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Let M be a matroid on a finite ground set E = {1,...,n}, we
denote by B the set of bases of M.
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Let k be an arbitrary field and consider k[xi, ..., x,] a polynomial
ring over k.
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Let M be a matroid on a finite ground set E = {1,...,n}, we
denote by B the set of bases of M.

Let k be an arbitrary field and consider k[xi, ..., x,] a polynomial
ring over k.

For each base B € B, we introduce a variable yg and we denote by
R the polynomial ring in the variables yg, i.e., R := k[yg| B € BJ.
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Let M be a matroid on a finite ground set E = {1,...,n}, we
denote by B the set of bases of M.

Let k be an arbitrary field and consider k[xi, ..., x,] a polynomial
ring over k.

For each base B € B, we introduce a variable yg and we denote by
R the polynomial ring in the variables yg, i.e., R := k[yg| B € BJ.

A binomial in R is a difference of two monomials, an ideal
generated by binomials is called a binomial ideal.
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We consider the homomorphism of k-algebras
¢ : R — k[x1,...,x,] induced by

yB — HX,'.

ieB

The image of ¢ is a standard graded k-algebra, which is called the
bases monomial ring of the matroid M and it is denoted by Sy,.
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We consider the homomorphism of k-algebras
¢ : R — k[x1,...,x,] induced by

yB — HX,'.

ieB

The image of ¢ is a standard graded k-algebra, which is called the
bases monomial ring of the matroid M and it is denoted by Sy,.

The kernel of ¢, which is the presentation ideal of Sy, is called the
toric ideal of M and is denoted by /.
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We consider the homomorphism of k-algebras
¢ : R — k[x1,...,x,] induced by

yB — HX,'.

ieB

The image of ¢ is a standard graded k-algebra, which is called the
bases monomial ring of the matroid M and it is denoted by Sy,.

The kernel of ¢, which is the presentation ideal of Sy, is called the
toric ideal of M and is denoted by /.

Observation Let b be the number of bases of a matroid M on n
elements. Then, Iy, is generated by the kernel of the integer n x b

matrix whose columns are the zero-one incidence vectors of the
bases of M.
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Matroid M(G) associated to graph G. We have r(M(G)) = 3.
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Matroid M(G) associated to graph G. We have r(M(G)) = 3.

2

B(M(G)) = {B; = {123}, B, = {125}, B; = {134}, B; =
{135}, Bs = {145}, Bs = {234}, B; = {245}, Bs = {345}}
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B(M(G)) = {B; = {123}, B, = {125}, B; = {134}, B; =
{135}, Bs = {145}, Bs = {234}, B; = {245}, By = {345}}

Bi By By By Bs Bg
1 1 1 1 1 0
1 1 00 0 1
1 0 1 1 0 1
0 0 1 0 1 1
0 1 0 1 1 0
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B(M(G)) = {B; = {123}, B, = {125}, B; = {134}, B; =
{135}, Bs = {145}, Bs = {234}, B; = {245}, By = {345}}

Bi B, B; By
1 1 1 1
1 1 0 0
1 0 1 1
0 0 1 0
0 1 0 1

By considering ¢ : klyg,,...,yB] — k[x1, ..

Bs

Y ==l

Bs

0
1
1
1
0

B7

0

[N e

= = = O O
&

., X5] we have that

YB, F X1X2X3, YB, v X1X2X5, YB; Fr X1X3X4,
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B(M(G)) = {B; = {123}, B, = {125}, B; = {134}, B; =
{135}, Bs = {145}, Bs = {234}, B; = {245}, By = {345}}

B Bs Bs Bs B;
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1
1
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By considering ¢ : k[yg,,...,yBs] — k[x1,...,xs] we have that
YBy 7 X1X2X3,  YB, F X1X2X5, YB; t X1X3Xa,

An element of the kernel of ¢ (i.e., Inc)) is : ¥B,YB, — YB,YBs-
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e |t is well known that /y; is a prime, binomial and homogeneous
ideal.
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e |t is well known that /y; is a prime, binomial and homogeneous
ideal.

Observation Since R/Iy =~ Sy, it follows that the height of Iy is
ht(Iy) = |B| — dim(Sym) = |[B| — (n — ¢ + 1), where c is the
number of connected components of M.
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Let B denote the set of bases of M. By definition B is not empty
and satisfies the following exchange axiom :

For every By, B> € BB and for every e € By \ By, there
exists f € By \ By such that (ByU{f})\ {e} € B.
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Let B denote the set of bases of M. By definition B is not empty
and satisfies the following exchange axiom :

For every By, B> € BB and for every e € By \ By, there
exists f € By \ By such that (ByU{f})\ {e} € B.

Brualdi proved that the exchange axiom is equivalent to the
symmetric exchange axiom :
For every By, By in B and for every e € By \ By, there
exists f € By \ By such that both (B U {f})\ {e} € B
and (BoU{e})\ {f} € B.
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Suppose that a pair of bases Dy, D, is obtained from a pair of
bases Bi, By by a symmetric exchange. Thatis Dy = (By \ e) U f
and D, = (B \ f) U e for some e € By and f € B;.
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Suppose that a pair of bases Dy, D, is obtained from a pair of
bases Bi, By by a symmetric exchange. Thatis Dy = (By \ e) U f
and D, = (B \ f) U e for some e € By and f € B;.

