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Quick recall

A matroid M is an ordered pair (E , I) where E is a finite set
(E = {1, . . . , n}) and I is a family of subsets of E verifying the
following conditions :

(I1) ∅ ∈ I,

(I2) If I ∈ I and I ′ ⊂ I then I ′ ∈ I,

(I3) If I1, I2 ∈ I and |I1| < |I2| then there exists e ∈ I2\I1 such that
I1 ∪ e ∈ I.

The members in I are called the independents of M. A subset in E
not belonging to I is called dependent.
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Quick recall

A base of a matroid is a maximal independent set. We denote by B
the set of all bases of a matroid.

The family B verifies the

following conditions :

(B1) B 6= ∅,
(B2) (exchange propety) B1,B2 ∈ B and x ∈ B1\B2 then there

exist y ∈ B2\B1 such that (B1\x) ∪ y ∈ B.

If I is the family of subsets contained in a set of B then (E , I) is a
matroid.
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Toric ideal associated to a matroid

Let M be a matroid on a finite ground set E = {1, . . . , n}. We
denote by B the set of bases of M.

Let k be an arbitrary field and consider k[x1, . . . , xn] a polynomial
ring over k .

For each base B ∈ B, we introduce a variable yB and we denote by
R the polynomial ring in the variables yB , i.e., R := k[yB |B ∈ B].

A binomial in R is a difference of two monomials, an ideal
generated by binomials is called a binomial ideal.
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Toric ideal associated to a matroid

We consider the homomorphism of k-algebras
ϕ : R −→ k[x1, . . . , xn] induced by

yB 7→
∏
i∈B

xi .

The image of ϕ is a standard graded k-algebra, which is called the
bases monomial ring of the matroid M and it is denoted by SM .

The kernel of ϕ, which is the presentation ideal of SM , is called the
toric ideal of M and is denoted by IM .

Observation Let b be the number of bases of a matroid M on n
elements. Then, IM is generated by the kernel of the integer n × b
matrix whose columns are the zero-one incidence vectors of the
bases of M.
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Example

Matroid M(G ) associated to graph G . We have r(M(G )) = 3.

1

2

3

45

B(M(G )) = {B1 = {123},B2 = {125},B3 = {134},B4 =
{135},B5 = {145},B6 = {234},B7 = {245},B8 = {345}}
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Example

Matroid M(G ) associated to graph G . We have r(M(G )) = 3.

1

2

3

45

B(M(G )) = {B1 = {123},B2 = {125},B3 = {134},B4 =
{135},B5 = {145},B6 = {234},B7 = {245},B8 = {345}}
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Example

B(M(G )) = {B1 = {123},B2 = {125},B3 = {134},B4 =
{135},B5 = {145},B6 = {234},B7 = {245},B8 = {345}}

B1 B2 B3 B4 B5 B6 B7 B8
1 1 1 1 1 0 0 0
1 1 0 0 0 1 1 0
1 0 1 1 0 1 0 1
0 0 1 0 1 1 1 1
0 1 0 1 1 0 1 1



By considering ϕ : k[yB1 , . . . , yB8 ] −→ k[x1, . . . , x5] we have that

yB1 7→ x1x2x3, yB2 7→ x1x2x5, yB3 7→ x1x3x4, . . .

An element of the kernel of ϕ (i .e., IM(G)) is : yB7yB4 − yB2yB8 .
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Toric ideal associated to a matroid

• It is well known that IM is a prime, binomial and homogeneous
ideal.

Observation Since R/IM ' SM , it follows that the height of IM is
ht(IM) = |B| − dim(SM) = |B| − (n − c + 1), where c is the
number of connected components of M.
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White’s conjecture

Let B denote the set of bases of M. By definition B is not empty
and satisfies the following exchange axiom :

For every B1,B2 ∈ B and for every e ∈ B1 \ B2, there
exists f ∈ B2 \ B1 such that (B1 ∪ {f }) \ {e} ∈ B.

Brualdi proved that the exchange axiom is equivalent to the
symmetric exchange axiom :

For every B1,B2 in B and for every e ∈ B1 \ B2, there
exists f ∈ B2 \ B1 such that both (B1 ∪ {f }) \ {e} ∈ B
and (B2 ∪ {e}) \ {f } ∈ B.
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White’s conjecture

Suppose that a pair of bases D1,D2 is obtained from a pair of
bases B1,B2 by a symmetric exchange. That is D1 = (B1 \ e) ∪ f
and D2 = (B2 \ f ) ∪ e for some e ∈ B1 and f ∈ B2.

