Theory of matroids II: toric ideals and simplicial complexes

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

XX Coloquio Latinoamericano de Álgebra "Ingeniero Orlando Eugenio Villamayor" Lima, Peru, December 12, 2014

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

A matroid *M* is an ordered pair (E, \mathcal{I}) where *E* is a finite set $(E = \{1, ..., n\})$ and \mathcal{I} is a family of subsets of *E* verifying the following conditions :

- (11) $\emptyset \in \mathcal{I}$,
- (12) If $I \in \mathcal{I}$ and $I' \subset I$ then $I' \in \mathcal{I}$,
- (13) If $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$ then there exists $e \in I_2 \setminus I_1$ such that $I_1 \cup e \in \mathcal{I}$.

The members in \mathcal{I} are called the independents of M. A subset in E not belonging to \mathcal{I} is called dependent.

A base of a matroid is a maximal independent set. We denote by ${\cal B}$ the set of all bases of a matroid.

A base of a matroid is a maximal independent set. We denote by ${\cal B}$ the set of all bases of a matroid. The family ${\cal B}$ verifies the following conditions :

(B1) $\mathcal{B} \neq \emptyset$,

(B2) (exchange propety) $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$ then there exist $y \in B_2 \setminus B_1$ such that $(B_1 \setminus x) \cup y \in \mathcal{B}$.

A base of a matroid is a maximal independent set. We denote by ${\cal B}$ the set of all bases of a matroid. The family ${\cal B}$ verifies the following conditions :

 $(B1) \ \mathcal{B} \neq \emptyset,$

(B2) (exchange propety) $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$ then there exist $y \in B_2 \setminus B_1$ such that $(B_1 \setminus x) \cup y \in \mathcal{B}$.

If \mathcal{I} is the family of subsets contained in a set of \mathcal{B} then (E, \mathcal{I}) is a matroid.

Let M be a matroid on a finite ground set $E = \{1, ..., n\}$. We denote by \mathcal{B} the set of bases of M.

Let M be a matroid on a finite ground set $E = \{1, ..., n\}$. We denote by \mathcal{B} the set of bases of M.

Let k be an arbitrary field and consider $k[x_1, \ldots, x_n]$ a polynomial ring over k.

- Let M be a matroid on a finite ground set $E = \{1, ..., n\}$. We denote by \mathcal{B} the set of bases of M.
- Let k be an arbitrary field and consider $k[x_1, \ldots, x_n]$ a polynomial ring over k.
- For each base $B \in \mathcal{B}$, we introduce a variable y_B and we denote by R the polynomial ring in the variables y_B , i.e., $R := k[y_B | B \in \mathcal{B}]$.

- Let M be a matroid on a finite ground set $E = \{1, ..., n\}$. We denote by \mathcal{B} the set of bases of M.
- Let k be an arbitrary field and consider $k[x_1, \ldots, x_n]$ a polynomial ring over k.
- For each base $B \in \mathcal{B}$, we introduce a variable y_B and we denote by R the polynomial ring in the variables y_B , i.e., $R := k[y_B | B \in \mathcal{B}]$.
- A binomial in R is a difference of two monomials, an ideal generated by binomials is called a *binomial ideal*.

We consider the homomorphism of k-algebras $\varphi: R \longrightarrow k[x_1, \ldots, x_n]$ induced by

$$y_B \mapsto \prod_{i \in B} x_i.$$

The image of φ is a standard graded *k*-algebra, which is called the bases monomial ring of the matroid *M* and it is denoted by S_M .

We consider the homomorphism of k-algebras $\varphi: R \longrightarrow k[x_1, \ldots, x_n]$ induced by

$$y_B\mapsto \prod_{i\in B}x_i.$$

The image of φ is a standard graded *k*-algebra, which is called the bases monomial ring of the matroid *M* and it is denoted by S_M .

The kernel of φ , which is the presentation ideal of S_M , is called the toric ideal of M and is denoted by I_M .

We consider the homomorphism of k-algebras $\varphi: R \longrightarrow k[x_1, \ldots, x_n]$ induced by

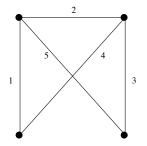
$$y_B\mapsto \prod_{i\in B}x_i.$$

The image of φ is a standard graded *k*-algebra, which is called the bases monomial ring of the matroid *M* and it is denoted by S_M .

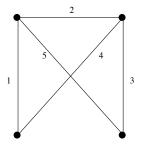
The kernel of φ , which is the presentation ideal of S_M , is called the toric ideal of M and is denoted by I_M .

Observation Let *b* be the number of bases of a matroid *M* on *n* elements. Then, I_M is generated by the kernel of the integer $n \times b$ matrix whose columns are the zero-one incidence vectors of the bases of *M*.

Matroid M(G) associated to graph G. We have r(M(G)) = 3.



Matroid M(G) associated to graph G. We have r(M(G)) = 3.



$$\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}$$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

 $\mathcal{B}(M(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}$

	B_1	B_2	<i>B</i> ₃	<i>B</i> ₄	B_5	<i>B</i> ₆	<i>B</i> ₇	<i>B</i> ₈
1	1	1	1	1	1	0	0	0 \
	1	1	0	0	1 0	1	1	0
	1	0	1	1	0	1	0	1
	0	0		0	1	1	1	1
	0	1	0	1	1	0	1	1 /

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

 $\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}$

	B_1	B_2	<i>B</i> ₃	<i>B</i> ₄	B_5	<i>B</i> ₆	<i>B</i> ₇	<i>B</i> ₈
1	1	1	1	1		0	0	0 \
	1	1	0	0	0	1	1	0
	1	0	1	1	0	1	0	1
	0	0	1	0	1	1	1	1
	0	1	0	1	1	0	1	1/

By considering $\varphi : k[y_{B_1}, \dots, y_{B_8}] \longrightarrow k[x_1, \dots, x_5]$ we have that $y_{B_1} \mapsto x_1 x_2 x_3, y_{B_2} \mapsto x_1 x_2 x_5, y_{B_3} \mapsto x_1 x_3 x_4, \dots$

J.L. Ramírez Alfonsín

 $\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}$

	B_1	B_2	<i>B</i> ₃	<i>B</i> ₄	B_5	<i>B</i> ₆	<i>B</i> ₇	B_8
1	1	1	1	1	1	0	0	0 \
	1	1	0	0	0	1	1	0
	1	0		1	0	1	0	1
	0	0		-	1	1	1	1
	0	1	0	1	1	0	1	1/

By considering $\varphi : k[y_{B_1}, \dots, y_{B_8}] \longrightarrow k[x_1, \dots, x_5]$ we have that $y_{B_1} \mapsto x_1 x_2 x_3, y_{B_2} \mapsto x_1 x_2 x_5, y_{B_3} \mapsto x_1 x_3 x_4, \dots$ An element of the kernel of φ (*i.e.*, $I_{M(G)}$) is : $y_{B_7} y_{B_4} - y_{B_2} y_{B_8}$.

J.L. Ramírez Alfonsín

• It is well known that I_M is a prime, binomial and homogeneous ideal.

• It is well known that I_M is a prime, binomial and homogeneous ideal.

Observation Since $R/I_M \simeq S_M$, it follows that the height of I_M is $ht(I_M) = |\mathcal{B}| - \dim(S_M) = |\mathcal{B}| - (n - c + 1)$, where *c* is the number of connected components of *M*.

Let \mathcal{B} denote the set of bases of M. By definition \mathcal{B} is not empty and satisfies the following exchange axiom :

For every $B_1, B_2 \in \mathcal{B}$ and for every $e \in B_1 \setminus B_2$, there exists $f \in B_2 \setminus B_1$ such that $(B_1 \cup \{f\}) \setminus \{e\} \in \mathcal{B}$.

Let \mathcal{B} denote the set of bases of M. By definition \mathcal{B} is not empty and satisfies the following exchange axiom :

For every $B_1, B_2 \in \mathcal{B}$ and for every $e \in B_1 \setminus B_2$, there exists $f \in B_2 \setminus B_1$ such that $(B_1 \cup \{f\}) \setminus \{e\} \in \mathcal{B}$.

Brualdi proved that the exchange axiom is equivalent to the symmetric exchange axiom :

For every B_1, B_2 in \mathcal{B} and for every $e \in B_1 \setminus B_2$, there exists $f \in B_2 \setminus B_1$ such that both $(B_1 \cup \{f\}) \setminus \{e\} \in \mathcal{B}$ and $(B_2 \cup \{e\}) \setminus \{f\} \in \mathcal{B}$.

Suppose that a pair of bases D_1, D_2 is obtained from a pair of bases B_1, B_2 by a symmetric exchange. That is $D_1 = (B_1 \setminus e) \cup f$ and $D_2 = (B_2 \setminus f) \cup e$ for some $e \in B_1$ and $f \in B_2$.

Suppose that a pair of bases D_1, D_2 is obtained from a pair of bases B_1, B_2 by a symmetric exchange. That is $D_1 = (B_1 \setminus e) \cup f$ and $D_2 = (B_2 \setminus f) \cup e$ for some $e \in B_1$ and $f \in B_2$.

We say that the quadratic binomial $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ correspond to a symmetric exchange.

Suppose that a pair of bases D_1, D_2 is obtained from a pair of bases B_1, B_2 by a symmetric exchange. That is $D_1 = (B_1 \setminus e) \cup f$ and $D_2 = (B_2 \setminus f) \cup e$ for some $e \in B_1$ and $f \in B_2$.

We say that the quadratic binomial $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ correspond to a symmetric exchange.

It is clear that such binomial belong to the ideal I_M .