We say that the quadratic binomial yg,yB, — yp,¥p, correspond to
a symmetric exchange.
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Suppose that a pair of bases Dy, D, is obtained from a pair of
bases Bi, By by a symmetric exchange. Thatis Dy = (By \ e) U f
and D, = (B \ f) U e for some e € By and f € B;.

We say that the quadratic binomial yg,yB, — yp,¥p, correspond to
a symmetric exchange.

It is clear that such binomial belong to the ideal /p.
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Suppose that a pair of bases Dy, D, is obtained from a pair of
bases Bi, By by a symmetric exchange. Thatis Dy = (By \ e) U f
and D, = (B \ f) U e for some e € By and f € B;.

We say that the quadratic binomial yg,yB, — yp,¥p, correspond to
a symmetric exchange.

It is clear that such binomial belong to the ideal /p.

Conjecture (White 1980) For every matroid M its toric ideal Iy is
generated by quadratic binomials corresponding to symmetric
exchanges.
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Observation for By,...,Bs, Dy, ..., Ds € B, the homogeneous
binomial yg, ---yB, — ¥p, - - - ¥p, belongs to Iy if and only if
BiU---UBs =Dy U---U Ds as multisets.
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Observation for By,...,Bs, Dy, ..., Ds € B, the homogeneous
binomial yg, ---yB, — ¥p, - - - ¥p, belongs to Iy if and only if
BiU---UBs =Dy U---U Ds as multisets.

Since Iy is a homogeneous binomial ideal, it follows that

Iy = ({yBl “ VB, —YD; " YDs | B1U---UBs = D1U---UDs as multisets})
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Observation for By,...,Bs, Dy, ..., Ds € B, the homogeneous
binomial yg, ---yB, — ¥p, - - - ¥p, belongs to Iy if and only if
BiU---UBs =Dy U---U Ds as multisets.

Since Iy is a homogeneous binomial ideal, it follows that
Iy = ({yBl “ VB, —YD; " YDs | BiU---UBs = D1U- - -UDs as multisets})

White's original formulation Two sets of bases of a matroid have
equal union (as multiset), then one can pass between them by a
sequence of symmetric exchanges.

J.L. Ramirez Alfonsin IIMAG, Université de Montpellier

Ideals and simplicial complexes of matroids



Observation for By,...,Bs, Dy, ..., Ds € B, the homogeneous
binomial yg, ---yB, — ¥p, - - - ¥p, belongs to Iy if and only if
BiU---UBs =Dy U---U Ds as multisets.

Since Iy is a homogeneous binomial ideal, it follows that
Iy = ({yBl “ VB, —YD; " YDs | BiU---UBs = D1U- - -UDs as multisets})

White's original formulation Two sets of bases of a matroid have
equal union (as multiset), then one can pass between them by a
sequence of symmetric exchanges.

Observation White's conjecture does not depend on the field k.
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We had B(M(G)) = {By = {123}, B, = {125}, By = {134}, B; =
(135}, Bs = {145}, Bs = {234}, B; = {245}, By = {345} }.

We also had that yg,ys, — yB,¥8; € Im(c)-
We can check that B; U By = {2,4,5,1,3,5} = B U Bs.
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e Blasiak (2008) has confirmed the conjecture for graphical
matroids.
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e Blasiak (2008) has confirmed the conjecture for graphical
matroids.

e Kashiwaba (2010) checked the case of matroids of rank < 3.
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e Blasiak (2008) has confirmed the conjecture for graphical
matroids.

e Kashiwaba (2010) checked the case of matroids of rank < 3.

e Schweig (2011) proved the case of lattice path matroids which
are a subclass of transversal matroids.
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e Blasiak (2008) has confirmed the conjecture for graphical
matroids.

e Kashiwaba (2010) checked the case of matroids of rank < 3.

e Schweig (2011) proved the case of lattice path matroids which
are a subclass of transversal matroids.

e Bonin (2013) confirmed the conjecture for sparse paving matroids
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e Blasiak (2008) has confirmed the conjecture for graphical
matroids.

e Kashiwaba (2010) checked the case of matroids of rank < 3.

e Schweig (2011) proved the case of lattice path matroids which
are a subclass of transversal matroids.

e Bonin (2013) confirmed the conjecture for sparse paving matroids

e Lason, Michatek (2014) proved for strongly base orderables
matroids.
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Let M be a matroid on a ground set E with |E| = nr(M) where
r(M) is the rank of M.
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J.L. Ramirez Alfonsin

Let M be a matroid on a ground set E with |E| = nr(M) where
r(M) is the rank of M.

The n-base graph of M, which is denoted by G,(M), has as its
vertex set the set of all sets of n disjoint bases (a set of n bases
{Bi,...,Bn} of M is disjoint if and only if

El=JB.
i=1

There is an edge between {By,...,B,} and {Ds,...,D,} if and
only if B; = D; for some i, .
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We have that r(U>6) = 2, and let us take n = 3.
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We have that r(Us6) = 2, and let us take n = 3. So

12,34,56

123546
16,2534

12,3645
16,2435

13,2456
16,2345

15,2634 13.2546

132645

15,24 36
142356

152346
14.26,35 14,2536
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5

We have that r(M(G)) = 2 and we set n = 3.
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5

We have that r(M(G)) = 2 and we set n = 3.