We say that the quadratic binomial yB1yB2 − yD1yD2 correspond to
a symmetric exchange.

It is clear that such binomial belong to the ideal IM .

Conjecture (White 1980) For every matroid M its toric ideal IM is
generated by quadratic binomials corresponding to symmetric
exchanges.
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White’s conjecture

Observation for B1, . . . ,Bs ,D1, . . . ,Ds ∈ B, the homogeneous
binomial yB1 · · · yBs − yD1 · · · yDs belongs to IM if and only if
B1 ∪ · · · ∪ Bs = D1 ∪ · · · ∪ Ds as multisets.

Since IM is a homogeneous binomial ideal, it follows that

IM =
(
{yB1 · · · yBs−yD1 · · · yDs |B1∪· · ·∪Bs = D1∪· · ·∪Ds as multisets}

)
White’s original formulation Two sets of bases of a matroid have
equal union (as multiset), then one can pass between them by a
sequence of symmetric exchanges.

Observation White’s conjecture does not depend on the field k .
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Example continued

We had B(M(G )) = {B1 = {123},B2 = {125},B3 = {134},B4 =
{135},B5 = {145},B6 = {234},B7 = {245},B8 = {345}}.

We also had that yB7yB4 − yB2yB8 ∈ IM(G).

We can check that B7 ∪ B4 = {2, 4, 5, 1, 3, 5} = B2 ∪ B8.
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Results of White’s conjecture

• Blasiak (2008) has confirmed the conjecture for graphical
matroids.

• Kashiwaba (2010) checked the case of matroids of rank ≤ 3.

• Schweig (2011) proved the case of lattice path matroids which
are a subclass of transversal matroids.

• Bonin (2013) confirmed the conjecture for sparse paving matroids

• Lasoń, Micha lek (2014) proved for strongly base orderables
matroids.
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Results of White’s conjecture

• Blasiak (2008) has confirmed the conjecture for graphical
matroids.

• Kashiwaba (2010) checked the case of matroids of rank ≤ 3.

• Schweig (2011) proved the case of lattice path matroids which
are a subclass of transversal matroids.

• Bonin (2013) confirmed the conjecture for sparse paving matroids

• Lasoń, Micha lek (2014) proved for strongly base orderables
matroids.
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Results of White’s conjecture

• Blasiak (2008) has confirmed the conjecture for graphical
matroids.

• Kashiwaba (2010) checked the case of matroids of rank ≤ 3.

• Schweig (2011) proved the case of lattice path matroids which
are a subclass of transversal matroids.

• Bonin (2013) confirmed the conjecture for sparse paving matroids
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Blasiak’s reduction

Let M be a matroid on a ground set E with |E | = nr(M) where
r(M) is the rank of M.

The n-base graph of M, which is denoted by Gn(M), has as its
vertex set the set of all sets of n disjoint bases (a set of n bases
{B1, . . . ,Bn} of M is disjoint if and only if

|E | =
n⋃

i=1

Bi .

There is an edge between {B1, . . . ,Bn} and {D1, . . . ,Dn} if and
only if Bi = Dj for some i , j .
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G2(U2,6)

We have that r(U2,6) = 2, and let us take n = 3.

So

12,34,56

12,35,46

12,36,45

13,24,56

13,25,46

13,26,45

14,23,56

14,25,3614,26,35
15,23,46

15,24,36

15,26,34

16,23,45

16,24,35

16,25,34
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M(G )

1

2 3

4

5

6

We have that r(M(G )) = 2 and we set n = 3.

B(M(G )) = {B1 = {1, 3},B2 = {1, 4},B3 = {1, 5},B4 =
{1, 6},B5 = {2, 3},B6 = {2, 4},B7 = {2, 5},B8 = {2, 6},B9 =
{3, 5},B10 = {3, 6},B11 = {4, 5},B12 = {4, 6}}.
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13,25,46
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We notice that yB4yB6yB9 − yB1yB7yB12 ∈ IM(G)

since B4 ∪ B6 ∪ B9 = {1, 2, 3, 4, 5, 6} = B1 ∪ B7 ∪ B12.
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Blasiak’s reduction

Lemma (Blasiak) Let C be a collection of matroids that is closed
under deletions and adding parallel elements. Suppose that for
each n ≥ 3 and for every matroid M in C on a ground set of size
nr(M) the n-base graph of M is connected. Then, for every
matroid M in C, IM is generated by quadratics polynomials.

Proof (idea) The following statement is proved by induction on n :

for every M ∈ C and every binomial b ∈ IM of degree n, b is in the
ideal generated by the quadratics of IM .