- Suppose that a pair of bases D_1, D_2 is obtained from a pair of bases B_1, B_2 by a symmetric exchange. That is $D_1 = (B_1 \setminus e) \cup f$ and $D_2 = (B_2 \setminus f) \cup e$ for some $e \in B_1$ and $f \in B_2$.
- We say that the quadratic binomial $y_{B_1}y_{B_2} y_{D_1}y_{D_2}$ correspond to a symmetric exchange.
- It is clear that such binomial belong to the ideal I_M .
- Conjecture (White 1980) For every matroid M its toric ideal I_M is generated by quadratic binomials corresponding to symmetric exchanges.

Observation for $B_1, \ldots, B_s, D_1, \ldots, D_s \in \mathcal{B}$, the homogeneous binomial $y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s}$ belongs to I_M if and only if $B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s$ as multisets.

Observation for $B_1, \ldots, B_s, D_1, \ldots, D_s \in \mathcal{B}$, the homogeneous binomial $y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s}$ belongs to I_M if and only if $B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s$ as multisets.

Since I_M is a homogeneous binomial ideal, it follows that

 $I_M = (\{y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s} \mid B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s \text{ as multisets}\})$

Observation for $B_1, \ldots, B_s, D_1, \ldots, D_s \in \mathcal{B}$, the homogeneous binomial $y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s}$ belongs to I_M if and only if $B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s$ as multisets.

Since I_M is a homogeneous binomial ideal, it follows that

$$I_M = (\{y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s} \mid B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s \text{ as multisets}\})$$

White's original formulation Two sets of bases of a matroid have equal union (as multiset), then one can pass between them by a sequence of symmetric exchanges.

Observation for $B_1, \ldots, B_s, D_1, \ldots, D_s \in \mathcal{B}$, the homogeneous binomial $y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s}$ belongs to I_M if and only if $B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s$ as multisets.

Since I_M is a homogeneous binomial ideal, it follows that

$$I_M = (\{y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s} \mid B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s \text{ as multisets}\})$$

White's original formulation Two sets of bases of a matroid have equal union (as multiset), then one can pass between them by a sequence of symmetric exchanges.

Observation White's conjecture does not depend on the field k.

Example continued

We had $\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}.$ We also had that $y_{B_7}y_{B_4} - y_{B_2}y_{B_8} \in I_{\mathcal{M}(G)}.$ We can check that $B_7 \cup B_4 = \{2, 4, 5, 1, 3, 5\} = B_2 \cup B_8.$

• Blasiak (2008) has confirmed the conjecture for graphical matroids.

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank \leq 3.

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank \leq 3.
- Schweig (2011) proved the case of lattice path matroids which are a subclass of transversal matroids.

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank \leq 3.
- Schweig (2011) proved the case of lattice path matroids which are a subclass of transversal matroids.
- Bonin (2013) confirmed the conjecture for sparse paving matroids

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank \leq 3.
- Schweig (2011) proved the case of lattice path matroids which are a subclass of transversal matroids.
- Bonin (2013) confirmed the conjecture for sparse paving matroids
- Lasoń, Michałek (2014) proved for strongly base orderables matroids.

Blasiak's reduction

Let *M* be a matroid on a ground set *E* with |E| = nr(M) where r(M) is the rank of *M*.

Let *M* be a matroid on a ground set *E* with |E| = nr(M) where r(M) is the rank of *M*.

The *n*-base graph of M, which is denoted by $G_n(M)$, has as its vertex set the set of all sets of *n* disjoint bases (a set of *n* bases $\{B_1, \ldots, B_n\}$ of M is disjoint if and only if

$$E|=\bigcup_{i=1}^n B_i.$$

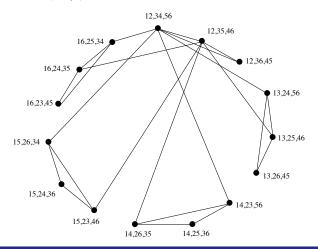
There is an edge between $\{B_1, \ldots, B_n\}$ and $\{D_1, \ldots, D_n\}$ if and only if $B_i = D_j$ for some i, j.

J.L. Ramírez Alfonsín

We have that $r(U_{2,6}) = 2$, and let us take n = 3.

$G_2(U_{2,6})$

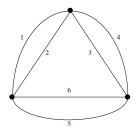
We have that $r(U_{2,6}) = 2$, and let us take n = 3. So



J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

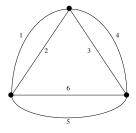
M(G)



J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

M(G)

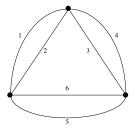


We have that r(M(G)) = 2 and we set n = 3.

J.L. Ramírez Alfonsín

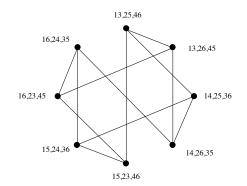
I3M, Université Montpellier 2

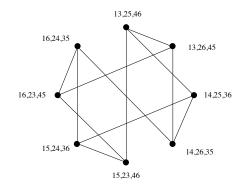
M(G)



We have that r(M(G)) = 2 and we set n = 3. $\mathcal{B}(M(G)) = \{B_1 = \{1,3\}, B_2 = \{1,4\}, B_3 = \{1,5\}, B_4 = \{1,6\}, B_5 = \{2,3\}, B_6 = \{2,4\}, B_7 = \{2,5\}, B_8 = \{2,6\}, B_9 = \{3,5\}, B_{10} = \{3,6\}, B_{11} = \{4,5\}, B_{12} = \{4,6\}\}.$

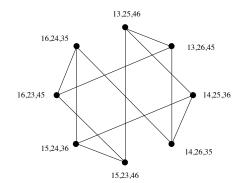
J.L. Ramírez Alfonsín





We notice that $y_{B_4}y_{B_6}y_{B_9} - y_{B_1}y_{B_7}y_{B_{12}} \in I_{M(G)}$

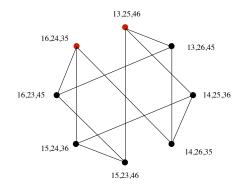
J.L. Ramírez Alfonsín



We notice that $y_{B_4}y_{B_6}y_{B_9} - y_{B_1}y_{B_7}y_{B_{12}} \in I_{\mathcal{M}(G)}$ since $B_4 \cup B_6 \cup B_9 = \{1, 2, 3, 4, 5, 6\} = B_1 \cup B_7 \cup B_{12}$.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2



We notice that $y_{B_4}y_{B_6}y_{B_9} - y_{B_1}y_{B_7}y_{B_{12}} \in I_{\mathcal{M}(G)}$ since $B_4 \cup B_6 \cup B_9 = \{1, 2, 3, 4, 5, 6\} = B_1 \cup B_7 \cup B_{12}$.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \ge 3$ and for every matroid M in \mathfrak{C} on a ground set of size nr(M) the *n*-base graph of M is connected. Then, for every matroid M in \mathfrak{C} , I_M is generated by quadratics polynomials.

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \ge 3$ and for every matroid M in \mathfrak{C} on a ground set of size nr(M) the *n*-base graph of M is connected. Then, for every matroid M in \mathfrak{C} , I_M is generated by quadratics polynomials. Proof (idea) The following statement is proved by induction on n:

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \ge 3$ and for every matroid M in \mathfrak{C} on a ground set of size nr(M) the *n*-base graph of M is connected. Then, for every matroid M in \mathfrak{C} , I_M is generated by quadratics polynomials. Proof (idea) The following statement is proved by induction on n: for every $M \in \mathfrak{C}$ and every binomial $b \in I_M$ of degree n, b is in the ideal generated by the quadratics of I_M .

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \ge 3$ and for every matroid M in \mathfrak{C} on a ground set of size nr(M) the *n*-base graph of M is connected. Then, for every matroid M in \mathfrak{C} , I_M is generated by quadratics polynomials. Proof (idea) The following statement is proved by induction on n: for every $M \in \mathfrak{C}$ and every binomial $b \in I_M$ of degree n, b is in the ideal generated by the quadratics of I_M . This will prove the result because I_M , as a toric ideal, is generated

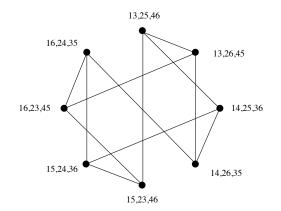
by binomials.

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_M .

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_M . The binomial b is necessarily of the form $b = \prod_{i=1}^n y_{B_i} - \prod_{i=1}^n y_{D_i}$ for some bases $\{B_1, \ldots, B_n\}$ and $\{D_1, \ldots, D_n\}$ of M such that the B_i and D_i have the same multiset union.

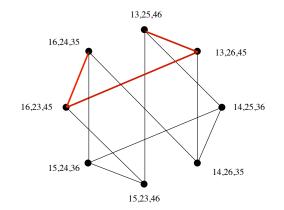
Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_M . The binomial b is necessarily of the form $b = \prod_{i=1}^n y_{B_i} - \prod_{i=1}^n y_{D_i}$ for some bases $\{B_1, \ldots, B_n\}$ and $\{D_1, \ldots, D_n\}$ of M such that the B_i and D_i have the same multiset union. It is proved that b is in the ideal generated by the degree n - 1binomials of I_M (this is done by constructing a new matroid M'that depends on the binomial b).

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_M . The binomial *b* is necessarily of the form $b = \prod_{i=1}^{n} y_{B_i} - \prod_{i=1}^{n} y_{D_i}$ for some bases $\{B_1, \ldots, B_n\}$ and $\{D_1, \ldots, D_n\}$ of M such that the B_i and D_i have the same multiset union. It is proved that b is in the ideal generated by the degree n-1binomials of I_M (this is done by constructing a new matroid M'that depends on the binomial b). By induction the degree n-1 binomials are in the ideal generated by the quadratics of I_M which is properly used the proof de result for n.