B(M(G)) = {Bl = {173}7 B, = {174}7 Bs = {175}a By =
{176}a BS = {273}a B6 = {274}a B = {275}7 BS - {276}7 BQ -
{375}a BlO = {376}7 B11 = {475}) 812 = {4>6}}'
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13,2546

16,2435
132645

16,2345 14,2536

15,2436 142635

15,2346
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13,2546

16,2435
132645

16,2345 14,2536

15,2436 142635

15,2346

We notice that yg,ys,y8, — ¥B,YB,YB1» € IM(G)
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13,2546

16,2435
132645

16,2345 14,2536

15,2436 142635

15,2346

We notice that yg,ys,y8, — ¥B,YB,YB1» € IM(G)
since By U Bg U By = {1,2,3,4,5,6} = B1 U By U By».
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13,2546

16,2435
132645

16,2345 14,2536

15,2436 142635

15,2346

We notice that yg,ys,y8, — ¥B,YB;YB1» € IM(G)
since By U Bg U By = {1,2,3,4,5,6} = B1 U By U By».
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Lemma (Blasiak) Let € be a collection of matroids that is closed
under deletions and adding parallel elements. Suppose that for
each n > 3 and for every matroid M in € on a ground set of size
nr(M) the n-base graph of M is connected. Then, for every
matroid M in &, Iy, is generated by quadratics polynomials.
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Lemma (Blasiak) Let € be a collection of matroids that is closed
under deletions and adding parallel elements. Suppose that for
each n > 3 and for every matroid M in € on a ground set of size
nr(M) the n-base graph of M is connected. Then, for every
matroid M in &, Iy, is generated by quadratics polynomials.

Proof (idea) The following statement is proved by induction on n :
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Lemma (Blasiak) Let € be a collection of matroids that is closed
under deletions and adding parallel elements. Suppose that for
each n > 3 and for every matroid M in € on a ground set of size
nr(M) the n-base graph of M is connected. Then, for every
matroid M in &, Iy, is generated by quadratics polynomials.

Proof (idea) The following statement is proved by induction on n :

for every M € € and every binomial b € Iy, of degree n, b is in the
ideal generated by the quadratics of /.
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Lemma (Blasiak) Let € be a collection of matroids that is closed
under deletions and adding parallel elements. Suppose that for
each n > 3 and for every matroid M in € on a ground set of size
nr(M) the n-base graph of M is connected. Then, for every
matroid M in &, Iy, is generated by quadratics polynomials.

Proof (idea) The following statement is proved by induction on n :

for every M € € and every binomial b € Iy, of degree n, b is in the
ideal generated by the quadratics of /.

This will prove the result because Iy, as a toric ideal, is generated
by binomials.
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Proof (continuation ...) M € € and b is binomial of degree n in Iy.
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Proof (continuation ...) M € € and b is binomial of degree n in Iy.

n n
The binomial b is necessarily of the form b= [] yg — [] yp, for
i=1 i=1

some bases {Bi,..., B} and {D1,...,D,} of M such that the B;
and D; have the same multiset union.
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J.L. Ramirez Alfonsin

Proof (continuation ...) M € € and b is binomial of degree n in Iy.

n n
The binomial b is necessarily of the form b= [] yg — [] yp, for
i=1 i=1
some bases {Bi,..., B} and {D1,...,D,} of M such that the B;
and D; have the same multiset union.
It is proved that b is in the ideal generated by the degree n — 1
binomials of /j; (this is done by constructing a new matroid M’
that depends on the binomial b).
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Proof (continuation ...) M € € and b is binomial of degree n in Iy.

n n

The binomial b is necessarily of the form b= [] yg — [] yp, for
i=1 i=1

some bases {Bi,..., B} and {D1,...,D,} of M such that the B;

and D; have the same multiset union.

It is proved that b is in the ideal generated by the degree n — 1
binomials of /j; (this is done by constructing a new matroid M’
that depends on the binomial b).

By induction the degree n — 1 binomials are in the ideal generated
by the quadratics of Iy, so this will complete the proof.
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13,2546

16,2435
13,2645
162345 ><? 14,2536

15.24.36 142635

15,2346

Y16Y24Y35 — Y13Y25Y46 € Im(G)-
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13,2546

16,2435
13,2645
162345 ><? 14,2536

15.24.36 142635

15,2346

Y16Y24Y35 — Y13Y25Y46 € Im(G)-
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132546

16,24,35
13,2645

16,23 45 14,2536

15,2436 142635

152346

By following the path we construct
Y16Y24Y35—Y16Y23Y45Y16Y23Y45—Y13Y26Y45+Y13Y26 Y55 —Y13Y25Y46 =
Yi6y24y3s — Y13Y25Ya6 € Iv(c)-
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132546

162435
132645

142536

162345

152436 142635

152346

By following the path we construct

Y16Y24Y35—Y16Y23Y45+Y16Y23Y45—Y13Y26 Y45+ Y13 Y26 Y55 —Y13Y25 Y46

Yi6Y24y35 — Y13Y25Ya6 € Ivi(c)-
Or equivalently

y16(Y2ay35 — yo3yas5) + yas(Yiey23 — y13y26) + Y13(y26 Y55 — Yosyae) =

Y16Y24Y35 — Y13Y25Y46 € Im(G)-

J.L. Ramirez Alfonsin
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Conjecture 1 For any matroid M, the toric ideal I is generated by
quadratics binomials.
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Conjecture 1 For any matroid M, the toric ideal I is generated by
quadratics binomials.

Conjecture 2 For any matroid M, the quadratic binomials of /y; are
in the ideal generated by the binomials yg, yg, — yp,¥p, such that

the pair of bases D1, D> can be obtained from the pair By, B> by a
symmetric exchange.