This will prove the result because IM , as a toric ideal, is generated
by binomials.
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Blasiak’s reduction

Proof (continuation ...) M ∈ C and b is binomial of degree n in IM .

The binomial b is necessarily of the form b =
n∏

i=1
yBi
−

n∏
i=1

yDi
for

some bases {B1, . . . ,Bn} and {D1, . . . ,Dn} of M such that the Bi

and Di have the same multiset union.

It is proved that b is in the ideal generated by the degree n − 1
binomials of IM (this is done by constructing a new matroid M ′

that depends on the binomial b).

By induction the degree n − 1 binomials are in the ideal generated
by the quadratics of IM which is properly used the proof de result
for n.
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Blasiak’s reduction

13,25,46

13,26,45

14,25,36

14,26,35

15,23,46

15,24,36

16,23,45

16,24,35

y16y24y35 − y13y25y46 ∈ IM(G).
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Blasiak’s reduction

13,25,46

13,26,45

14,25,36

14,26,35

15,23,46

15,24,36

16,23,45

16,24,35

By following the path we construct
y16y24y35−y16y23y45+y16y23y45−y13y26y45+y13y26y55−y13y25y46 =
y16y24y35 − y13y25y46 ∈ IM(G).
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Or equivalently
y16(y24y35− y23y45) + y45(y16y23− y13y26) + y13(y26y55− y25y46) =
y16y24y35 − y13y25y46 ∈ IM(G).
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Strongly base orderable matroid

A matroid is strongly base order able if for any two bases B1 and
B2 there is a bijection π : B1 −→ B2 satisfying the multiple
symmetric exchange property, that is : (B1 \ A) ∪ π(A) is a basis
for every A ⊂ B1.

• π restricted to the intersection B1 ∩ B2 is the identity.

• (B2 \ π(A)) ∪ A is a basis for every A ⊂ B1 (by the multiple
symmetric exchange property for B1 \ A).

• The class of strongly base orderable matroids is closed under
taking minors.
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Strongly base orderable matroid

Theorem (Lasoń, M. Micha lek) If M is a strong order able base
matroid, then the toric ideal IM is generated by quadratics
binomials corresponding to symmetric exchanges.

Proof (idea) Since IM , as a toric ideal, is generated by binomials
then it is enough to prove that all binomials of IM belong to the
ideal JM generated by quadratics binomials corresponding to
symmetric exchanges.

Fix n ≥ 2. We shall prove by decreasing induction on the overlap
function

d(yB1 · · · yBn , yD1 · · · yDn) := max
π∈Sn

n∑
i=1

|Bi ∩ Dπ(i)|

that a binomial yB1 · · · yBn − yD1 · · · yDn ∈ IM belongs to JM .
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Variants of White’s conjecture

Conjecture 1 For any matroid M, the toric ideal IM has a Gröbner
basis consisting of quadratics binomials.

Sturmfels (1996) proved that Conjecture 1 holds for uniform
matroids.

Conjecture 2 For any matroid M, the toric ideal IM is generated by
quadratics binomials.

Conjecture 3 For any matroid M, the quadratic binomials of IM are
in the ideal generated by the binomials yB1yB2 − yD1yD2 such that
the pair of bases D1,D2 can be obtained from the pair B1,B2 by a
symmetric exchange.

Remark : Conjectures 2 and 3 together imply White’s conjecture.
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J.L. Raḿırez Alfonśın I3M, Université Montpellier 2

Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Variants of White’s conjecture

Conjecture 1 For any matroid M, the toric ideal IM has a Gröbner
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Complete Intersection

The toric ideal IM is a complete intersection if and only if there
exists a set of homogeneous binomials g1, . . . , gs ∈ R such that
s = ht(IM) and IM = (g1, . . . , gs).

Equivalently, IM is a complete intersection if

µ(IM) = ht(IM) = |B| − (n − c + 1)

where µ(IM) denotes the minimal number of generators of IM and
c the number of connected components of M.
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Complete Intersection

The number of connected components of a matroid M is given by
the number of equivalent classes induced by the relation R defined
as follows : aRb if and only if there exist a circuit of M containing
both a, b ∈ M.

1

2

3

4

We have B(M(G )) = {123, 124, 134, 234}. There is one equivalent
classe, and thus ht(IM) = 4− (4− 1 + 1) = 0.
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Complete Intersection

Recall that

IM =
(
{yB1 · · · yBs−yD1 · · · yDs |B1∪· · ·∪Bs = D1∪· · ·∪Ds}

)
(1)

• If r = n then ht(IM) = 1− (n − n + 1) = 0, and clearly by (1),
we have IM = (0). So, in this case IM is complete intersection.