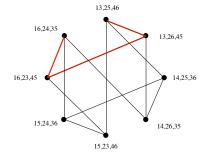
$y_{16}y_{24}y_{35} - y_{13}y_{25}y_{46} \in I_{M(G)}.$

J.L. Ramírez Alfonsín



$$y_{16}y_{24}y_{35} - y_{13}y_{25}y_{46} \in I_{M(G)}.$$

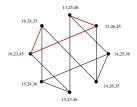
J.L. Ramírez Alfonsín



By following the path we construct $y_{16}y_{24}y_{35} - y_{16}y_{23}y_{45} + y_{16}y_{23}y_{45} - y_{13}y_{26}y_{45} + y_{13}y_{26}y_{55} - y_{13}y_{25}y_{46} = y_{16}y_{24}y_{35} - y_{13}y_{25}y_{46} \in I_{M(G)}.$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2



By following the path we construct

 $y_{16}y_{24}y_{35} - y_{16}y_{23}y_{45} + y_{16}y_{23}y_{45} - y_{13}y_{26}y_{45} + y_{13}y_{26}y_{55} - y_{13}y_{25}y_{46} = y_{16}y_{24}y_{35} - y_{13}y_{25}y_{46} \in I_{M(G)}.$ Or equivalently $y_{16}(y_{24}y_{35} - y_{23}y_{45}) + y_{45}(y_{16}y_{23} - y_{13}y_{26}) + y_{13}(y_{26}y_{55} - y_{25}y_{46}) = y_{16}y_{24}y_{35} - y_{13}y_{25}y_{46} \in I_{M(G)}.$

J.L. Ramírez Alfonsín

A matroid is strongly base order able if for any two bases B_1 and B_2 there is a bijection $\pi : B_1 \longrightarrow B_2$ satisfying the multiple symmetric exchange property, that is : $(B_1 \setminus A) \cup \pi(A)$ is a basis for every $A \subset B_1$.

A matroid is strongly base order able if for any two bases B_1 and B_2 there is a bijection $\pi : B_1 \longrightarrow B_2$ satisfying the multiple symmetric exchange property, that is : $(B_1 \setminus A) \cup \pi(A)$ is a basis for every $A \subset B_1$.

• π restricted to the intersection $B_1 \cap B_2$ is the identity.

A matroid is strongly base order able if for any two bases B_1 and B_2 there is a bijection $\pi : B_1 \longrightarrow B_2$ satisfying the multiple symmetric exchange property, that is : $(B_1 \setminus A) \cup \pi(A)$ is a basis for every $A \subset B_1$.

- π restricted to the intersection $B_1 \cap B_2$ is the identity.
- $(B_2 \setminus \pi(A)) \cup A$ is a basis for every $A \subset B_1$ (by the multiple symmetric exchange property for $B_1 \setminus A$).

- A matroid is strongly base order able if for any two bases B_1 and B_2 there is a bijection $\pi : B_1 \longrightarrow B_2$ satisfying the multiple symmetric exchange property, that is : $(B_1 \setminus A) \cup \pi(A)$ is a basis for every $A \subset B_1$.
- π restricted to the intersection $B_1 \cap B_2$ is the identity.
- $(B_2 \setminus \pi(A)) \cup A$ is a basis for every $A \subset B_1$ (by the multiple symmetric exchange property for $B_1 \setminus A$).
- The class of strongly base orderable matroids is closed under taking minors.

Theorem (Lasoń, M. Michałek) If M is a strong order able base matroid, then the toric ideal I_M is generated by quadratics binomials corresponding to symmetric exchanges.

Theorem (Lasoń, M. Michałek) If M is a strong order able base matroid, then the toric ideal I_M is generated by quadratics binomials corresponding to symmetric exchanges.

Proof (idea) Since I_M , as a toric ideal, is generated by binomials then it is enough to prove that all binomials of I_M belong to the ideal J_M generated by quadratics binomials corresponding to symmetric exchanges.

Theorem (Lasoń, M. Michałek) If M is a strong order able base matroid, then the toric ideal I_M is generated by quadratics binomials corresponding to symmetric exchanges.

Proof (idea) Since I_M , as a toric ideal, is generated by binomials then it is enough to prove that all binomials of I_M belong to the ideal J_M generated by quadratics binomials corresponding to symmetric exchanges.

Fix $n \ge 2$. We shall prove by decreasing induction on the overlap function

$$d(y_{B_1}\cdots y_{B_n}, y_{D_1}\cdots y_{D_n}) := \max_{\pi\in S_n}\sum_{i=1}^n |B_i\cap D_{\pi(i)}|$$

that a binomial $y_{B_1} \cdots y_{B_n} - y_{D_1} \cdots y_{D_n} \in I_M$ belongs to J_M .

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials.

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials. Sturmfels (1996) proved that Conjecture 1 holds for uniform matroids.

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials.

Sturmfels (1996) proved that Conjecture 1 holds for uniform matroids.

Conjecture 2 For any matroid M, the toric ideal I_M is generated by quadratics binomials.

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials.

Sturmfels (1996) proved that Conjecture 1 holds for uniform matroids.

Conjecture 2 For any matroid M, the toric ideal I_M is generated by quadratics binomials.

Conjecture 3 For any matroid M, the quadratic binomials of I_M are in the ideal generated by the binomials $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ such that the pair of bases D_1 , D_2 can be obtained from the pair B_1 , B_2 by a symmetric exchange.

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials.

Sturmfels (1996) proved that Conjecture 1 holds for uniform matroids.

Conjecture 2 For any matroid M, the toric ideal I_M is generated by quadratics binomials.

Conjecture 3 For any matroid M, the quadratic binomials of I_M are in the ideal generated by the binomials $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ such that the pair of bases D_1, D_2 can be obtained from the pair B_1, B_2 by a symmetric exchange.

Remark : Conjectures 2 and 3 together imply White's conjecture.

Complete Intersection

The toric ideal I_M is a complete intersection if and only if there exists a set of homogeneous binomials $g_1, \ldots, g_s \in R$ such that $s = ht(I_M)$ and $I_M = (g_1, \ldots, g_s)$.

Complete Intersection

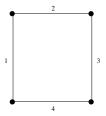
The toric ideal I_M is a complete intersection if and only if there exists a set of homogeneous binomials $g_1, \ldots, g_s \in R$ such that $s = ht(I_M)$ and $I_M = (g_1, \ldots, g_s)$. Equivalently, I_M is a complete intersection if

$$\mu(I_{\mathcal{M}}) = \operatorname{ht}(I_{\mathcal{M}}) = |\mathcal{B}| - (n - c + 1)$$

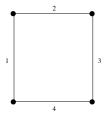
where $\mu(I_M)$ denotes the minimal number of generators of I_M and c the number of connected components of M.

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation \mathcal{R} defined as follows : $a\mathcal{R}b$ if and only if there exist a circuit of M containing both $a, b \in M$.

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation \mathcal{R} defined as follows : $a\mathcal{R}b$ if and only if there exist a circuit of M containing both $a, b \in M$.



The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation \mathcal{R} defined as follows : $a\mathcal{R}b$ if and only if there exist a circuit of M containing both $a, b \in M$.



We have $\mathcal{B}(M(G)) = \{123, 124, 134, 234\}$. There is one equivalent classe, and thus $ht(I_M) = 4 - (4 - 1 + 1) = 0$.

J.L. Ramírez Alfonsín

Recall that

$$I_{M} = \left(\left\{ y_{B_{1}} \cdots y_{B_{s}} - y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s} = D_{1} \cup \cdots \cup D_{s} \right\} \right)$$
(1)

Recall that

$$I_{\mathcal{M}} = \left(\left\{ y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s} \mid B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s \right\} \right)$$
(1)

• If r = n then $ht(I_M) = 1 - (n - n + 1) = 0$, and clearly by (1), we have $I_M = (0)$. So, in this case I_M is complete intersection.

Recall that

$$I_M = \left(\{ y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s} \mid B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s \} \right)$$
(1)

- If r = n then $ht(I_M) = 1 (n n + 1) = 0$, and clearly by (1), we have $I_M = (0)$. So, in this case I_M is complete intersection.
- If r = n-1 then $ht(I_M) = n (n-1+1) = 0$, and clearly by (1), we have $I_M = (0)$. So, in this case I_M is also complete intersection.

Recall that

$$I_{\mathcal{M}} = \left(\{ y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s} \mid B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s \} \right)$$
(1)

- If r = n then $ht(I_M) = 1 (n n + 1) = 0$, and clearly by (1), we have $I_M = (0)$. So, in this case I_M is complete intersection.
- If r = n-1 then $ht(I_M) = n (n-1+1) = 0$, and clearly by (1), we have $I_M = (0)$. So, in this case I_M is also complete intersection. Thus, we only consider the case $r \le n-2$.

We denote by M^* the dual matroid of M.

We denote by M^* the dual matroid of M. σ is the isomorphism of k-algebras $\sigma : R \longrightarrow k[y_{E \setminus B} | B \in B]$ induced by $y_B \mapsto y_{E \setminus B}$.

We denote by M^* the dual matroid of M. σ is the isomorphism of k-algebras $\sigma : R \longrightarrow k[y_{E \setminus B} | B \in B]$ induced by $y_B \mapsto y_{E \setminus B}$.

It is straightforward to check that $\sigma(I_M) = I_{M^*}$

- We denote by M^* the dual matroid of M.
- σ is the isomorphism of k-algebras $\sigma : R \longrightarrow k[y_{E \setminus B} | B \in B]$ induced by $y_B \mapsto y_{E \setminus B}$.
- It is straightforward to check that $\sigma(I_M) = I_{M^*}$
- Thus, I_M is a complete intersection if and only if I_{M^*} also is.