J.L. Ramirez Alfonsin IIMAG, Université de Montpellier

Ideals and simplicial complexes of matroids



Conjecture 1 For any matroid M, the toric ideal I is generated by
quadratics binomials.

Conjecture 2 For any matroid M, the quadratic binomials of /y; are
in the ideal generated by the binomials yg, yg, — yp,¥p, such that

the pair of bases D1, D> can be obtained from the pair By, B> by a
symmetric exchange.

Remark : Conjectures 1 and 2 together imply White's conjecture.

J.L. Ramirez Alfonsin IIMAG, Université de Montpellier

Ideals and simplicial complexes of matroids



The toric ideal Iy, is a complete intersection if and only if there
exists a set of homogeneous binomials gi,...,gs € R such that

s =ht(ly) and Iy = (g1, ..., 8s)-

J.L. Ramirez Alfonsin IIMAG, Université de Montpellier

Ideals and s | complexes of matroids



The toric ideal Iy, is a complete intersection if and only if there
exists a set of homogeneous binomials gi,...,gs € R such that
s =ht(ly) and Iy = (g1, ..., 8s)-

Equivalently, Iy is a complete intersection if
pu(lv) =ht(Im) = |B] = (n—c +1)

where (/1) denotes the minimal number of generators of Iy and
¢ the number of connected components of M.
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The number of connected components of a matroid M is given by
the number of equivalent classes induced by the relation R defined
as follows : aRb if and only if there exist a circuit of M containing
both a, b € M.
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The number of connected components of a matroid M is given by
the number of equivalent classes induced by the relation R defined
as follows : aRb if and only if there exist a circuit of M containing

both a, b € M.
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The number of connected components of a matroid M is given by
the number of equivalent classes induced by the relation R defined
as follows : aRb if and only if there exist a circuit of M containing

both a, b € M.

4

We have B(M(G)) = {123,124,134,234}. There is one equivalent
classe, and thus ht(/y)) =4 —(4—-1+1) =0.
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Recall that

Im= ({ys, - yB.—yp, - yD, | BLU---UBs = D1U---UDs}) (1)
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Recall that

Im= ({ys, - yB.—yp, - yD, | BLU---UBs = D1U---UDs}) (1)

e If r = nthen ht(/yy) =1—(n—n+1) =0, and clearly by (1),
we have Iy = (0). So, in this case Iy is complete intersection.
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Recall that

Im= ({ys, - yB.—yp, - yD, | BLU---UBs = D1U---UDs}) (1)
e If r = nthen ht(/yy) =1—(n—n+1) =0, and clearly by (1),
we have Iy = (0). So, in this case Iy is complete intersection.

e If r=n—1then ht(/yy) =n—(n—141) =0, and clearly by (1),
we have Iy = (0). So, in this case /j; is also complete intersection.

J.L. Ramirez Alfonsin IIMAG, Université de Montpellier

Ideals and simplicial complexes of matroids



Recall that

Im= ({ys, - yB.—yp, - yD, | BLU---UBs = D1U---UDs}) (1)
e If r = nthen ht(/yy) =1—(n—n+1) =0, and clearly by (1),
we have Iy = (0). So, in this case Iy is complete intersection.

e If r=n—1then ht(/yy) =n—(n—141) =0, and clearly by (1),
we have Iy = (0). So, in this case /j; is also complete intersection.

Thus, we only consider the case r < n— 2.
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We denote by M* the dual matroid of M.
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We denote by M* the dual matroid of M.

o is the isomorphism of k-algebras o : R — k[yg\g| B € B]
induced by yg — yg\B.
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We denote by M* the dual matroid of M.

o is the isomorphism of k-algebras o : R — k[yg\g| B € B]
induced by yg — yg\B.

It is straightforward to check that o(/y) = Iy«
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We denote by M* the dual matroid of M.

o is the isomorphism of k-algebras o : R — k[yg\g| B € B]
induced by yg — yg\B.

It is straightforward to check that o(/y) = Iy«

Thus, Iy is a complete intersection if and only if /Iy« also is.
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We denote by M* the dual matroid of M.

o is the isomorphism of k-algebras o : R — k[yg\g| B € B]
induced by yg — yg\B.

It is straightforward to check that o(/y) = Iy«
Thus, Iy is a complete intersection if and only if /Iy« also is.

Proposition Let M’ be a minor of M. If Iy, is a complete
intersection, then Iy also is.
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If M has rank 2 then we associate to M the graph Hp, with vertex
set E and edge set B.
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If M has rank 2 then we associate to M the graph Hp, with vertex
set E and edge set B.

Example :
B(U2,4) = {Bl = {1>2}a By = {1’3}a B3 = {174}7 By =
{273}7 B5 = {274}7 Bﬁ = {374}}

B, B, By By Bs Bg
1 1 0

1

1 0 0 1
0 1 o0 1
0 0 1 0
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If M has rank 2 then we associate to M the graph Hy; with vertex
set E and edge set B.

e It turns out that /y; coincides with the toric ideal of the graph
Huy.
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If M has rank 2 then we associate to M the graph Hy; with vertex
set E and edge set B.
e It turns out that /y; coincides with the toric ideal of the graph

Hy.

Theorem (I. Bermejo, |. Garcia-Marco, E. Reyes) Whenever )
is a complete intersection, then Hp does not contain K33 as
subgraph.
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K23

B

Therefore I is not complete intersection.
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Proposition Let M be a rank 2 matroid on a ground set of n > 4
elements without loops or coloops. Then, /Iy, is a complete
intersection if and only if n = 4.
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Proposition Let M be a rank 2 matroid on a ground set of n > 4

elements without loops or coloops. Then, /Iy, is a complete
intersection if and only if n = 4.