• If r = n−1 then ht(IM) = n− (n−1 + 1) = 0, and clearly by (1),
we have IM = (0). So, in this case IM is also complete intersection.

Thus, we only consider the case r ≤ n − 2.
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Complete Intersection : duality and minors

We denote by M∗ the dual matroid of M.

σ is the isomorphism of k-algebras σ : R −→ k[yE\B |B ∈ B]
induced by yB 7→ yE\B .

It is straightforward to check that σ(IM) = IM∗

Thus, IM is a complete intersection if and only if IM∗ also is.

Proposition Let M ′ be a minor of M. If IM is a complete
intersection, then IM′ also is.
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Complete Intersection : rank 2 case

If M has rank 2 then we associate to M the graph HM with vertex
set E and edge set B.

Example :
B(U2,4) = {B1 = {1, 2},B2 = {1, 3},B3 = {1, 4},B4 =
{2, 3},B5 = {2, 4},B6 = {3, 4}}

B1 B2 B3 B4 B5 B6
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Complete Intersection : rank 2 case

If M has rank 2 then we associate to M the graph HM with vertex
set E and edge set B.

Example :
B(U2,4) = {B1 = {1, 2},B2 = {1, 3},B3 = {1, 4},B4 =
{2, 3},B5 = {2, 4},B6 = {3, 4}}

B1 B2 B3 B4 B5 B6
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
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Complete Intersection : rank 2 case
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Complete Intersection : rank 2 case

If M has rank 2 then we associate to M the graph HM with vertex
set E and edge set B.
• It turns out that IM coincides with the toric ideal of the graph
HM .

Theorem (I. Bermejo, I. Garcia-Marco, E. Reyes) Whenever IH(M)

is a complete intersection, then HM does not contain K2,3 as
subgraph.
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Complete Intersection : rank 2 case

K2,3

G
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Complete Intersection : rank 2 case

K2,3

G

Therefore IG is not complete intersection.
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Complete Intersection : rank 2 case

Proposition Let M be a rank 2 matroid on a ground set of n ≥ 4
elements without loops or coloops. Then, IM is a complete
intersection if and only if n = 4.

Proof (idea) (⇒) Assume that n ≥ 5 and let us prove that IM is
not a complete intersection.

Since M has no loops or coloops, we may assume that
B1 = {1, 2},B2 = {3, 4},B3 = {1, 5} ∈ B.

Since B1,B2 ∈ B, by the symmetric exchange axiom, we can also
assume that B4 = {1, 3},B5 = {2, 4} ∈ B.

If {4, 5} ∈ B, then HM has a subgraph K2,3 and IM is not a
complete intersection.

If {4, 5} /∈ B also implies that HM has a subgraph K2,3.

(⇐) By computer.
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Complete Intersection : general case

Theorem (Garcia-Marco, R.A, 2014) Let M be a matroid without
loops or coloops and with n > r + 1. Then, IM is a complete
intersection if and only if n = 4 and M is the matroid whose set of
bases is :

1 B = {{1, 2}, {3, 4}, {1, 3}, {2, 4}},
2 B = {{1, 2}, {3, 4}, {1, 3}, {2, 4}, {1, 4}}, or

3 B = {{1, 2}, {3, 4}, {1, 3}, {2, 4}, {1, 4}, {2, 3}}, i.e.,
M = U2,4.
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Detecting minors

We consider the following binary equivalence relation ∼ on the set
of pairs of bases :

{B1,B2} ∼ {B3,B4} ⇐⇒ B1 ∪ B2 = B3 ∪ B4 as multisets,

and we denote by ∆{B1,B2} the cardinality of the equivalence class
of {B1,B2}.
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Detecting minors

We consider the graph

1

2

3

4

Therefore,
B(M(G )) = {B1 = {123},B2 = {124},B3 = {134},B4 = {234}}.
It can be checked that the equivalent class of {Bi ,Bj} is {Bi ,Bj},
that is, ∆{Bi ,Bj} = 1 for any pair 1 ≤ i 6= j ≤ 4.
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Detecting minors

Lemma For every B1,B2 ∈ B, then 2d−1 ≤ ∆{B1,B2} ≤
(2d−1

d

)
,

where d := |B1 \ B2|.

Proof Take e ∈ B1 \ B2. By the multiple symmetric exchange
property, for every A1 such that e ∈ A1 ⊂ (B1 \ B2), there exists
A2 ⊂ B2 such that both B ′1 := (B1 ∪ A2) \ A1 and
B ′2 := (B2 ∪ A1) \ A2 are bases.