- We denote by M^* the dual matroid of M.
- σ is the isomorphism of k-algebras $\sigma : R \longrightarrow k[y_{E \setminus B} | B \in B]$ induced by $y_B \mapsto y_{E \setminus B}$.
- It is straightforward to check that $\sigma(I_M) = I_{M^*}$
- Thus, I_M is a complete intersection if and only if I_{M^*} also is. **Proposition** Let M' be a minor of M. If I_M is a complete intersection, then $I_{M'}$ also is.

If *M* has rank 2 then we associate to *M* the graph H_M with vertex set *E* and edge set B.

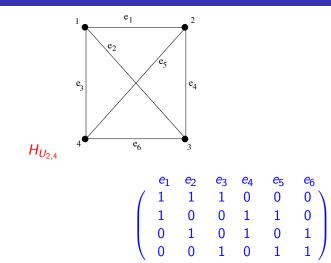
If *M* has rank 2 then we associate to *M* the graph H_M with vertex set *E* and edge set *B*.

Example :

 $\mathcal{B}(U_{2,4}) = \{B_1 = \{1,2\}, B_2 = \{1,3\}, B_3 = \{1,4\}, B_4 = \{2,3\}, B_5 = \{2,4\}, B_6 = \{3,4\} \}$

	B_1	B_2	<i>B</i> ₃	<i>B</i> ₄	B_5	B_6
(1	1	1	0	0	0 \
	1	0	0	1	1	0
	0	1	0	1	0	1
	0	0	1	0	1	1 /

J.L. Ramírez Alfonsín



J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

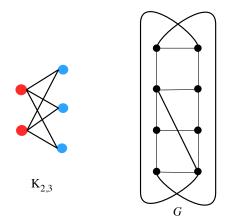
If *M* has rank 2 then we associate to *M* the graph H_M with vertex set *E* and edge set \mathcal{B} .

• It turns out that I_M coincides with the toric ideal of the graph H_M .

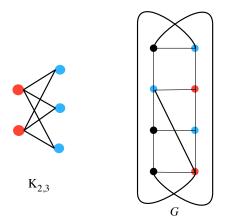
If *M* has rank 2 then we associate to *M* the graph H_M with vertex set *E* and edge set \mathcal{B} .

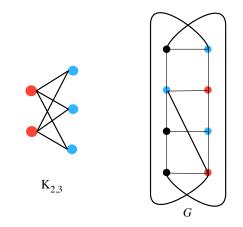
• It turns out that I_M coincides with the toric ideal of the graph H_M .

Theorem (I. Bermejo, I. Garcia-Marco, E. Reyes) Whenever $I_{H(M)}$ is a complete intersection, then H_M does not contain $K_{2,3}$ as subgraph.



J.L. Ramírez Alfonsín





Therefore I_G is not complete intersection.

J.L. Ramírez Alfonsín

Proposition Let M be a rank 2 matroid on a ground set of $n \ge 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.

Proposition Let M be a rank 2 matroid on a ground set of $n \ge 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.

Proof (idea) (\Rightarrow) Assume that $n \ge 5$ and let us prove that I_M is not a complete intersection.

Proposition Let M be a rank 2 matroid on a ground set of $n \ge 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.

Proof (idea) (\Rightarrow) Assume that $n \ge 5$ and let us prove that I_M is not a complete intersection.

Since *M* has no loops or coloops, we may assume that $B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{1, 5\} \in \mathcal{B}.$

Proposition Let M be a rank 2 matroid on a ground set of $n \ge 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.

Proof (idea) (\Rightarrow) Assume that $n \ge 5$ and let us prove that I_M is not a complete intersection.

Since *M* has no loops or coloops, we may assume that $B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{1, 5\} \in \mathcal{B}.$

Since $B_1, B_2 \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_4 = \{1, 3\}, B_5 = \{2, 4\} \in \mathcal{B}$.

Proposition Let M be a rank 2 matroid on a ground set of $n \ge 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.

Proof (idea) (\Rightarrow) Assume that $n \ge 5$ and let us prove that I_M is not a complete intersection.

Since *M* has no loops or coloops, we may assume that $B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{1, 5\} \in \mathcal{B}.$

Since $B_1, B_2 \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_4 = \{1, 3\}, B_5 = \{2, 4\} \in \mathcal{B}$.

If $\{4,5\} \in \mathcal{B}$, then H_M has a subgraph $K_{2,3}$ and I_M is not a complete intersection.

- Proposition Let M be a rank 2 matroid on a ground set of $n \ge 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.
- Proof (idea) (\Rightarrow) Assume that $n \ge 5$ and let us prove that I_M is not a complete intersection.
- Since *M* has no loops or coloops, we may assume that $B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{1, 5\} \in \mathcal{B}.$
- Since $B_1, B_2 \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_4 = \{1, 3\}, B_5 = \{2, 4\} \in \mathcal{B}$.
- If $\{4,5\} \in \mathcal{B}$, then H_M has a subgraph $K_{2,3}$ and I_M is not a complete intersection.

If $\{4,5\} \notin \mathcal{B}$ also implies that H_M has a subgraph $K_{2,3}$.

- Proposition Let M be a rank 2 matroid on a ground set of $n \ge 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.
- Proof (idea) (\Rightarrow) Assume that $n \ge 5$ and let us prove that I_M is not a complete intersection.
- Since M has no loops or coloops, we may assume that $B_1 = \{1,2\}, B_2 = \{3,4\}, B_3 = \{1,5\} \in \mathcal{B}.$
- Since $B_1, B_2 \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_4 = \{1, 3\}, B_5 = \{2, 4\} \in \mathcal{B}$.
- If $\{4,5\} \in \mathcal{B}$, then H_M has a subgraph $K_{2,3}$ and I_M is not a complete intersection.

If $\{4,5\} \notin \mathcal{B}$ also implies that H_M has a subgraph $K_{2,3}$. (\Leftarrow) By computer.

J.L. Ramírez Alfonsín

Complete Intersection : general case

Theorem (Garcia-Marco, R.A, 2014) Let M be a matroid without loops or coloops and with n > r + 1. Then, I_M is a complete intersection if and only if n = 4 and M is the matroid whose set of bases is :

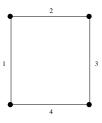
1
$$\mathcal{B} = \{\{1,2\}, \{3,4\}, \{1,3\}, \{2,4\}\},$$

2 $\mathcal{B} = \{\{1,2\}, \{3,4\}, \{1,3\}, \{2,4\}, \{1,4\}\}, \text{ or}$
3 $\mathcal{B} = \{\{1,2\}, \{3,4\}, \{1,3\}, \{2,4\}, \{1,4\}, \{2,3\}\}, \text{ i.e.,}$
 $\mathcal{M} = U_{2,4}.$

We consider the following binary equivalence relation \sim on the set of pairs of bases :

 $\{B_1, B_2\} \sim \{B_3, B_4\} \iff B_1 \cup B_2 = B_3 \cup B_4$ as multisets, and we denote by $\Delta_{\{B_1, B_2\}}$ the cardinality of the equivalence class of $\{B_1, B_2\}$.

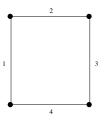
We consider the graph



J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

We consider the graph

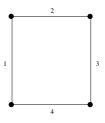


Therefore, $\mathcal{B}(\mathcal{M}(\mathcal{G})) = \{B_1 = \{123\}, B_2 = \{124\}, B_3 = \{134\}, B_4 = \{234\}\}.$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

We consider the graph



Therefore, $\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{124\}, B_3 = \{134\}, B_4 = \{234\}\}.$ It can be checked that the equivalent class of $\{B_i, B_j\}$ is $\{B_i, B_j\}$, that is, $\Delta_{\{B_i, B_j\}} = 1$ for any pair $1 \le i \ne j \le 4$.

J.L. Ramírez Alfonsín

Lemma For every $B_1, B_2 \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\{B_1, B_2\}} \leq {\binom{2d-1}{d}}$, where $d := |B_1 \setminus B_2|$.

Lemma For every $B_1, B_2 \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\{B_1, B_2\}} \leq \binom{2d-1}{d}$, where $d := |B_1 \setminus B_2|$. Proof Take $e \in B_1 \setminus B_2$. By the multiple symmetric exchange property, for every A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, there exists $A_2 \subset B_2$ such that both $B'_1 := (B_1 \cup A_2) \setminus A_1$ and $B'_2 := (B_2 \cup A_1) \setminus A_2$ are bases.

Lemma For every $B_1, B_2 \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\{B_1, B_2\}} \leq {\binom{2d-1}{d}}$, where $d := |B_1 \setminus B_2|$.

Proof Take $e \in B_1 \setminus B_2$. By the multiple symmetric exchange property, for every A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, there exists $A_2 \subset B_2$ such that both $B'_1 := (B_1 \cup A_2) \setminus A_1$ and $B'_2 := (B_2 \cup A_1) \setminus A_2$ are bases.

Since $B_1 \cup B_2 = B'_1 \cup B'_2$ as multisets, we derive that $\Delta_{\{B_1,B_2\}}$ is greater or equal to the number of sets A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, which is exactly 2^{d-1} .

Lemma For every $B_1, B_2 \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\{B_1, B_2\}} \leq {\binom{2d-1}{d}}$, where $d := |B_1 \setminus B_2|$. **Proof** Take $e \in B_1 \setminus B_2$. By the multiple symmetric exchange property, for every A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, there exists $A_2 \subset B_2$ such that both $B'_1 := (B_1 \cup A_2) \setminus A_1$ and $B'_2 := (B_2 \cup A_1) \setminus A_2$ are bases. Since $B_1 \cup B_2 = B'_1 \cup B'_2$ as multisets, we derive that $\Delta_{\{B_1,B_2\}}$ is greater or equal to the number of sets A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, which is exactly 2^{d-1} . $\Delta_{\{B_1,B_2\}} \leq \binom{2d-1}{d}$ easy.

