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Abstract

Let r(K) be the smallest positive integer such that every linear spatial representation
of the complete graph on n ≥ r(K) vertices contain a cycle isotopic to knot K. In this
paper, we prove that r(L) ≤ 28c

where c = 418n−7 by using a special embedding of K in
the cyclic polytope. We also show that r(F8), r(T (5, 2) ≥ 9 where F8 and T (5, 2) are the
Figure-eight and the (5, 2)-torus knots respectively.
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1 Introduction

A link L with k components consists of k disjoint simple closed curves in IR3. A knot K is
a link with one component. A link diagram D(L) is obtained from L by projecting it onto a
plane in such a way that the projection of each component is smooth and at most two curves
intersect at any point. At each crossing point of the link diagram the curve which goes over
the other is specified. The fundamental theorem of Reidemeister [14] states:

Theorem 1.1 [14] Two links L1 and L2 are isotopic if and only if any link diagram D(L1)
can be transformed into any link diagram D(L2) by a finite sequence of moves I, II and II
and their inverses (see Figure 1).

A spatial representation R(Kn), of the complete graph Kn (i.e., a graph in which any pair
of vertices is joined by an edge) is the embbeded image of Kn in IR3, that is, the vertices of
Kn are distinct points in IR3 and the edges are simple Jordan curves between them in such
a way that any two curves are either disjoint or meet at a common point. R(Kn) is linear if
each edge is represented by a straight line segment. A set of cycles of R(Kn) can be thought
as simple closed curves in IR3 and they thus may be regarded as a link.

∗Part of this work has been done while the author was visiting the Forschungsinstitut für Diskrete Mathe-
matik, Universität Bonn and was supported by the Alexander von Humboldt Foundation.
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Figure 1: Reidemeister moves.

Let r = r(L) be the smallest positive integer such that every linear R(Kn), n ≥ r, contains
cycles isotopic to link L. S. Negami [9] showed that for any given knot, link or spatial graph
R(G) there is a sufficiently large integer t such that every linear R(Kt) always contains a
subdivision of R(G). This implies the following result.

Theorem 1.2 [9] Let K be a knot. Then, there exists a finite number t = t(K) such that
any linear R(Kn), n ≥ t, contain a cycle isotopic to K. In particular, r(K) exists and it is
finite.

The idea of Negami’s proof relies on a Ramsey-type result in connection to the cyclic
polytope. The cyclic polytope of dimension d with n vertices Cd(n) = Cd(t1, . . . , tn) was
discovered by C. Carathéodory [3, 4] and many times rediscovered; it is usually defined as the
convex hull in IRd, d ≥ 2, of n, n ≥ d+1, different points x(t1), . . . , x(tn) of the moment curve
x : R → Rd, t → (t, t2, . . . , td). Cyclic polytopes, and simplicial neighbourly polytopes, in
general, play an important role in the combinatorial convex geometry due to their connection
with certain extremal problems. For example, the Upper Bound Theorem established by P.
McMullen [8], says that the number of j-dimensional faces of a k-polytope with n vertices is
maximal for Cd(n). Throughout the rest of the paper, will denote C3(n) by C(n).

A classical Ramsey theorem states.

Theorem 1.3 [13] Let r, k, n be given positive integers, n ≤ k. Then, there exists a number
t = Rr(k;n) with the following property. If all k-subsets of {1, . . . , t} are colored with r
colours, then there is a n-subset of {1, . . . , t} all of whose k-subsets have the same colour.

The following proposition can be easily obtained from Theorem 1.3.
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Proposition 1.4 [2, Proposition 9.4.7] Let n, d be integers with n ≥ d + 1 ≥ 3. Then, there
exists an integer t = t(n, d) such that every set of t points in general position in affine d-space
contains the n vertices of a cyclic polytope of dimension d.

Proof. Let S be a set of t = R2(d + 1;n) points in IR3 in general position and let M be
the affine oriented matroid associated to S. Since the points are in general position then the
bases of M are all the (d + 1)-subset of S and they are signed with either + or − (which can
be considered as a 2-colouring). Then, by Proposition 1.4, there is a n-subset of {1, . . . , t}
all of whose (d + 1)-subsets have the same color, and thus, the bases of the oriented matroid
corresponding to this n-set points, have all the same sign, implying that these points are the
vertices of a polytope combinatorial equivalent to Cd(n). %&