Since B1 ∪ B2 = B ′1 ∪ B ′2 as multisets, we derive that ∆{B1,B2} is
greater or equal to the number of sets A1 such that
e ∈ A1 ⊂ (B1 \ B2), which is exactly 2d−1.

∆{B1,B2} ≤
(2d−1

d

)
easy.
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Detecting minors

Lemma For every B1,B2 ∈ B, then 2d−1 ≤ ∆{B1,B2} ≤
(2d−1

d

)
,

where d := |B1 \ B2|.
Proof Take e ∈ B1 \ B2. By the multiple symmetric exchange
property, for every A1 such that e ∈ A1 ⊂ (B1 \ B2), there exists
A2 ⊂ B2 such that both B ′1 := (B1 ∪ A2) \ A1 and
B ′2 := (B2 ∪ A1) \ A2 are bases.

Since B1 ∪ B2 = B ′1 ∪ B ′2 as multisets, we derive that ∆{B1,B2} is
greater or equal to the number of sets A1 such that
e ∈ A1 ⊂ (B1 \ B2), which is exactly 2d−1.

∆{B1,B2} ≤
(2d−1

d

)
easy.
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Detecting minors

Lemma Let B1,B2 ∈ B of a matroid M and consider the matroid
M ′ := (M/(B1 ∩ B2))|(B14B2) on the ground set B1 4 B2. Then,
the number of bases-cobases of M ′ is equal to 2∆{B1,B2}.

Theorem (Garcia-Marco, R.A, 2014) If M has a minor M ′ ' Ud ,2d

for some d ≥ 2, then there exist B1,B2 ∈ B such that
∆{B1,B2} =

(2d−1
d

)
.

Theorem (Garcia-Marco, R.A, 2014) M is binary if and only if
∆{B1,B2} 6= 3 for every B1,B2 ∈ B.

Theorem (Garcia-Marco, R.A, 2014) M has a minor M ′ ' U3,6 if
and only if ∆{B1,B2} = 10 for some B1,B2 ∈ B.
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Detecting minors

Lemma Let B1,B2 ∈ B of a matroid M and consider the matroid
M ′ := (M/(B1 ∩ B2))|(B14B2) on the ground set B1 4 B2. Then,
the number of bases-cobases of M ′ is equal to 2∆{B1,B2}.

Theorem (Garcia-Marco, R.A, 2014) If M has a minor M ′ ' Ud ,2d

for some d ≥ 2, then there exist B1,B2 ∈ B such that
∆{B1,B2} =

(2d−1
d

)
.

Theorem (Garcia-Marco, R.A, 2014) M is binary if and only if
∆{B1,B2} 6= 3 for every B1,B2 ∈ B.

Theorem (Garcia-Marco, R.A, 2014) M has a minor M ′ ' U3,6 if
and only if ∆{B1,B2} = 10 for some B1,B2 ∈ B.
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System of generators

ν(IM) = the number of minimal sets of binomial generators of IM ,
where the sign of a binomial does not count

µ(IM) = the minimal number of generators of IM .

Theorem (Garcia-Marco, R.A, 2014) Let
R = {{B1,B2}, . . . , {B2s−1,B2s}} be a set of representatives of ∼
and set ri := ∆{B2i−1,B2i} for all i ∈ {1, . . . , s}. Then,

1 µ(IM) ≥ (b2 − b − 2s)/2, where b := |B|, and

2 ν(IM) ≥
∏s

i=1 r
ri−2
i .

Moreover, in both cases equality holds whenever IM is generated by
quadratics.
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

System of generators

ν(IM) = the number of minimal sets of binomial generators of IM ,
where the sign of a binomial does not count

µ(IM) = the minimal number of generators of IM .

Theorem (Garcia-Marco, R.A, 2014) Let
R = {{B1,B2}, . . . , {B2s−1,B2s}} be a set of representatives of ∼
and set ri := ∆{B2i−1,B2i} for all i ∈ {1, . . . , s}. Then,

1 µ(IM) ≥ (b2 − b − 2s)/2, where b := |B|, and

2 ν(IM) ≥
∏s

i=1 r
ri−2
i .

Moreover, in both cases equality holds whenever IM is generated by
quadratics.

Question Can we characterize those matroids M with ν(IM) = 1 ?
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The basis graph of a matroid M is the undirected graph GM with
vertex set B and edges {B,B ′} such that |B \ B ′| = 1. The
diameter of a graph is the maximum distance between two vertices
of the graph.

Basis graph GU2,4

{1,3} {1,4}

{3,4}

{2,4}

{2,3}

{1,2}
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System of generators

Theorem (Garcia-Marco, R.A, 2014) Let M be a rank r ≥ 2
matroid. Then, ν(IM) = 1 if and only if M is binary and the
diameter of GM is at most 2.