Proof (idea) (=) Assume that n > 5 and let us prove that /y is
not a complete intersection.
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Proposition Let M be a rank 2 matroid on a ground set of n > 4
elements without loops or coloops. Then, /Iy, is a complete
intersection if and only if n = 4.

Proof (idea) (=) Assume that n > 5 and let us prove that /y is
not a complete intersection.

Since M has no loops or coloops, we may assume that
B, = {1,2}, B, = {3,4}, B; = {1,5} € B.
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Proposition Let M be a rank 2 matroid on a ground set of n > 4
elements without loops or coloops. Then, /Iy, is a complete
intersection if and only if n = 4.

Proof (idea) (=) Assume that n > 5 and let us prove that /y is
not a complete intersection.

Since M has no loops or coloops, we may assume that

B, = {1,2}, B, = {3,4}, B; = {1,5} € B.

Since By, B> € B, by the symmetric exchange axiom, we can also
assume that By = {1,3}, Bs = {2,4} € B.
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Proposition Let M be a rank 2 matroid on a ground set of n > 4
elements without loops or coloops. Then, /Iy, is a complete
intersection if and only if n = 4.

Proof (idea) (=) Assume that n > 5 and let us prove that /y is
not a complete intersection.

Since M has no loops or coloops, we may assume that

B, = {1,2}, B, = {3,4}, B; = {1,5} € B.

Since By, B> € B, by the symmetric exchange axiom, we can also
assume that By = {1,3}, Bs = {2,4} € B.

If {4,5} € B, then Hy has a subgraph K33 and /j is not a
complete intersection.
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Proposition Let M be a rank 2 matroid on a ground set of n > 4
elements without loops or coloops. Then, /Iy, is a complete
intersection if and only if n = 4.

Proof (idea) (=) Assume that n > 5 and let us prove that /y is
not a complete intersection.

Since M has no loops or coloops, we may assume that

B, = {1,2}, B, = {3,4}, B; = {1,5} € B.

Since By, B> € B, by the symmetric exchange axiom, we can also
assume that By = {1,3}, Bs = {2,4} € B.

If {4,5} € B, then Hy has a subgraph K33 and /j is not a
complete intersection.

If {4,5} ¢ B also implies that Hy has a subgraph K> 3.
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Proposition Let M be a rank 2 matroid on a ground set of n > 4
elements without loops or coloops. Then, /Iy, is a complete
intersection if and only if n = 4.

Proof (idea) (=) Assume that n > 5 and let us prove that /y is
not a complete intersection.

Since M has no loops or coloops, we may assume that

B, = {1,2}, B, = {3,4}, B; = {1,5} € B.

Since By, B> € B, by the symmetric exchange axiom, we can also
assume that By = {1,3}, Bs = {2,4} € B.

If {4,5} € B, then Hy has a subgraph K33 and /j is not a
complete intersection.

If {4,5} ¢ B also implies that Hy has a subgraph K> 3.
(<) By computer.
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Theorem Let M be a matroid without loops or coloops and with
n>r+ 1. Then, Iy is a complete intersection if and only if n =4
and M is the matroid whose set of bases is :

B = {{172}7 {374}7 {173}? {274}}7
B ={{1,2},{3,4},{1,3},{2,4},{1,4}}, or

B ={{1,2},{3,4},{1,3},{2,4},{1,4},{2,3}}, ie.
M = Ups.

J.L. Ramirez Alfonsin IIMAG, Université de Montpellier

Ideals and simplicial complexes of matroids



We consider the following binary equivalence relation ~ on the set
of pairs of bases :

{B1,B2} ~ {B3,Bs} <= B; U By = B3 U By as multisets,

and we denote by Ap g, the cardinality of the equivalence class
of {Bl, 82}.

J.L. Ramirez Alfonsin IIMAG, Université de Montpellier

Ideals and simplicial complexes of matroids



We consider the graph
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We consider the graph

Therefore,
B(M(G)) = {B1 = {123}, B, = {124}, B3 = {134}, B, = {234} }.
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We consider the graph

Therefore,

B(M(G)) = {B1 = {123}, B, = {124}, B3 = {134}, B, = {234} }.
It can be checked that the equivalent class of {B;, B;} is {Bi, Bj},
thatis, Agg, gy =1 forany pair 1 <i#j <4
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Lemma (bounds) For every Bi, By € B, then
2971 < Ag g,y < (P9 1), where d == [By \ By|.
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Lemma (bounds) For every Bi, By € B, then

2971 < Ag g,y < (P9 1), where d == [By \ By|.

Proof of the lower bound Take e € B; \ B,. By the multiple
symmetric exchange property, for every A; such that

e € A1 C (B1\ Bp), there exists Ay C B, such that both

Bi := (B1UA2) \ A1 and B} := (By U A1) \ Ay are bases.
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Lemma (bounds) For every Bi, By € B, then

2971 < Ag g,y < (P9 1), where d == [By \ By|.

Proof of the lower bound Take e € B; \ B,. By the multiple
symmetric exchange property, for every A; such that

e € A1 C (B1\ Bp), there exists Ay C B, such that both

Bi := (B1UA2) \ A1 and B} := (By U A1) \ Ay are bases.