Negami proved Theorem 1.2 by showing that there is a sufficiently large integer m such
that C(m) contains a cycle (that is, a sequence of line segments l1, . . . , lr, l1, r ≤ m where
two consecutive segments have a common vertex belonging to C(m)) isotopic to a given knot
and then Proposition 1.4 is applied. However, Negami’s approach does not give an order of
magnitude of m and thus an explicit value for r(K) is not given. Let us see how Nagami
proceeded for showing the existence of the desired integer m. First, a knot diagram D(K)
with n crossings is transformed into what Negami called a n-plat representation (better known
as a n-braid representation of K - this always exist by Alexander’s Theorem [1]). Then,
such representation is oriented (creating positive and negative crossings). Since a positive
plat representation (a plat representation with only positive crossings) is needed then each
negative crossing is changed into (2n + 1)(n − 1) crossings of the opposite sign. Finally,
Negami constructed an embedding of a positive plat representation on C(m) inductively.
The induction is involved and it assumes ‘certain conditions’ that may increase the value of
m which already depends on the number of crossings of the positive plat representation. So,
the order of magnitud of m is difficult to estimate.

In the next section, we propose a completely new approach (avoiding the above mentioned
drawbacks) to show the existence of the desired cycles in cyclic polytopes. Our method is
constructive and yields to the following result.

Theorem 1.5 Let L be a link and let cr(L) be its crossing number (the minimum number of
crossings in any diagram representing L). Then, there exist cycles in C(9cr(L)) isotopic to
L.

P. Erdös and R. Rado [5] gave an explicit upper bound for Rr(k;n). By combining this
upper bound (with r = 2 and k = 4), Proposition 1.4 and Theorem 1.5, the following upper
bound for r(L) can be obtained.

Theorem 1.6 Let D(L) be a diagram of link L with n crossings. Then, r(L) ≤ 28c where
c = 418n−7.

Although, this is an exponentially huge upper bound, it can be stated explicitly which is
not the case by using Negami’s approach. Recently, A.V. Kostochka and V. Rödl [6] proved
that for every ε > 0, Rr(k; s) ≤ c(n, k, ε)n1+ε where c(n, k, ε) depends on n, k and ε. This
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upper bound could be used to improve the upper bound for r(L) however it is not easy to
state it explicitly.

There is not much known about r(L) for particular links L. It is clear that r(L) ≥ s(L)
where s(L) is the sticky number of L (that is, the smalles number of sticks needed to represent
L in IR3). H. Sacks [18] proved that r(22

1) = 6. In a serie of three papers, N. Robertson, P.
Seymour and R. Thomas [15, 16, 17] strengthened the latter by characterizing the linklessly
graphs. In [10], we showed that r(T or T ∗) = 7 where T is the Trefoil and T ∗ its mirror
(recall that the mirror of a knot K is obtained by a reflection of K in a plane). We also have
proved [11] that r(42

1) > 7. We refer the reader to [12] for further details on knots and links
in spatial graphs.

Here, we also investigate the value r for Figure-eight knot (denoted by F8) and the (5, 2)-
torus knot (denoted by T (5, 2)) which are the second and the third nontrivial knots respec-
tively. As illustrated in Figure 2, we have that s(F8) = 7 and s(T (5, 2)) ≥ 7. It will be proved
that any cycle in C(8) is isotopic to either the trivial knot (i.e., a loop) or T or T ∗, implying
the following Theorem.

Theorem 1.7 r(F8), r(T (5, 2)) ≥ 9.

2 Knots in the cyclic polytope

Let D(C(n)) be the projection of C(n) = C(t1, . . . , tn), 0 < t1 < · · · < tn onto the xy-plane,
see Figure 3 for the case n = 8.

Proposition 2.1 Let {ti, tk} and {tj , tl} be two edges in D(C(n)). Then {tj , tl} passes over
{ti, tk} if and only if 1 ≤ i < j < k < l ≤ n.

Proof. Let M be the affine oriented matroid of rank 4 on n elements arising from the
vertices of C(t1, . . . , tn), 0 < t1 < · · · < tn. It is known [2] that the circuits of M are the
signed subsets B = {ti, t̄j , tk, t̄l, tm}, 1 ≤ i < j < k < l < m ≤ n. It is also known that
the signed circuits of affine oriented matroids are exactly the minimal Radon partitions i.e.,
the convex hull of the positive elements intersects the convex hull of negative elements. So,
circuit B of M implies that the triangle formed by ti, tk and tm intersect the line segment
formed by tj and tl and so the edge {tj, tl} passes over {ti, tk} in D(C(n)), see Figure 4. %&

A pair of edges of D(C(n)) as in Proposition 2.1 are said to have the crossing property (we
also may say the crossing verifies the crossing property). Throughout the rest of the paper,
we will assume that the diagram D(C(m)) has all its vertices on the x-axis and all the arcs
(representing the segments) lying above the x-axis and verifying the crossing property (this
can easily be done by deforming continuously the plane), see Figure 5.