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $M' := (M/(B_1 \cap B_2))|_{(B_1 \cap B_2)}$ on the ground set $B_1 \cap B_2$. Then, the number of bases-cobases of M' is equal to $2\Delta_{\{B_1,B_2\}}$.

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $M' := (M/(B_1 \cap B_2))|_{(B_1 \triangle B_2)}$ on the ground set $B_1 \triangle B_2$. Then, the number of bases-cobases of M' is equal to $2\Delta_{\{B_1,B_2\}}$. Theorem (Garcia-Marco, R.A, 2014) If M has a minor $M' \simeq U_{d,2d}$ for some $d \ge 2$, then there exist $B_1, B_2 \in \mathcal{B}$ such that $\Delta_{\{B_1,B_2\}} = \binom{2d-1}{d}$.

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $M' := (M/(B_1 \cap B_2))|_{(B_1 \triangle B_2)}$ on the ground set $B_1 \triangle B_2$. Then, the number of bases-cobases of M' is equal to $2\Delta_{\{B_1,B_2\}}$. Theorem (Garcia-Marco, R.A, 2014) If M has a minor $M' \simeq U_{d,2d}$ for some $d \ge 2$, then there exist $B_1, B_2 \in \mathcal{B}$ such that $\Delta_{\{B_1,B_2\}} = \binom{2d-1}{d}$. Theorem (Garcia-Marco, R.A, 2014) M is binary if and only if $\Delta_{\{B_1,B_2\}} \neq 3$ for every $B_1, B_2 \in \mathcal{B}$.

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $M' := (M/(B_1 \cap B_2))|_{(B_1 \wedge B_2)}$ on the ground set $B_1 \triangle B_2$. Then, the number of bases-cobases of M' is equal to $2\Delta_{\{B_1,B_2\}}$. Theorem (Garcia-Marco, R.A, 2014) If M has a minor $M' \simeq U_{d,2d}$ for some d > 2, then there exist $B_1, B_2 \in \mathcal{B}$ such that $\Delta_{\{B_1,B_2\}} = \binom{2d-1}{d}.$ Theorem (Garcia-Marco, R.A, 2014) *M* is binary if and only if $\Delta_{\{B_1,B_2\}} \neq 3$ for every $B_1, B_2 \in \mathcal{B}$. Theorem (Garcia-Marco, R.A, 2014) *M* has a minor $M' \simeq U_{3.6}$ if and only if $\Delta_{\{B_1,B_2\}} = 10$ for some $B_1, B_2 \in \mathcal{B}$.

J.L. Ramírez Alfonsín

 $\nu(I_M)$ = the number of minimal sets of binomial generators of I_M , where the sign of a binomial does not count $\mu(I_M)$ = the minimal number of generators of I_M .

 $\nu(I_M) = \text{the number of minimal sets of binomial generators of } I_M,$ where the sign of a binomial does not count $\mu(I_M) = \text{the minimal number of generators of } I_M.$ Theorem (Garcia-Marco, R.A, 2014) Let $R = \{\{B_1, B_2\}, \dots, \{B_{2s-1}, B_{2s}\}\} \text{ be a set of representatives of } \sim$ and set $r_i := \Delta_{\{B_{2i-1}, B_{2i}\}}$ for all $i \in \{1, \dots, s\}$. Then, $\blacksquare \ \mu(I_M) \ge (b^2 - b - 2s)/2, \text{ where } b := |\mathcal{B}|, \text{ and}$ $\supseteq \ \nu(I_M) \ge \prod_{i=1}^{s} r_i^{r_i - 2}.$

Moreover, in both cases equality holds whenever I_M is generated by quadratics.

 $\nu(I_M) = \text{the number of minimal sets of binomial generators of } I_M,$ where the sign of a binomial does not count $\mu(I_M) = \text{the minimal number of generators of } I_M.$ Theorem (Garcia-Marco, R.A, 2014) Let $R = \{\{B_1, B_2\}, \dots, \{B_{2s-1}, B_{2s}\}\} \text{ be a set of representatives of } \sim$ and set $r_i := \Delta_{\{B_{2i-1}, B_{2i}\}}$ for all $i \in \{1, \dots, s\}$. Then, $\square \ \mu(I_M) \ge (b^2 - b - 2s)/2, \text{ where } b := |\mathcal{B}|, \text{ and}$ $\supseteq \ \nu(I_M) \ge \prod_{i=1}^{s} r_i^{r_i - 2}.$

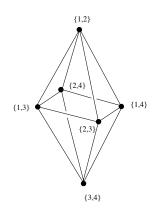
Moreover, in both cases equality holds whenever I_M is generated by quadratics.

Question Can we characterize those matroids M with $\nu(I_M) = 1$?

The basis graph of a matroid M is the undirected graph G_M with vertex set \mathcal{B} and edges $\{B, B'\}$ such that $|B \setminus B'| = 1$. The diameter of a graph is the maximum distance between two vertices of the graph.

The basis graph of a matroid M is the undirected graph G_M with vertex set \mathcal{B} and edges $\{B, B'\}$ such that $|B \setminus B'| = 1$. The diameter of a graph is the maximum distance between two vertices of the graph.

Basis graph $G_{U_{2,4}}$



I3M, Université Montpellier 2

Theorem (Garcia-Marco, R.A, 2014) Let M be a rank $r \ge 2$ matroid. Then, $\nu(I_M) = 1$ if and only if M is binary and the diameter of G_M is at most 2.

Theorem (Garcia-Marco, R.A, 2014) Let M be a rank $r \ge 2$ matroid. Then, $\nu(I_M) = 1$ if and only if M is binary and the diameter of G_M is at most 2.

Proof (idea) (\Rightarrow) By the previous theorem,we have that $\Delta_{\{B_1,B_2\}} = 1$ or 2 for all $B_1, B_2 \in \mathcal{B}$.

Theorem (Garcia-Marco, R.A, 2014) Let M be a rank $r \ge 2$ matroid. Then, $\nu(I_M) = 1$ if and only if M is binary and the diameter of G_M is at most 2.

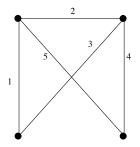
Proof (idea) (\Rightarrow) By the previous theorem, we have that $\Delta_{\{B_1,B_2\}} = 1$ or 2 for all $B_1, B_2 \in \mathcal{B}$. By above Lemmas and Theorem binary, this is equivalent to M is binary and $|B_1 \setminus B_2| \in \{1,2\}$ for all $B_1, B_2 \in \mathcal{B}$. Clearly this implies that the diameter of G_M is less or equal to 2.

Theorem (Garcia-Marco, R.A, 2014) Let M be a rank $r \ge 2$ matroid. Then, $\nu(I_M) = 1$ if and only if M is binary and the diameter of G_M is at most 2.

Proof (idea) (\Rightarrow) By the previous theorem, we have that $\Delta_{\{B_1,B_2\}} = 1$ or 2 for all $B_1, B_2 \in \mathcal{B}$. By above Lemmas and Theorem binary, this is equivalent to M is binary and $|B_1 \setminus B_2| \in \{1,2\}$ for all $B_1, B_2 \in \mathcal{B}$. Clearly this implies that the diameter of G_M is less or equal to 2.

 (\Leftarrow) More complicated.

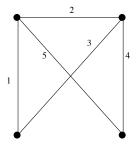
Matroid M(G) associated to graph G.



J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Matroid M(G) associated to graph G.

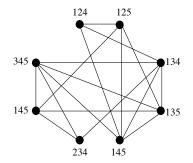


 $\mathcal{B}(M(G)) = \{B_1 = \{124\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{235\}, B_8 = \{345\}\}$

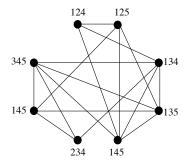
J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

The base graph $G_{M(G)}$



The base graph $G_{M(G)}$



Since diameter of $G_{M(G)}$ is at most two, and M(G) is binary then $\nu(I_M) = 1$.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.

Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.

Elements of the simplicial complex Δ are called faces of Δ .

Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$. Elements of the simplicial complex Δ are called faces of Δ .

Maximal faces (under inclusion) are called facets.

Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$.

Elements of the simplicial complex Δ are called faces of Δ .

Maximal faces (under inclusion) are called facets.

If $F \in \Delta$ then the dimension of F is dim F = |F| - 1.

Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$. Elements of the simplicial complex Δ are called faces of Δ . Maximal faces (under inclusion) are called facets.

If $F \in \Delta$ then the dimension of F is dim F = |F| - 1.

The dimension of Δ is defined to be dim $\Delta = \max\{\dim F | F \in \Delta\}$.

Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$. Elements of the simplicial complex Δ are called faces of Δ . Maximal faces (under inclusion) are called facets. If $F \in \Delta$ then the dimension of F is dim F = |F| - 1. The dimension of Δ is defined to be dim $\Delta = \max\{\dim F | F \in \Delta\}$. The complex Δ is said to be pure if all its facets have the same dimension.

Let $V = \{v_1, \ldots, v_n\}$ be a set of distincts elements. A collection Δ of subsets of V is called a simplicial complex if for every $F \in \Delta$ and $G \subseteq F, G \in \Delta$. Elements of the simplicial complex Δ are called faces of Δ . Maximal faces (under inclusion) are called facets. If $F \in \Delta$ then the dimension of F is dim F = |F| - 1. The dimension of Δ is defined to be dim $\Delta = \max\{\dim F | F \in \Delta\}$. The complex Δ is said to be pure if all its facets have the same dimension.

