS|s—m¢gS}

S = Ap(S:m) + mZso, H(S:z) = 12 O

Example : If a3 = 3 and a» = 8 then

1234567 10 13141516 ------
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Hilbert series and Apéry set

The Apéry set of S = (a1,...,a,) for me Sis

Ap(S;m)={seS|s—m¢gS}

S = Ap(S:m) + mZso, H(S:z) = 12 S

Example : If a3 = 3 and a» = 8 then
1234567891011 1213141516------
So, Ap((3,8);3) = {0,8,16}.
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Hilbert series and Apéry set

An almost arithmetic semigroup is generated by an almost
arithmetic progression, S = (a,a+d,a+2d,...,a+ kd, c).
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Hilbert series and Apéry set

An almost arithmetic semigroup is generated by an almost
arithmetic progression, S = (a,a+d,a+2d,...,a+ kd, c).
Let s_; = a and determine sy by

dss=c (mods_1), 0<sy<s_s.

If s # 0, we use the Euclidean algorithm with negative division

remainders,
S-1 = q1S0 — S1, 0 < s1 < sp;
S0 = g251 — S2, 0 < s < sy,
S1 = gq3sp — S3, 0 < s3 < s;

Sm—2 = GmSm—1 — Sm;, 0 < 5Sm < Sm_1;

Sm—1 = dm+1Sm, 0= Sm+1 < Sm-
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Hilbert series and Apéry set

If sp =0, we put m= —1. If m> 0, we have
S1_ 1
S0 - @ 1
a2 1
g3 —
1
dm —
dm+1

which is known as the Jung-Hirzebruch continued fraction of
571/50.
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Hilbert series and Apéry set

We have s, = gcd(a, ¢). We define integers P; by P_; =0,
Py =1, and (if m > 0),

Piy1i=qi1Pi—Pi—1, i=0,....,m.
Then, by induction on /,
SiPi+1—5i+1Pf:3, i:_l)o"‘7m7

and
—1:P_1<O:P0<"'<Pm+1:f

In addition we have,

dsi=cP; (moda), i=-1,....m+1.
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Hilbert series and Apéry set

Putting
1
R,' = 5 ((a + kd)S,‘ — kCP,') s

we then see that all the R; are integers. Moreover, we have
1
R_1 =a+kd, Ro == ((a+ kd)sp — kc), and
a
Rit1=qipaRi— Ri—1, i=0,....,m,

and again we see that all the R; are integers. Furthermore,

c
—?: mtl < Rm < <Ry < R_1 =a+ kd,
m

so there is a unique integer v such that

Rv-l—l < 0< Rv-
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Hilbert series and Apéry set

Theorem (Rgdseth 1979) If S = (a,a+ d,a+2d,...,a+ kd, c)
then

Ap(S; a) = {a m Ydy+cz|(y,z2) eAUB}

where

A :{(yvz)ezz|O§y<5v_5v+170§z<Pv+l}a

B :{(%2)622|0SY<SV,0§Z<P\/+1—PV}-
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Hilbert series and Apéry set

Theorem (R.A. and Rgdseth, 2009) S = (a,a+d,...,a+ kd,c)

Fo, () (1=xPrin POV g (ai) (<P =) —xPrin)

H(S;X) = (1—x2)(1—x9)(1—x>Tkd) (1—x°)

where
Fo(a;x) = (1 — x*Td)(1 — x99 — x9(1 — x7)(1 — x(aTkd))

with s a non-negative integer and g = [(s — 1)/k].
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Hilbert series and Apéry set

Corollary When k =1 and b = a+ d we have that S = (a, b, ¢)

1— szv . XCPV+1 o XaRV—RV+1 + XaRV+cPV+1 + szv—aRV+1

H(S:x) = (1 —x2)(1 = x5)(1—x°)
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Hilbert series and Apéry set

Corollary When k =1 and b = a+ d we have that S = (a, b, ¢)

1— szv . XCPV+1 o XaRV—RV+1 + XaRV+cPV+1 + szv—aRV+1

(1 —x2)(1 — xb)(1 — x)

H(S; x) =

g(a, b,c) = max{aR, + cPy4+1,bs, —aR,+1} —a—b—c.
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Hilbert series and Apéry set

Algorithm Apéry

a,d,c, k,sp Sy, Sv+1, Pvy Put
r-1=a, =5
i1 = Kig1ti + rig1, Kiv1 = Lr,-,l/r,-J,O =r1<r<---<ra
pi+1 = Kit1pi + pi-1, P-1=0, po=1
T;+1 = —Kjt1 Ti+Ti—1, T_1=a+kd Tyg= %((a—i— kd)ro — kC)
IF there is a minimal v such that T,4» <0, THEN

Sy 'Dv o Y 1 nPu+1  —P2u+1 . _T2u+2 1
se1 Pon) T \w-1 1 = T |
v+1 v+1 Y nuy+2 P2u+2 T2u+1

ELSE s, = s Sv+1 = 0,P, = Pus Pv+1 = Pu+1-
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Hilbert series and Apéry set

Algorithm Apéry

a,d,c, k,sp Sy, Sv+1, Pvy Put
r-1=a, =5
i1 = Kig1ti + fiq1,Ki41 = Lr,-,l/r,-LO =1 <n<---<r
pi+1 = Kit1pi + pi-1, P-1=0, po=1
T;+1 = —/€;+1T; +Ti_1, T_1=a+kd Tyg= %((a—i— kd)ro — kC)
IF there is a minimal v such that T,4» <0, THEN