Lemma 2.2 Let D(K) be a diagram of knot K and let us mark with a segment the over-
crossing piece of D(K) at each crossing. Then, there exists a non self-intersecting curve Γ
in the plane, starting and ending outside D(K) (i.e., outside of a cercle containing D(K))
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Figure 3: Projection of C(8).
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Figure 4: Edges with the crossing property.
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Figure 6: Modifications around a vertex for constructing Γh. vertices.

such that it passes over each marked segment of D(K) exactly once and it intersects D(K)
transversally elsewhere.

Proof. Given any knot diagram D(K) we note that if the over/under crossings are ignored
it can be regarded as a 4-regular plane graph GK . Accordingly, GK is Eulerian and thus its
dual plane graph consisting of faces of GK can be 2-coloured, say with colours black and
white. Since GK is Eulerien then its set of edges can be partitioned in edge-disjoint cycles,
say C1, . . . , Ch where each vertex of GK belongs to exactly two different cycles (since GK is
4-regular). We may construct the desired curve as follows. Let C1, . . . , Ch be the set of cycles
bounding the black faces of GK . Since GK is connected then we can suppose that the cycles
C1, . . . , Ch are ordered such that {V (C1) ∪ · · · ∪ V (Ci−1)} ∩ V (Ci) )= ∅ for each i = 2, . . . , h.
Let V (C1) = {v1

1 , . . . , v
1
f1
} and let {vi

1, . . . , v
i
fi
} = {V (C1) ∪ · · · ∪ V (Ci−1)} ∩ V (Ci) for each

i = 2, . . . , h. Let ΓCi be the closed no self-intersecting curve formed by the set of edges and
vertices of cycle Ci and we set Γ1 = ΓC1 . We shall construct curve Γ2 with Γ1 and ΓC2 where
Γ1 and ΓC2 are modified at vertex v2

1 according to Figure 6 (a) and at vertex v2
j , 2 ≤ j ≤ f2

according to Figure 6 (b). We shall now construct curve Γ3 from Γ2 and ΓC3 where Γ2 and
ΓC3 are modified at vertex v3

1 according to Figure 6 (a) and at vertex v3
j , 2 ≤ j ≤ f3 according

to Figure 6 (b). By carrying on this procedure we obtain a curve Γh.

Now, we shall make a local change to Γh around each crossing (according to the corre-
sponding marked segment in the knot diagram), as it is shown in Figure 7. The desired curve
Γ is obtained by breaking the modified Γh at a boundary face of GK , and by moving Γh away
from D(K), say inside each black face, see Figure 8. %&
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Figure 7: Local changes made to Γh.

Figure 8: Moving Γh away from D(K).
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Figure 9: Construction of curve Γ for a Trefoil diagram.

The construction of the curve Γ, given in Lemma 2.2, is illustrated in Figure 9 for the
Trefoil.

We may now prove Theorem 1.5.

Proof of Theorem 1.5. Let D(K) be a diagram of knot K with n crossings. We shall
construct a cycle in D(C(9n)) isotopic to D(K) in four steps (this construction is illustrated
in Figure 11 for the Trefoil).

(1) Let Γ be the curve constructed as in the proof of Lemma 2.2 for diagram D(K). Put a
vertex at the extremes of each segment and each intersection between Γ and D(K). Number
the vertices in the order of appeareance while tracing Γ in one direction. Notice that the
number of vertices is at most 4n + 2 (we have at most 4 vertices for each crossing and two
when breaking Γ). We deform the plane in such a way that Γ becomes a straight line, say
the x-axis. We obtain a new diagram D1(K) (isotopic to D(K)) with all the vertices lying in
the x-axis (and appearing in order from left to right), see Figure 11 (a).

(2) Put an extra vertex at each undercrossing (just below Γ) of D1(K). We then join the
vertices (from left to right), with a curve Γ′ and deform again the plane in such a way that
Γ′ becomes the x-axis. We obtain a new diagram D2(K) (isotopic to D1(K)) with at most
5n+2 vertices lying on the x-axis, see Figures 11 (b) and (c). Notice that D2(K) is composed
by upper arcs (above Γ′) and lower arcs (below Γ′). Also notice that D2(K) has n crossings
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Figure 10: Fixing up upper and lower arcs.