If $\{v\} \in \Delta$ then we call v a vertex of Δ .

Let $d-1 = \dim \Delta$. The *f*-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \ldots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Δ .

Let $d - 1 = \dim \Delta$. The *f*-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \dots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Δ .

Let Δ be a simplicial complex with vertex set V.

Let $d-1 = \dim \Delta$. The *f*-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \ldots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Δ .

Let Δ be a simplicial complex with vertex set V.

• The *k*-skeleton of Δ is $[\Delta_k] = \{F \in \Delta | \dim F \leq k\}.$

Let $d-1 = \dim \Delta$. The *f*-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \ldots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Δ .

Let Δ be a simplicial complex with vertex set V.

• The k-skeleton of Δ is $[\Delta_k] = \{F \in \Delta | \dim F \leq k\}.$

• If $W \subseteq V$ then the restriction of Δ to W is $\Delta|_W = \{F \in \Delta | F \subseteq W\}$. If $W = V - \{v\}$ then we will write $\Delta_{-v} = \Delta|_W$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ .

Let $d-1 = \dim \Delta$. The *f*-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \ldots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Δ .

Let Δ be a simplicial complex with vertex set V.

• The k-skeleton of Δ is $[\Delta_k] = \{F \in \Delta | \dim F \leq k\}.$

• If $W \subseteq V$ then the restriction of Δ to W is $\Delta|_W = \{F \in \Delta | F \subseteq W\}$. If $W = V - \{v\}$ then we will write $\Delta_{-v} = \Delta|_W$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ .

• If $W \subseteq V$ then $link_{\Delta}(W) = \{F \in \Delta | W \cap F = \emptyset, W \cup F \in \Delta\}$. We call this the link of Δ with respect to W.

Let $d-1 = \dim \Delta$. The *f*-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \ldots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Δ .

Let Δ be a simplicial complex with vertex set V.

- The k-skeleton of Δ is $[\Delta_k] = \{F \in \Delta | \dim F \leq k\}.$
- If $W \subseteq V$ then the restriction of Δ to W is $\Delta|_W = \{F \in \Delta | F \subseteq W\}$. If $W = V - \{v\}$ then we will write $\Delta_{-v} = \Delta|_W$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ .
- If $W \subseteq V$ then $link_{\Delta}(W) = \{F \in \Delta | W \cap F = \emptyset, W \cup F \in \Delta\}$. We call this the link of Δ with respect to W.
- If $v \notin V$ then the cone over Δ is $C\Delta = \Delta \cup \{F \cup \{v\} | F \in \Delta\}$

Let $d-1 = \dim \Delta$. The *f*-vector of Δ is the vector $f(\Delta) := (f_{-1}, f_0, \ldots, f_{d-1})$, where $f_i = |\{F \in \Delta | \dim F = i\}|$ is the number of *i*-dimensional faces in Δ .

Let Δ be a simplicial complex with vertex set V.

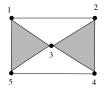
- The k-skeleton of Δ is $[\Delta_k] = \{F \in \Delta | \dim F \leq k\}.$
- If $W \subseteq V$ then the restriction of Δ to W is $\Delta|_W = \{F \in \Delta | F \subseteq W\}$. If $W = V - \{v\}$ then we will write $\Delta_{-v} = \Delta|_W$ and call Δ_{-v} the deletion of Δ with respect to v or the deletion of v from Δ .
- If $W \subseteq V$ then $link_{\Delta}(W) = \{F \in \Delta | W \cap F = \emptyset, W \cup F \in \Delta\}$. We call this the link of Δ with respect to W.
- If $v \notin V$ then the cone over Δ is $C\Delta = \Delta \cup \{F \cup \{v\} | F \in \Delta\}$
- v is called the apex of $C\Delta$.

Observation Since if $F \in \Delta$ and $G \subseteq F$ then $G \in \Delta$, the complex Δ is determined completely by those faces that are not contained in any other face, that is the facets of Δ .

Observation Since if $F \in \Delta$ and $G \subseteq F$ then $G \in \Delta$, the complex Δ is determined completely by those faces that are not contained in any other face, that is the facets of Δ .

• Typically, we will describe a simplicial complex by listing its facets.

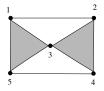
Simplicial complexe Δ of dimension 2



J.L. Ramírez Alfonsín

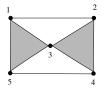
I3M, Université Montpellier 2

Simplicial complexe Δ of dimension 2



• Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).

Simplicial complexe Δ of dimension 2



• Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).

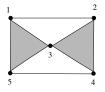
• $f(\Delta) = (1, 5, 8, 2).$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Example

Simplicial complexe Δ of dimension 2



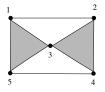
• Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).

• $f(\Delta) = (1, 5, 8, 2).$

• The $link_{\Delta}(3)$ is the complex with facets 15 and 24, while the $link_{\Delta}(5)$ has facets 13 and 4.

Example

Simplicial complexe Δ of dimension 2



• Δ is not pure as it has facets of dimension 1 (12 and 45) and of dimension 2 (234 and 135).

- $f(\Delta) = (1, 5, 8, 2).$
- The $link_{\Delta}(3)$ is the complex with facets 15 and 24, while the $link_{\Delta}(5)$ has facets 13 and 4.
- The deletion of 3 has facets 12, 24, 45 and 15. The deletion of 5 has facets 234, 13 and 12.

J.L. Ramírez Alfonsín

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.

The independent sets of M form a simplicial complex, called the independence complex of M.

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.

- The independent sets of M form a simplicial complex, called the independence complex of M.
- Axiom (13) can be replaced by the following one (13)' for every $A \subset E$ the restriction

 $\mathcal{I}|_A = \{I \in \mathcal{I} : I \subset A\}$

is a *pure* simplicial complex.

Recall that axioms (I1), (I2) for the independent set $\mathcal{I}(M)$ of a matroid M on a set V are equivalent to \mathcal{I} being an abstract simplicial complex on V.

- The independent sets of M form a simplicial complex, called the independence complex of M.
- Axiom (13) can be replaced by the following one (13)' for every $A \subset E$ the restriction

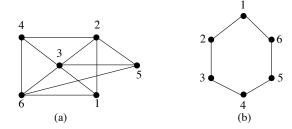
 $\mathcal{I}|_{A} = \{I \in \mathcal{I} : I \subset A\}$

is a *pure* simplicial complex. A simplicial complex Δ over the vertices V is called matroid complex if axiom (13)' is verified.

J.L. Ramírez Alfonsín

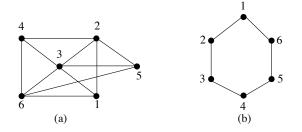
Examples

Two 1-dimensional simplicial complexes.



Examples

Two 1-dimensional simplicial complexes.

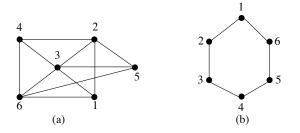


(a) Matroid complex (this can be checked by verifying that every $A \subseteq \{1, \ldots, 6\}$, Δ_A is pure).

J.L. Ramírez Alfonsín

Examples

Two 1-dimensional simplicial complexes.



(a) Matroid complex (this can be checked by verifying that every $A \subseteq \{1, \ldots, 6\}$, Δ_A is pure).

(b) is not a matroid complex since it admits a restriction that is not pure, for instance, the facets of $\Delta_{1,3,4}$ are $\{1\}$ and $\{3,4\}$ as facets so the restriction is not pure.

J.L. Ramírez Alfonsín

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

• $\Delta|_W$ for every $W \subseteq V$.

- $\Delta|_W$ for every $W \subseteq V$.
- $C\Delta$, the cone over Δ .

- $\Delta|_W$ for every $W \subseteq V$.
- $C\Delta$, the cone over Δ .
- $[\Delta]_k$, the *k*-skeleton of Δ .

- $\Delta|_W$ for every $W \subseteq V$.
- $C\Delta$, the cone over Δ .
- $[\Delta]_k$, the *k*-skeleton of Δ .
- $link_{\Delta}(F)$ for every $F \in \Delta$.

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\Delta|_W$ for every $W \subseteq V$.
- $C\Delta$, the cone over Δ .
- $[\Delta]_k$, the *k*-skeleton of Δ .
- $link_{\Delta}(F)$ for every $F \in \Delta$.

Remarks : Link and restriction are identical to the contraction and deletion constructions from matroids.

Let Δ be a matroid complex with vertex set V. Then, the following complexes are also matroid complexes

- $\Delta|_W$ for every $W \subseteq V$.
- $C\Delta$, the cone over Δ .
- $[\Delta]_k$, the *k*-skeleton of Δ .
- $link_{\Delta}(F)$ for every $F \in \Delta$.

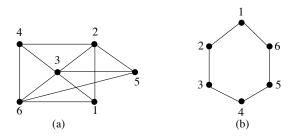
Remarks : Link and restriction are identical to the contraction and deletion constructions from matroids.

A matroid complex Δ_M is a cone if and only if M has a coloop (or isthme), which corresponds to the apex defined above.

J.L. Ramírez Alfonsín

Lemma Let Δ be a 1-dimensional simplicial complex. Then, Δ is matroid if and only if for every vertex v and every edge E, $link_{\Delta}(v) \cap E \neq \emptyset$.

Lemma Let Δ be a 1-dimensional simplicial complex. Then, Δ is matroid if and only if for every vertex v and every edge E, $link_{\Delta}(v) \cap E \neq \emptyset$.