Proof (idea) (⇒) By the previous theorem,we have that
∆{B1,B2} = 1 or 2 for all B1,B2 ∈ B.
By above Lemmas and Theorem binary, this is equivalent to M is
binary and |B1 \ B2| ∈ {1, 2} for all B1,B2 ∈ B. Clearly this implies
that the diameter of GM is less or equal to 2.

(⇐) More complicated.
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Example

Matroid M(G ) associated to graph G .

1

2

3
45

B(M(G )) = {B1 = {124},B2 = {125},B3 = {134},B4 =
{135},B5 = {145},B6 = {234},B7 = {235},B8 = {345}}
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Definitions

Let V = {v1, . . . , vn} be a set of distincts elements. A collection ∆
of subsets of V is called a simplicial complex if for every F ∈ ∆
and G ⊆ F ,G ∈ ∆.

Elements of the simplicial complex ∆ are called faces of ∆.

Maximal faces (under inclusion) are called facets.

If F ∈ ∆ then the dimension of F is dim F = |F | − 1.

The dimension of ∆ is defined to be dim ∆ = max{dim F |F ∈ ∆}.
The complex ∆ is said to be pure if all its facets have the same
dimension.

If {v} ∈ ∆ then we call v a vertex of ∆.
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J.L. Raḿırez Alfonśın I3M, Université Montpellier 2

Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Definitions

Let V = {v1, . . . , vn} be a set of distincts elements. A collection ∆
of subsets of V is called a simplicial complex if for every F ∈ ∆
and G ⊆ F ,G ∈ ∆.

Elements of the simplicial complex ∆ are called faces of ∆.

Maximal faces (under inclusion) are called facets.

If F ∈ ∆ then the dimension of F is dim F = |F | − 1.

The dimension of ∆ is defined to be dim ∆ = max{dim F |F ∈ ∆}.
The complex ∆ is said to be pure if all its facets have the same
dimension.

If {v} ∈ ∆ then we call v a vertex of ∆.
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Definitions

Let d − 1 = dim ∆. The f -vector of ∆ is the vector
f (∆) := (f−1, f0, . . . , fd−1), where fi = |{F ∈ ∆| dim F = i}| is
the number of i-dimensional faces in ∆.

Let ∆ be a simplicial complex with vertex set V .

• The k-skeleton of ∆ is [∆k ] = {F ∈ ∆|dim F ≤ k}.
• If W ⊆ V then the restriction of ∆ to W is
∆|W = {F ∈ ∆|F ⊆W }. If W = V − {v} then we will write
∆−v = ∆|W and call ∆−v the deletion of ∆ with respect to v or
the deletion of v from ∆.

• If W ⊆ V then link∆(W ) = {F ∈ ∆|W ∩ F = ∅,W ∪ F ∈ ∆}.
We call this the link of ∆ with respect to W .

• If v 6∈ V then the cone over ∆ is C∆ = ∆ ∪ {F ∪ {v}|F ∈ ∆}
v is called the apex of C∆.
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Definitions

Observation Since if F ∈ ∆ and G ⊆ F then G ∈ ∆, the complex
∆ is determined completely by those faces that are not contained
in any other face, that is the facets of ∆.

• Typically, we will describe a simplicial complex by listing its
facets.
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Example

Simplicial complexe ∆ of dimension 2
1 2

3

5 4

• ∆ is not pure as it has facets of dimension 1 (12 and 45) and of
dimension 2 (234 and 135).

• f (∆) = (1, 5, 8, 2).

• The link∆(3) is the complex with facets 15 and 24, while the
link∆(5) has facets 13 and 4.

• The deletion of 3 has facets 12, 24, 45 and 15. The deletion of 5
has facets 234, 13 and 12.
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Matroid complex

Recall that axioms (I1), (I2) for the independent set I(M) of a
matroid M on a set V are equivalent to I being an abstract
simplicial complex on V .

The independent sets of M form a simplicial complex, called the
independence complex of M.

Axiom (I3) can be replaced by the following one
(I3)′ for every A ⊂ E the restriction

I|A = {I ∈ I : I ⊂ A}

is a pure simplicial complex. A simplicial complex ∆ over the

vertices V is called matroid complex if axiom (I3)′ is verified.
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Axiom (I3) can be replaced by the following one
(I3)′ for every A ⊂ E the restriction

I|A = {I ∈ I : I ⊂ A}

is a pure simplicial complex. A simplicial complex ∆ over the

vertices V is called matroid complex if axiom (I3)′ is verified.
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Examples

Two 1-dimensional simplicial complexes.
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(a) (b)

(a) Matroid complex (this can be checked by verifying that every
A ⊆ {1, . . . , 6}, ∆A is pure).