Since By U By = By U Bj as multisets, we derive that A¢pg g,y is
greater or equal to the number of sets A; such that

e € Ay C (B1\ By), which is exactly 2971,
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Lemma Let By, B, € B of a matroid M and consider the matroid
M’ := (M/(B1 N B2))|(8,2B,) on the ground set By A By. Then,
the number of bases-cobases of M’ is equal to 2A (B, By}
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Lemma Let By, B, € B of a matroid M and consider the matroid
M’ := (M/(B1 N B2))|(8,2B,) on the ground set By A By. Then,
the number of bases-cobases of M’ is equal to 2A (B, By}
Theorem If M has a minor M’ =~ Uy 54 for some d > 2, then there
exist By, By € B such that A¢p, g, = (2dd_1).

J.L. Ramirez Alfonsin IIMAG, Université de Montpellier

Ideals and simplicial complexes of matroids



Lemma Let By, B, € B of a matroid M and consider the matroid
M’ := (M/(B1 N B2))|(8,2B,) on the ground set By A By. Then,
the number of bases-cobases of M’ is equal to 2A (B, By}

Theorem If M has a minor M’ =~ Uy 54 for some d > 2, then there

exist By, By € B such that A¢p, g, = (2dd_1).

Theorem (binary) M is binary if and only if A¢g p,) # 3 for every
Bl, 82 € B.
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Lemma Let By, B, € B of a matroid M and consider the matroid
M’ := (M/(B1 N B2))|(8,2B,) on the ground set By A By. Then,
the number of bases-cobases of M’ is equal to 2A (B, By}

Theorem If M has a minor M’ =~ Uy 54 for some d > 2, then there
exist By, By € B such that A¢p, g, = (2dd_1).

Theorem (binary) M is binary if and only if A¢g p,) # 3 for every
Bl, B, € B.

Theorem M has a minor M’ =~ Us ¢ if and only if Ayg, g,3 = 10 for
some By, B, € B.
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v(Ip) = the number of minimal sets of binomial generators of Iy,
where the sign of a binomial does not count

w(Iv) = the minimal number of generators of /.
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v(Ip) = the number of minimal sets of binomial generators of Iy,
where the sign of a binomial does not count

w(Iv) = the minimal number of generators of /.

Theorem Let R = {{Bi1, B2}, ...,{Bas—1, Bas}} be a set of
representatives of ~ and set r; := Ay, | g, for all
ie{l,...,s}. Then,

w(lv) > (b?> — b —2s)/2, where b := |B|, and

8 v(i) > T, 2
Moreover, in both cases equality holds whenever Iy, is generated by
quadratics.
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v(Ip) = the number of minimal sets of binomial generators of Iy,
where the sign of a binomial does not count

w(Iv) = the minimal number of generators of /.

Theorem Let R = {{Bi1, B2}, ...,{Bas—1, Bas}} be a set of
representatives of ~ and set r; := Ay, | g, for all
ie{l,...,s}. Then,

w(lv) > (b?> — b —2s)/2, where b := |B|, and

8 v(i) > T, 2
Moreover, in both cases equality holds whenever Iy, is generated by
quadratics.

Question Can we characterize those matroids M with v(/y) =17
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The basis graph of a matroid M is the undirected graph Gy, with
vertex set BB and edges {B, B’} such that |B\ B’| = 1. The
diameter of a graph is the maximum distance between two vertices
of the graph.
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The basis graph of a matroid M is the undirected graph Gy, with
vertex set BB and edges {B, B’} such that |B\ B’| = 1. The
diameter of a graph is the maximum distance between two vertices
of the graph.

Basis graph Gy, ,
12

{13} {14}

3.4}
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Theorem Let M be a rank r > 2 matroid. Then, v(/y) = 1 if and
only if M is binary and the diameter of Gy, is at most 2.
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Theorem Let M be a rank r > 2 matroid. Then, v(/y) = 1 if and
only if M is binary and the diameter of Gy, is at most 2.

Proof (idea) (=) By the previous theorem,we have that
Ay, B,y =1 or2forall By, B; € B.
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Theorem Let M be a rank r > 2 matroid. Then, v(/y) = 1 if and
only if M is binary and the diameter of Gy, is at most 2.

Proof (idea) (=) By the previous theorem,we have that

Ay, B,y =1 or2forall By, B; € B.

By Lemma bounds and Theorem binary, this is equivalent to M is
binary and |B; \ Bz| € {1,2} for all By, By € B. Clearly this implies
that the diameter of Gy, is less or equal to 2.
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Theorem Let M be a rank r > 2 matroid. Then, v(/y) = 1 if and
only if M is binary and the diameter of Gy, is at most 2.

Proof (idea) (=) By the previous theorem,we have that

Ay, B,y =1 or2forall By, B; € B.

By Lemma bounds and Theorem binary, this is equivalent to M is
binary and |B; \ Bz| € {1,2} for all By, By € B. Clearly this implies
that the diameter of Gy, is less or equal to 2.

(<) More complicated.
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Matroid M(G) associated to graph G.
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Matroid M(G) associated to graph G.

2

B(M(G)) = {B; = {124}, B, = {125}, B; = {134}, B; =
(135}, Bs = {145}, Bs = {234}, B; = {235}, Bs = {345}}
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The base graph Gy (g)

124 125

345 134

145 135

234 145
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The base graph Gy (g)

124 125

345 134

145 135

234 145

Since diameter of Gyy(g) is at most two, and M(G) is binary then
v(ly) = 1.
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Let V ={vi,...,vn} be a set of distincts elements. A collection A
of subsets of V is called a simplicial complex if for every F € A
and GC F,G € A.
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Let V ={vi,...,vn} be a set of distincts elements. A collection A
of subsets of V is called a simplicial complex if for every F € A
and GC F,G € A.