Let k be a field. We can associate to a simplicial complex Δ , a square free monomial ideal in $S = k[x_1, \dots, x_n]$,

$$I_{\Delta} = \left(x_F = \prod_{i \in F} x_i | F \notin \Delta \right) \subseteq S.$$

Let k be a field. We can associate to a simplicial complex Δ , a square free monomial ideal in $S = k[x_1, \ldots, x_n]$,

$$I_{\Delta} = \left(x_F = \prod_{i \in F} x_i | F \notin \Delta\right) \subseteq S.$$

The ideal I_{Δ} is called the Stanley-Reisner ideal of Δ and S/I_{Δ} the Stanley-Reisner ring of Δ .

Facts

Facts

• Hilbert function

$$h_{S/I_{\Delta}}(h) = dim_k [S/I_{\Delta}]_h$$

where $[S/I_{\Delta}]$ is the vector space of degree *h* homogeneous polynomial outside of I_{Δ} .

Facts

• Hilbert function

$$h_{S/I_{\Delta}}(h) = dim_k [S/I_{\Delta}]_h$$

where $[S/I_{\Delta}]$ is the vector space of degree *h* homogeneous polynomial outside of I_{Δ} .

• Hilbert series

$$H_{S/I_{\Delta}}(t) = \sum_{i=1}^{\infty} h_{S/I_{\Delta}}(i)t^{i} = \frac{h_{0} + h_{1}t + \dots + h_{d}t^{d}}{(1-t)^{d}}$$

where $d = \dim I_{\Delta}$.

Facts

• Hilbert function

$$h_{S/I_{\Delta}}(h) = dim_k [S/I_{\Delta}]_h$$

where $[S/I_{\Delta}]$ is the vector space of degree *h* homogeneous polynomial outside of I_{Δ} .

• Hilbert series

$$H_{S/I_{\Delta}}(t) = \sum_{i=1}^{\infty} h_{S/I_{\Delta}}(i)t^{i} = \frac{h_{0} + h_{1}t + \dots + h_{d}t^{d}}{(1-t)^{d}}$$

where $d = \dim I_{\Delta}$.

 $h(\Delta) = (h_0, \ldots, h_d)$ is known as the *h*-vector of Δ .

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Assume that dim $\Delta = d - 1$.

J.L. Ramírez Alfonsín Theory of matroids II: toic ideals and simplicial complexes

Assume that dim $\Delta = d - 1$.

We may study the *h*-vector of a simplicial complex of Δ $h(\Delta) = (h_0, \dots, h_d)$ from its *f*-vector via the relation $\sum_{i=0}^d f_{i-1}t^i(1-t)^{d-i} = \sum_{i=0}^d h_it^i$

Assume that dim $\Delta = d - 1$.

We may study the *h*-vector of a simplicial complex of Δ $h(\Delta) = (h_0, \dots, h_d)$ from its *f*-vector via the relation $\sum_{i=0}^d f_{i-1}t^i(1-t)^{d-i} = \sum_{i=0}^d h_it^i$

In particular, for any $j = 0, \ldots, d$, we have

$$f_{j-1} = \sum_{i=0}^{J} {\binom{d-i}{j-1}h_i}$$

$$h_j = \sum_{i=0}^{j} {(-1)^{j-i} \binom{d-i}{j-1}f_{i-1}}.$$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

The *h*-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M.

The *h*-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M. Fix a total ordering $\{v_1, < v_2 < \cdots < v_n\}$ on E(M).

- The *h*-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M.
- Fix a total ordering $\{v_1, < v_2 < \cdots < v_n\}$ on E(M).
- Given a bases B, an element $v_j \in B$ is internally passive in B if there is some $v_i \in E \setminus B$ such that $v_i < v_j$ and $(B \setminus v_j) \cup v_i$ is a bases of M.

- The *h*-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M.
- Fix a total ordering $\{v_1, < v_2 < \cdots < v_n\}$ on E(M).
- Given a bases B, an element $v_j \in B$ is internally passive in B if there is some $v_i \in E \setminus B$ such that $v_i < v_j$ and $(B \setminus v_j) \cup v_i$ is a bases of M.
- Dually, $v_j \in E \setminus B$ is externally passive in B if there is some $v_i \in B$ such that $v_i < v_j$ and $(B \setminus v_i) \cup v_j$ is a bases of M.

- The *h*-number of a matroid M may be interpreted combinatorially in terms of certain invariants of M.
- Fix a total ordering $\{v_1, < v_2 < \cdots < v_n\}$ on E(M).
- Given a bases B, an element $v_j \in B$ is internally passive in B if there is some $v_i \in E \setminus B$ such that $v_i < v_j$ and $(B \setminus v_j) \cup v_i$ is a bases of M.
- Dually, $v_j \in E \setminus B$ is externally passive in B if there is some $v_i \in B$ such that $v_i < v_j$ and $(B \setminus v_i) \cup v_j$ is a bases of M.
- **Remark** v_j is externally passive in *B* if it is internally passive in $E \setminus B$ in M^* .

Bjorner proved that

$$\sum_{i=0}^{d} h_j t^j = \sum_{B \in \mathcal{B}(M)} t^{ip(B)}$$

where ip(B) counts the number of internally passive elements in B.

Bjorner proved that

$$\sum_{i=0}^{d} h_j t^j = \sum_{B \in \mathcal{B}(M)} t^{ip(B)}$$

where ip(B) counts the number of internally passive elements in *B*. Remark This proves that the *h*-numbers of a matroid complex are nonnegative.

Bjorner proved that

$$\sum_{i=0}^{d} h_{j} t^{j} = \sum_{B \in \mathcal{B}(M)} t^{ip(B)}$$

where ip(B) counts the number of internally passive elements in *B*. Remark This proves that the *h*-numbers of a matroid complex are nonnegative.

Alternatively,

$$\sum_{i=0}^{d} h_j t^j = \sum_{B \in \mathcal{B}(M^*)} t^{ep(B)}$$

where ep(B) counts the number of externally passive elements in B.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Remarks

• Since the f-numbers (and hence the h-numbers) of a matroid depend only on its independent sets, then above equations hold for any ordering of the ground set of M.

h-vector of simplicial complexes

Remarks

• Since the f-numbers (and hence the h-numbers) of a matroid depend only on its independent sets, then above equations hold for any ordering of the ground set of M.

• *h*-vector of a matroid complex Δ_M is actually a specialization of the Tutte polynomial of the corresponding matroid; precisely we have $T(M; x, 1) = h_0 x^d + h_1 x^{d_1} + \cdots + h_d$

We consider the matroid complex $\Delta(U_{2,3})$

J.L. Ramírez Alfonsín Theory of matroids II: toic ideals and simplicial complexes

We consider the matroid complex $\Delta(U_{2,3})$ We have that dim $\Delta = 1$ and $f_{-1} = 1$, $f_0 = 3$ and $f_1 = 3$.

We consider the matroid complex $\Delta(U_{2,3})$ We have that dim $\Delta = 1$ and $f_{-1} = 1$, $f_0 = 3$ and $f_1 = 3$. Therefore

$$\sum_{i=0}^{2} f_{i-1}t^{i}(1-t)^{2-i} = f_{-1}t^{0}(1-t)^{2} + f_{0}t(1-t) + f_{1}t^{2}(1-t)^{0}$$

= $(1-t)^{2} + 3t(1-t) + 3t^{2}$
= $1 - 2t + t^{2} + 3t - 3t - 3t^{2} + 3t^{2}$
= $t^{2} + t + 1 = \sum_{i=0}^{2} h_{i}t^{i}.$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

We consider the matroid complex $\Delta(U_{2,3})$ We have that dim $\Delta = 1$ and $f_{-1} = 1$, $f_0 = 3$ and $f_1 = 3$. Therefore

$$\sum_{i=0}^{2} f_{i-1}t^{i}(1-t)^{2-i} = f_{-1}t^{0}(1-t)^{2} + f_{0}t(1-t) + f_{1}t^{2}(1-t)^{0}$$

= $(1-t)^{2} + 3t(1-t) + 3t^{2}$
= $1 - 2t + t^{2} + 3t - 3t - 3t^{2} + 3t^{2}$
= $t^{2} + t + 1 = \sum_{i=0}^{2} h_{i}t^{i}.$

Obtaining that $h(\Delta) = (1, 1, 1)$.

J.L. Ramírez Alfonsín

Let $\mathcal{B}(U_{2,3}) = \{B_1 = \{1,2\}, B_2 = \{1,3\}, B_3 = \{2,3\}\}.$

Let $\mathcal{B}(U_{2,3}) = \{B_1 = \{1,2\}, B_2 = \{1,3\}, B_3 = \{2,3\}\}.$ We can check that

- there is not internally passive element in B_1
- 3 is internally passive element of B_2
- 2 and 3 are internally passive elements of B_3

Let $\mathcal{B}(U_{2,3}) = \{B_1 = \{1,2\}, B_2 = \{1,3\}, B_3 = \{2,3\}\}.$ We can check that

- there is not internally passive element in B_1
- 3 is internally passive element of B_2
- 2 and 3 are internally passive elements of B_3

Thus

$$\sum_{i=0}^{2} h_{i} t^{i} = \sum_{B \in \mathcal{B}(U_{2,3})} t^{ip(B)} = 1 + t + t^{2}.$$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Let $\mathcal{B}(U_{2,3}^* = U_{1,3}) = \{B_1 = \{1\}, B_2 = \{2\}, B_3 = \{3\}\}.$

J.L. Ramírez Alfonsín Theory of matroids II: toic ideals and simplicial complexes

Let $\mathcal{B}(U_{2,3}^* = U_{1,3}) = \{B_1 = \{1\}, B_2 = \{2\}, B_3 = \{3\}\}.$ We can check that

- 2 and 3 are externally passive elements of B_1
- 3 is externally passive element of B_2
- there is not externally passive element in B_3

Let $\mathcal{B}(U_{2,3}^* = U_{1,3}) = \{B_1 = \{1\}, B_2 = \{2\}, B_3 = \{3\}\}.$ We can check that

- 2 and 3 are externally passive elements of B_1
- 3 is externally passive element of B_2
- there is not externally passive element in B_3

Thus

$$\sum_{i=0}^{2} h_i t^i = \sum_{B \in \mathcal{B}(U_{1,3})} t^{ep(B)} = t^2 + t + 1.$$

J.L. Ramírez Alfonsín

We have that

 $T(U_{3,2}; x, y) = x^2 + x + y,$

We have that
$$T(U_{3,2};x,y)=x^2+x+y,$$
 and thus
$$T(U_{3,2};t,1)=t^2+t+1=\sum_{i=0}^2h_it^i.$$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

.