(b) is not a matroid complex since it admits a restriction that is
not pure, for instance, the facets of ∆1,3,4 are {1} and {3, 4} as
facets so the restriction is not pure.
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Standard constructions

Let ∆ be a matroid complex with vertex set V . Then, the
following complexes are also matroid complexes

• ∆|W for every W ⊆ V .

• C∆, the cone over ∆.

• [∆]k , the k-skeleton of ∆.

• link∆(F ) for every F ∈ ∆.

Remarks : Link and restriction are identical to the contraction and
deletion constructions from matroids.

A matroid complex ∆M is a cone if and only if M has a coloop (or
isthme), which corresponds to the apex defined above.
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Standard constructions

Lemma Let ∆ be a 1-dimensional simplicial complex. Then, ∆ is
matroid if and only if for every vertex v and every edge E ,
link∆(v) ∩ E 6= ∅.
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Stanley-Reisner ideal

Let k be a field. We can associate to a simplicial complex ∆, a
square free monomial ideal in S = k[x1, . . . , xn],

I∆ =

(
xF =

∏
i∈F

xi |F 6∈ ∆

)
⊆ S .

The ideal I∆ is called the Stanley-Reisner ideal of ∆ and S/I∆ the
Stanley-Reisner ring of ∆.
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Stanley-Reisner ideal

Let k be a field. We can associate to a simplicial complex ∆, a
square free monomial ideal in S = k[x1, . . . , xn],

I∆ =

(
xF =

∏
i∈F

xi |F 6∈ ∆

)
⊆ S .

The ideal I∆ is called the Stanley-Reisner ideal of ∆ and S/I∆ the
Stanley-Reisner ring of ∆.
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Stanley-Reisner ideal

Facts

• Hilbert function

hS/I∆(h) = dimk [S/I∆]h

where [S/I∆] is the vector space of degree h homogeneous
polynomial outside of I∆.

• Hilbert series

HS/I∆(t) =
∞∑
i=1

hS/I∆(i)t i =
h0 + h1t + · · ·+ hd t

d

(1− t)d

where d =dim I∆.

h(∆) = (h0, . . . , hd) is known as the h-vector of ∆.
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h-vector of simplicial complexes

Assume that dim ∆ = d − 1.

We may study the h-vector of a simplicial complex of ∆
h(∆) = (h0, . . . , hd) from its f -vector via the relation

d∑
i=0

fi−1t
i (1− t)d−i =

d∑
i=0

hi t
i

In particular, for any j = 0, . . . , d , we have

fj−1 =
j∑

i=0

(d−i
j−1

)
hi

hj =
j∑

i=0
(−1)j−i

(d−i
j−1

)
fi−1.
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h-vector of simplicial complexes

The h-number of a matroid M may be interpreted combinatorially
in terms of certain invariants of M.

Fix a total ordering {v1, < v2 < · · · < vn} on E (M).

Given a bases B, an element vj ∈ B is internally passive in B if
there is some vi ∈ E \ B such that vi < vj and (B \ vj) ∪ vi is a
bases of M.

Dually, vj ∈ E \ B is externally passive in B if there is some vi ∈ B
such that vi < vj and (B \ vi ) ∪ vj is a bases of M.

Remark vj is externally passive in B if it is internally passive in
E \ B in M∗.
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

h-vector of simplicial complexes

The h-number of a matroid M may be interpreted combinatorially
in terms of certain invariants of M.

Fix a total ordering {v1, < v2 < · · · < vn} on E (M).

Given a bases B, an element vj ∈ B is internally passive in B if
there is some vi ∈ E \ B such that vi < vj and (B \ vj) ∪ vi is a
bases of M.

Dually, vj ∈ E \ B is externally passive in B if there is some vi ∈ B
such that vi < vj and (B \ vi ) ∪ vj is a bases of M.

Remark vj is externally passive in B if it is internally passive in
E \ B in M∗.
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h-vector of simplicial complexes

Bjorner proved that
d∑

i=0
hj t

j =
∑

B∈B(M)

t ip(B)

where ip(B) counts the number of internally passive elements in B.

Remark This proves that the h-numbers of a matroid complex are
nonnegative.

Alternatively,
d∑

i=0
hj t

j =
∑

B∈B(M∗)

tep(B)

where ep(B) counts the number of externally passive elements in
B.
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h-vector of simplicial complexes

Remarks

• Since the f -numbers (and hence the h-numbers) of a matroid
depend only on its independent sets, then above equations hold for
any ordering of the ground set of M.