Elements of the simplicial complex A are called faces of A.
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Let V ={vi,...,vn} be a set of distincts elements. A collection A
of subsets of V is called a simplicial complex if for every F € A
and GC F,G € A.

Elements of the simplicial complex A are called faces of A.

Maximal faces (under inclusion) are called facets.
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Let V ={vi,...,vn} be a set of distincts elements. A collection A
of subsets of V is called a simplicial complex if for every F € A
and GC F,G € A.

Elements of the simplicial complex A are called faces of A.

Maximal faces (under inclusion) are called facets.
If £ € A then the dimension of F is dim F = |F| — 1.
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Let V ={vi,...,vn} be a set of distincts elements. A collection A
of subsets of V is called a simplicial complex if for every F € A
and GC F,G € A.

Elements of the simplicial complex A are called faces of A.

Maximal faces (under inclusion) are called facets.
If £ € A then the dimension of F is dim F = |F| — 1.
The dimension of A is defined to be dim A = max{dim F|F € A}.
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Let V ={vi,...,vn} be a set of distincts elements. A collection A
of subsets of V is called a simplicial complex if for every F € A
and GC F,G € A.

Elements of the simplicial complex A are called faces of A.

Maximal faces (under inclusion) are called facets.
If £ € A then the dimension of F is dim F = |F| — 1.
The dimension of A is defined to be dim A = max{dim F|F € A}.

The complex A is said to be pure if all its facets have the same
dimension.
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Let V ={vi,...,vn} be a set of distincts elements. A collection A
of subsets of V is called a simplicial complex if for every F € A
and GC F,G € A.

Elements of the simplicial complex A are called faces of A.

Maximal faces (under inclusion) are called facets.
If £ € A then the dimension of F is dim F = |F| — 1.
The dimension of A is defined to be dim A = max{dim F|F € A}.

The complex A is said to be pure if all its facets have the same
dimension.

If {v} € A then we call v a vertex of A.
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Let d — 1 = dim A. The f-vector of A is the vector
f(A) = (f1,fy,...,fq—1), where fi = |[{F € A| dim F =i}| is
the number of /-dimensional faces in A.
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Let d — 1 = dim A. The f-vector of A is the vector
f(A) = (f1,fy,...,fq—1), where fi = |[{F € A| dim F =i}| is
the number of /-dimensional faces in A.

Let A be a simplicial complex with vertex set V.
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Let d — 1 = dim A. The f-vector of A is the vector
f(A) = (f1,fy,...,fq—1), where fi = |[{F € A| dim F =i}| is
the number of /-dimensional faces in A.

Let A be a simplicial complex with vertex set V.
e The k-skeleton of A'is [Ax] = {F € Aldim F < k}.
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Let d — 1 = dim A. The f-vector of A is the vector
f(A) = (f1,fy,...,fq—1), where fi = |[{F € A| dim F =i}| is
the number of /-dimensional faces in A.

Let A be a simplicial complex with vertex set V.

e The k-skeleton of A'is [Ax] = {F € Aldim F < k}.

e If W C V then the restriction of A to W is

Alw ={F e AIF CW}. If W=V —{v} then we will write
A_, = Alw and call A_, the deletion of A with respect to v or
the deletion of v from A.
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Let d — 1 = dim A. The f-vector of A is the vector
f(A) = (f1,fy,...,fq—1), where fi = |[{F € A| dim F =i}| is
the number of /-dimensional faces in A.

Let A be a simplicial complex with vertex set V.

e The k-skeleton of A is [Ax] = {F € Aldim F < k}.

e If W C V then the restriction of A to W is

Alw ={F e AIF CW}. If W=V —{v} then we will write
A_, = Alw and call A_, the deletion of A with respect to v or
the deletion of v from A.

o If W C V then linkn(W)={F e AIWNF=0,WUF € A}.
We call this the link of A with respect to W.
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Let d — 1 = dim A. The f-vector of A is the vector
f(A) = (f1,fy,...,fq—1), where fi = |[{F € A| dim F =i}| is
the number of /-dimensional faces in A.

Let A be a simplicial complex with vertex set V.

e The k-skeleton of A'is [Ax] = {F € Aldim F < k}.

e If W C V then the restriction of A to W is

Alw ={F e AIF CW}. If W=V —{v} then we will write
A_, = Alw and call A_, the deletion of A with respect to v or
the deletion of v from A.

o If W C V then linkn(W)={F e AIWNF=0,WUF € A}.
We call this the link of A with respect to W.

e If v & V then the cone over A is CA = AU{FU{v}|F € A}
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Let d — 1 = dim A. The f-vector of A is the vector
f(A) = (f1,fy,...,fq—1), where fi = |[{F € A| dim F =i}| is
the number of /-dimensional faces in A.