(one for each segment) all induced by two upper arcs and the number of lower arcs is at most
3n (by construction of Γ, we have at most three lower arcs for each segment).

(3) Number the vertices (from left to right) of D2(K). Let e = {i, k} and e′ = {j, l} be
two upper arcs of D2(K) with i < j < k < l. If these arcs do not verify the crossing property
(that is e crosses over e′) then we may fix this as follows. Pull over arc e′ (its vertices are
fixed) to the left-hand side of the first point appearing in Γ′ and stick it to a new vertex v on
the x-axis (if while pulling e′ another arc f is met then e′ passes under f , and so the possible
new created crossings will verify the crossing property), see Figure 10 (a). We repeat this
procedure for each crossing not verifying the crossing property. We obtain a diagram D3(K)
(isotopic to D2(K)) with all its upper arcs verifying the crossing property and with at most
6n + 2 vertices. We notice that if we use the construction of Γ as in the proof of Lemma 2.2
then by the above numbering of vertices, all the crossings in D2(K) turned out to verify the
crossing property, and thus, in this case D2(K) has at most 5n + 2 vertices.

(4) Finally, we get ride out of the lower arcs in D3(K) by doing a similar procedure as in
step three. Pull over each lower arc e above Γ′ and stick it to a new vertex w on the x-axis
at the right-hand side of the last vertex appearing in Γ′ (if while pulling e an upper arc f is
met then e passes over f , and so the possible new created crossings will verify the crossing
property), see Figure 10 (b). We repeat this procedure for each lower arc (if a lower edge joins
two consecutive vertices then we may just put it above Γ′ without creating an extra vertex).
We obtain a diagram D4(K) (isotopic to D3(K)) with at most 9n vertices, see Figure 11 (d).
Since the diagram D4(K) is isotopic to K and it has only upper arcs (verifying the crossing
property) then it corresponds to a cycle contained in the special representation of D(C(9n)),
as desired. %&

We notice that Theorem 1.5 implies that s(K) ≤ 9cr(K). However, the number of vertices
of the cyclic polytope given in Theorem 1.5 is not optimal in general. For instance, Figure
12 shows a cycle in C(7) isotopic to the trefoil while the cycle obtained via Theorem 1.5 has
19 vertices.

Finally, we may prove Theorem 1.7.
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Figure 11: Construction of the Trefoil in D(C(19)).
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Figure 12: Non-reducible cycles for m = 7.

Proof of Theorem 1.7. We shall show that the vertices of C(8) (a particular linear spatial
representation of K8) contain neither F8 nor T (5, 2). We will show that any cycle in C(8)
is isotopic to either the trivial knot or T or T ∗. Let B be a cycle in D(C(8)) of length
3 ≤ m ≤ 8. It is easy to check that if 3 ≤ m ≤ 6 then B is isotopic to the trivial knot. Let
us suppose that m = 7, 8. We notice that, by Proposition 2.1, if B contains two consecutive
vertices of the form . . . ti, ti+1 . . . , 1 ≤ i ≤ 8 (respectively, three consecutive vertices of the
form . . . ti, tk, ti+1 . . . , 1 ≤ i ≤ 8 and k )= i, i + 1) then these can be replaced by . . . ti . . .
(respectively, by . . . ti, ti+1 . . . ) obtaining a smaller cycle isotopic to B. In this case we say
that B is reducible. It can be checked that if B is not reducible then either

B ∈ {(2, 7, 5, 3, 1, 6, 4), (1, 3, 7, 5, 2, 6, 4)},

if m = 7 or

B ∈ {(1, 8, 3, 5, 7, 2, 4, 6), (2, 8, 4, 6, 1, 3, 7, 5), (2, 8, 5, 3, 7, 1, 4, 6), (3, 8, 5, 2, 7, 4, 1, 6),
(3, 8, 6, 2, 4, 7, 1, 5), (1, 3, 6, 8, 4, 2, 7, 5), (1, 3, 5, 7, 2, 4, 6, 8)}.

if m = 8. The result follows by verifying (via Theorem 1.1) that any of the above cycles
is isotopic to either the trivial knot or T or T ∗, see Figures 12 and 13. %&
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[10] J.L. Ramı́rez Alfonśın, Spatial graphs and oriented matroids: the Trefoil, Discrete and
Computational Geometry 22 (1999), 149-158.
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