• h-vector of a matroid complex ∆M is actually a specialization of
the Tutte polynomial of the corresponding matroid ; precisely we
have T (M; x , 1) = h0x

d + h1x
d1 + · · ·+ hd
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Example

We consider the matroid complex ∆(U2,3)

We have that dim∆ = 1 and f−1 = 1, f0 = 3 and f1 = 3.

Therefore

2∑
i=0

fi−1t
i (1− t)2−i = f−1t

0(1− t)2 + f0t(1− t) + f1t
2(1− t)0

= (1− t)2 + 3t(1− t) + 3t2

= 1− 2t + t2 + 3t − 3t − 3t2 + 3t2

= t2 + t + 1 =
2∑

i=0
hi t

i .

Obtaining that h(∆) = (1, 1, 1).
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Example continuation

Let B(U2,3) = {B1 = {1, 2},B2 = {1, 3},B3 = {2, 3}}.

We can check that

- there is not internally passive element in B1

- 3 is internally passive element of B2

- 2 and 3 are internally passive elements of B3

Thus

2∑
i=0

hi t
i =

∑
B∈B(U2,3)

t ip(B) = 1 + t + t2.
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Example continuation

We have that
T (U3,2; x , y) = x2 + x + y ,

and thus

T (U3,2; t, 1) = t2 + t + 1 =
2∑

i=0

hi t
i .
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Order ideal

An order ideal O is a family of monomials (say of degree at most
r) with the property that if µ ∈ O and ν|µ then ν ∈ O.

Let Oi denote the collection of monomials in O of degree i . Let
Fi (O) := |Oi | and F (O) = (F0(O),F1(O), . . . ,Fr (O)).

We say that O is pure if all its maximal monomials (under
divisibility) have the same degree.

A vector h = (h0, . . . , hd) is a pure O-sequence if there is a pure
ideal O such that h = F (O).
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Example

The pure monomial order ideal (inside k[x , y , z ] with maximal
monomials xy3z and x2z3 is :

X = {xy3z, x2z3;

y3z , xy2z , xy3, xz3, x2z2, y2z , y3, xyz ,
xy2, xz2, z3, x2z , yz , y2, xz , xy , z2, x2, z , y , x , 1}.

Hence the h-vector of X is the pure O-sequence
h = (1, 3, 6, 7, 5, 2).
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Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Example

The pure monomial order ideal (inside k[x , y , z ] with maximal
monomials xy3z and x2z3 is :

X = {xy3z, x2z3; y3z , xy2z , xy3, xz3, x2z2, y2z , y3, xyz ,
xy2, xz2, z3, x2z , yz , y2, xz , xy , z2, x2, z , y , x ,

1}.

Hence the h-vector of X is the pure O-sequence
h = (1, 3, 6, 7, 5, 2).
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Stanley’s conjecture

A longstanding conjecture of Stanley suggest that matroid
h-vectors are highly structured

Conjecture (Stanley, 1976) For any matroid M, h(M) is a pure
O-sequence.

Conjecture hold for several families of matroid complexes :

(Merino, Noble, Ramirez-Ibañez, Villarroel, 2010) Paving matroids

(Merino, 2001) Cographic matroids

(Oh, 2010) Cotranversal matroids

(Schweig, 2010) Lattice path matroids

(Stokes, 2009) Matroids of rank at most three

(De Loera, Kemper, Klee, 2012) for all matroids on at most nine
elements all matroids of corank two.
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J.L. Raḿırez Alfonśın I3M, Université Montpellier 2

Theory of matroids II: toic ideals and simplicial complexes



Toric ideals Simplicial complexes

Example

We consider the matroid complexe ∆ associated to the rank 2
matroid induced by the graph G

1

2

3

4

We have that dim ∆ = 1 and f−1 = 1, f0 = 4 and f1 = 4.
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Example

B(M(G )) = {B1 = {1, 3},B2 = {1, 4},B3 = {2, 3},B4 = {2, 4}}.

- there is not internally passive element in B1

- 4 is internally passive element of B2

- 2 is internally passive element of B3

- 2 and 4 are internally passive elements of B4

Thus,
2∑

i=0
hi t

i =
∑

B∈B(M(G))

t ip(B) = 1 + t + t + t2 = 1 + 2t + t2.

Obtaining the h-vector h(1, 2, 1). Since O = (1, x1, x2, x1x2) is an
order ideal then h(1, 2, 1) is pure O-sequence.
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