An order ideal \mathcal{O} is a family of monomials (say of degree at most r) with the property that if $\mu \in \mathcal{O}$ and $\nu | \mu$ then $\nu \in \mathcal{O}$.

An order ideal \mathcal{O} is a family of monomials (say of degree at most r) with the property that if $\mu \in \mathcal{O}$ and $\nu | \mu$ then $\nu \in \mathcal{O}$. Let \mathcal{O}_i denote the collection of monomials in \mathcal{O} of degree i. Let $F_i(\mathcal{O}) := |\mathcal{O}_i|$ and $F(\mathcal{O}) = (F_0(\mathcal{O}), F_1(\mathcal{O}), \dots, F_r(\mathcal{O}))$.

An order ideal \mathcal{O} is a family of monomials (say of degree at most r) with the property that if $\mu \in \mathcal{O}$ and $\nu | \mu$ then $\nu \in \mathcal{O}$. Let \mathcal{O}_i denote the collection of monomials in \mathcal{O} of degree i. Let $F_i(\mathcal{O}) := |\mathcal{O}_i|$ and $F(\mathcal{O}) = (F_0(\mathcal{O}), F_1(\mathcal{O}), \dots, F_r(\mathcal{O}))$. We say that \mathcal{O} is pure if all its maximal monomials (under divisibility) have the same degree.

An order ideal \mathcal{O} is a family of monomials (say of degree at most r) with the property that if $\mu \in \mathcal{O}$ and $\nu | \mu$ then $\nu \in \mathcal{O}$.

Let \mathcal{O}_i denote the collection of monomials in \mathcal{O} of degree *i*. Let $F_i(\mathcal{O}) := |\mathcal{O}_i|$ and $F(\mathcal{O}) = (F_0(\mathcal{O}), F_1(\mathcal{O}), \dots, F_r(\mathcal{O}))$.

We say that \mathcal{O} is pure if all its maximal monomials (under divisibility) have the same degree.

A vector $\mathbf{h} = (h_0, \dots, h_d)$ is a pure *O*-sequence if there is a pure ideal \mathcal{O} such that $\mathbf{h} = F(\mathcal{O})$.

The pure monomial order ideal (inside k[x, y, z] with maximal monomials xy^3z and x^2z^3 is :

$$X = \{\mathbf{x}\mathbf{y}^{\mathbf{3}}\mathbf{z}, \mathbf{x}^{\mathbf{2}}\mathbf{z}^{\mathbf{3}};$$

The pure monomial order ideal (inside k[x, y, z] with maximal monomials xy^3z and x^2z^3 is :

$$X = \{xy^3z, x^2z^3; y^3z, xy^2z, xy^3, xz^3, x^2z^2, y^2z, xy^3, x^2z^2, y^2z^2, xy^3, x^2z^2, y^2z^2, xy^3, x^2z^2, xy^3, x^2z^2, y^2z^2, xy^3, x^2z^2, y^2z^2, xy^3, x^2z^2, xy^3, x^2z^2, y^2z^2, xy^3, x^2z^2, xy^2z^2, xy^3, x^2z^2, xy^2z^2, xy^3, x^2z^2, xy^2z^2, xy^2$$

The pure monomial order ideal (inside k[x, y, z] with maximal monomials xy^3z and x^2z^3 is :

$$X = \{ \mathbf{xy^3z}, \mathbf{x^2z^3}; y^3z, xy^2z, xy^3, xz^3, x^2z^2, y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z, xy^2, xz^3, x^2z, xy^3, xyz, xy^2, xz^3, x^2z, xy^3, xyz, xy^3, xy^3,$$

The pure monomial order ideal (inside k[x, y, z] with maximal monomials xy^3z and x^2z^3 is :

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

The pure monomial order ideal (inside k[x, y, z] with maximal monomials xy^3z and x^2z^3 is :

The pure monomial order ideal (inside k[x, y, z] with maximal monomials xy^3z and x^2z^3 is :

$$X = \{ \mathbf{xy^3z}, \mathbf{x^2z^3}; y^3z, xy^2z, xy^3, xz^3, x^2z^2, y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z, yz, y^2, xz, xy, z^2, x^2, z, y, x, 1 \}.$$

The pure monomial order ideal (inside k[x, y, z] with maximal monomials xy^3z and x^2z^3 is :

$$X = \{ \mathbf{xy^3z}, \mathbf{x^2z^3}; y^3z, xy^2z, xy^3, xz^3, x^2z^2, y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z, yz, y^2, xz, xy, z^2, x^2, z, y, x, 1 \}.$$

Hence the *h*-vector of X is the pure O-sequence h = (1, 3, 6, 7, 5, 2).

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

A longstanding conjecture of Stanley suggest that matroid *h*-vectors are highly structured

A longstanding conjecture of Stanley suggest that matroid h-vectors are highly structured Conjecture (Stanley, 1976) For any matroid M, h(M) is a pure O-sequence.

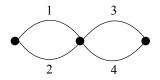
A longstanding conjecture of Stanley suggest that matroid *h*-vectors are highly structured

Conjecture (Stanley, 1976) For any matroid M, h(M) is a pure O-sequence.

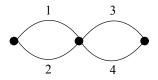
Conjecture hold for several families of matroid complexes :

- A longstanding conjecture of Stanley suggest that matroid *h*-vectors are highly structured
- Conjecture (Stanley, 1976) For any matroid M, h(M) is a pure O-sequence.
- Conjecture hold for several families of matroid complexes :
- (Merino, Noble, Ramirez-Ibañez, Villarroel, 2010) Paving matroids
- (Merino, 2001) Cographic matroids
- (Oh, 2010) Cotranversal matroids
- (Schweig, 2010) Lattice path matroids
- (Stokes, 2009) Matroids of rank at most three
- (De Loera, Kemper, Klee, 2012) for all matroids on at most nine elements all matroids of corank two.

We consider the matroid complexe Δ associated to the rank 2 matroid induced by the graph ${\it G}$



We consider the matroid complexe Δ associated to the rank 2 matroid induced by the graph ${\it G}$



We have that dim $\Delta = 1$ and $f_{-1} = 1$, $f_0 = 4$ and $f_1 = 4$.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

$\mathcal{B}(M(G)) = \{B_1 = \{1,3\}, B_2 = \{1,4\}, B_3 = \{2,3\}, B_4 = \{2,4\}\}.$

J.L. Ramírez Alfonsín Theory of matroids II: toic ideals and simplicial complexes

 $\mathcal{B}(M(G)) = \{B_1 = \{1,3\}, B_2 = \{1,4\}, B_3 = \{2,3\}, B_4 = \{2,4\}\}.$

- there is not internally passive element in B_1
- 4 is internally passive element of B_2
- 2 is internally passive element of B_3
- 2 and 4 are internally passive elements of B_4

 $\mathcal{B}(M(G)) = \{B_1 = \{1,3\}, B_2 = \{1,4\}, B_3 = \{2,3\}, B_4 = \{2,4\}\}.$

- there is not internally passive element in B_1
- 4 is internally passive element of B_2
- 2 is internally passive element of B_3
- 2 and 4 are internally passive elements of B_4

Thus, $\sum_{i=0}^{2} h_{i}t^{i} = \sum_{B \in \mathcal{B}(\mathcal{M}(G))} t^{ip(B)} = 1 + t + t + t^{2} = 1 + 2t + t^{2}.$

J.L. Ramírez Alfonsín

 $\mathcal{B}(M(G)) = \{B_1 = \{1,3\}, B_2 = \{1,4\}, B_3 = \{2,3\}, B_4 = \{2,4\}\}.$

- there is not internally passive element in B_1
- 4 is internally passive element of B_2
- 2 is internally passive element of B_3
- 2 and 4 are internally passive elements of B_4

Thus, $\sum_{i=0}^{2} h_{i}t^{i} = \sum_{B \in \mathcal{B}(\mathcal{M}(G))} t^{ip(B)} = 1 + t + t + t^{2} = 1 + 2t + t^{2}.$ Obtaining the *h*-vector *h*(1, 2, 1).

J.L. Ramírez Alfonsín

 $\mathcal{B}(M(G)) = \{B_1 = \{1,3\}, B_2 = \{1,4\}, B_3 = \{2,3\}, B_4 = \{2,4\}\}.$

- there is not internally passive element in B_1
- 4 is internally passive element of B_2
- 2 is internally passive element of B_3
- 2 and 4 are internally passive elements of B_4

Thus, $\sum_{i=0}^{2} h_i t^i = \sum_{B \in \mathcal{B}(\mathcal{M}(G))} t^{ip(B)} = 1 + t + t + t^2 = 1 + 2t + t^2.$ Obtaining the *h*-vector h(1, 2, 1). Since $\mathcal{O} = (1, x_1, x_2, x_1x_2)$ is an order ideal then h(1, 2, 1) is pure *O*-sequence.

J.L. Ramírez Alfonsín