Sy 'Dv o Y 1 nPu+1  —P2u+1 . _T2u+2 1
se1 Pon) T \w-1 1 = T |
v+1 v+1 Y nuy+2 P2u+2 T2u+1

ELSE s, = s Sv+1 = 0,P, = Pus Pv+1 = Pu+1-
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Symmetry
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Let gs = {g(s1,---,5,) — s|s € S}.
Notice that S and gs are disjoint sets (otherwise, x = g(S) — s for
some s € S and since x € S then g(5) —s+s=g(S5) e S!)
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Let gs = {g(s1,---,5,) — s|s € S}.
Notice that S and gs are disjoint sets (otherwise, x = g(S) — s for
some s € S and since x € S then g(5) —s+s=g(S5) e S!)

A semigroup S is called symmetric if SU gg = Z.
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Let gs = {g(s1,---,5,) — s|s € S}.

Notice that S and gs are disjoint sets (otherwise, x = g(S) — s for
some s € S and since x € S then g(S) —s+s=g(S) e S!)
A semigroup S is called symmetric if SU gg = Z.

(Bresinsky, 1979) Monomial curves

Kunz, 1979, Herzog, 1970) Gorestein rings

Apéry, 1945) Classification plane of algebraic branches

(

(

(Buchweitz, 1981) Weierstrass semigroups
(Pellikaan and Torres, 1999) Algebraic codes
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Theorem (Sylvester) Semigroup (p, q) is always symmetric.
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Theorem (Sylvester) Semigroup (p, q) is always symmetric.
Theorem (R.A. and Rgdseth 2009)

Let S=(a,a+d,...,a+ kd, c) with gcd(a,d) = 1. Then, S'is
symmetric if and only if one of the following conditions is satisfied.
i) s, =1,

i) s, =2 (mod k) and s,41 =0,

iii) s, =2 (mod k) and s, = a,

v) s, =2 (mod k) and s, —s,4+1 > 1 and R,4+1 =0,

(
(
(
(iv) sy —sy4+1 =1and R,41 =1— Kk,
(
(viyk>2,s,s1=k—1and R, = 1.
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Let N(S) be the number of gaps in S.
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Let N(S) be the number of gaps in S.
Theorem (Selmer) N(S)=1 > w—3(m-1).

m
weEAp(S;m)
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Let N(S) be the number of gaps in S.
Theorem (Selmer) N(S)=1 > w—3(m-1).

m
weEAp(S;m)

A semigroup S is symmetric if and only if g(S) +1 = 2N(S).

J.L. Ramirez Alfonsin 13M, Université Montpellier 2

Apéry sets and Hilbert Series for Almost Arithmetic Semigroups



Let N(S) be the number of gaps in S.
Theorem (Selmer) N(S)=1 > w—3(m-1).

m
weEAp(S;m)

A semigroup S is symmetric if and only if g(S) +1 = 2N(S).
Lemma (Folklore) S is symmetric if and only if there is an iy such
that

w(ip) — w(i) = w(ip — i) for all i
where w(i) denote the unique w € Ap(S; m) satisfying
w =i (mod m).
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Let N(S) be the number of gaps in S.
Theorem (Selmer) N(S)=1 > w—3(m-1).

m
weEAp(S;m)

A semigroup S is symmetric if and only if g(S) +1 = 2N(S).
Lemma (Folklore) S is symmetric if and only if there is an iy such
that
w(ip) — w(i) = w(ip — i) for all i
where w(i) denote the unique w € Ap(S; m) satisfying
w =i (mod m).
Remark If the above holds for some (fixed) iy and all i then
w(ip) = max Ap(S; m).
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Theorem (R.A. and Rgdseth 2009) Complete characterization of
symmetry for (a, b, c).
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Theorem (R.A. and Rgdseth 2009) Complete characterization of
symmetry for (a, b, c).

Let S = (a1,...,an) and let d; = ged(a1,...,3i-1,3i+1,---,an)-
The derived semigroup of S is defined as the semigroup generated

by {al/de""van/H dJ}

j#1 J#n
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Theorem (R.A. and Rgdseth 2009) Complete characterization of
symmetry for (a, b, c).

Let S = (a1,...,an) and let d; = ged(a1,...,3i-1,3i+1,---,an)-
The derived semigroup of S is defined as the semigroup generated

by {al/de""van/H dJ}

J#1 Jj#n
Corollary (Fréberg, Gottlieb and Higgkvist 1987) (a1, a2, a3) is
symmetric if and only if its derived is generated by two elements.
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Further work

A semigroup S is pseudo-symmetric if and only if

g(S) = 2N(S) — 2.
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Further work

A semigroup S is pseudo-symmetric if and only if

g(S) = 2N(S) — 2.

If S is pseudo-symmetric then S U gs = Z \ {g/2}.
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Further work

A semigroup S is pseudo-symmetric if and only if

g(S) = 2N(S) — 2.

If S is pseudo-symmetric then S U gs = Z \ {g/2}.
Lemma

m ifi=0 (mod m),

w(g/2+i)+w(g/2—i)= W(g)+{ 0 otherwise.

where w(i) denote the unique w € Ap(S; m) satisfying
w =i (mod m).
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