Let A be a simplicial complex with vertex set V.

e The k-skeleton of A'is [Ax] = {F € Aldim F < k}.

e If W C V then the restriction of A to W is

Alw ={F e AIF CW}. If W=V —{v} then we will write
A_, = Alw and call A_, the deletion of A with respect to v or
the deletion of v from A.

o If W C V then linkn(W)={F e AIWNF=0,WUF € A}.
We call this the link of A with respect to W.

e If v & V then the cone over A is CA = AU{FU{v}|F € A}

v is called the apex of CA.
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Observation Since if F € A and G C F then G € A, the complex
A is determined completely by those faces that are not contained
in any other face, that is the facets of A.
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Observation Since if F € A and G C F then G € A, the complex
A is determined completely by those faces that are not contained
in any other face, that is the facets of A.

e Typically, we will describe a simplicial complex by listing its
facets.
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Simplicial complexe A of dimension 2
1 2
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Simplicial complexe A of dimension 2
1 2

e A is not pure as it has facets of dimension 1 (12 and 45) and of
dimension 2 (234 and 135).
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Simplicial complexe A of dimension 2
1 2

5 4

e A is not pure as it has facets of dimension 1 (12 and 45) and of
dimension 2 (234 and 135).

o f(A) = (1,5,8,2).
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Simplicial complexe A of dimension 2
1 2

5 4

e A is not pure as it has facets of dimension 1 (12 and 45) and of
dimension 2 (234 and 135).

e f(A)=(1,5,8,2).
e The linka(3) is the complex with facets 15 and 24, while the
linka(5) has facets 13 and 4.
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Simplicial complexe A of dimension 2
1 2

5 4

e A is not pure as it has facets of dimension 1 (12 and 45) and of
dimension 2 (234 and 135).

o f(A) = (1,5,8,2).

e The linka(3) is the complex with facets 15 and 24, while the
linka(5) has facets 13 and 4.

e The deletion of 3 has facets 12, 24, 45 and 15. The deletion of 5
has facets 234, 13 and 12.
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Recall that axioms (/1), (/2) for the independent set Z(M) of a
matroid M on a set V are equivalent to Z being an abstract
simplicial complex on V.
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Recall that axioms (/1), (/2) for the independent set Z(M) of a
matroid M on a set V are equivalent to Z being an abstract
simplicial complex on V.

The independent sets of M form a simplicial complex, called the
independence complex of M.
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Recall that axioms (/1), (/2) for the independent set Z(M) of a
matroid M on a set V are equivalent to Z being an abstract
simplicial complex on V.

The independent sets of M form a simplicial complex, called the
independence complex of M.

Axiom (/3) can be replaced by the following one
(13)’ for every A C E the restriction

Tia={le€I:1CA}

is a pure simplicial complex.
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Recall that axioms (/1), (/2) for the independent set Z(M) of a
matroid M on a set V are equivalent to Z being an abstract
simplicial complex on V.

The independent sets of M form a simplicial complex, called the
independence complex of M.

Axiom (/3) can be replaced by the following one
(13)’ for every A C E the restriction

Tia={le€I:1CA}

is a pure simplicial complex. A simplicial complex A over the

vertices V is called matroid complex if axiom (/3)" is verified.
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Two 1-dimensional simplicial complexes.

1
4 2
2 6
3
5 3 5
6 1 4
(a) b)
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Two 1-dimensional simplicial complexes.

1
4 2
2 6
3
5 3 5
6 1 4
(a) b)

(a) Matroid complex (this can be checked by verifying that every
AC{l1,...,6}, Ay is pure).
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Two 1-dimensional simplicial complexes.

(a) (b)

(a) Matroid complex (this can be checked by verifying that every
AC{l1,...,6}, Ay is pure).

(b) is not a matroid complex since it admits a restriction that is
not pure, for instance, the facets of A; 34 are {1} and {3,4} and
so this restriction is not pure.
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Let A be a matroid complex with vertex set V. Then, the
following complexes are also matroid complexes
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Let A be a matroid complex with vertex set V. Then, the
following complexes are also matroid complexes

e Al for every W C V.
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Let A be a matroid complex with vertex set V. Then, the
following complexes are also matroid complexes

e Al for every W C V.
e CA, the cone over A.
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Let A be a matroid complex with vertex set V. Then, the
following complexes are also matroid complexes

e Al for every W C V.
e CA, the cone over A.
e [A]g, the k-skeleton of A.
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Let A be a matroid complex with vertex set V. Then, the
following complexes are also matroid complexes

e Al for every W C V.

e CA, the cone over A.

e [A]g, the k-skeleton of A.
e linka(F) for every F € A.
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Let A be a matroid complex with vertex set V. Then, the
following complexes are also matroid complexes

e Al for every W C V.

e CA, the cone over A.

e [A]g, the k-skeleton of A.
e linka(F) for every F € A.

Remarks : Link and restriction are identical to the contraction and
deletion constructions from matroids.
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Let A be a matroid complex with vertex set V. Then, the
following complexes are also matroid complexes

e Al for every W C V.

e CA, the cone over A.

e [A]g, the k-skeleton of A.
e linka(F) for every F € A.

Remarks : Link and restriction are identical to the contraction and
deletion constructions from matroids.

A matroid complex Ay, is a cone if and only if M has a coloop (or
isthme), which corresponds to the apex defined above.
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Lemma Let A be a 1-dimensional simplicial complex. Then, A is
matroid if and only if for every vertex v and every edge E,
linka(v) N E # (.
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Lemma Let A be a 1-dimensional simplicial complex. Then, A is
matroid if and only if for every vertex v and every edge E,
linka(v) N E # (.

(2 ()
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Let k be a field. We can associate to a simplicial complex A, a
square free monomial ideal in S = k[x1,...,xp],

In=|xe=][[xlFgn)cs.
ieF
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Let k be a field. We can associate to a simplicial complex A, a
square free monomial ideal in S = k[x1,...,xp],

In=|xe=][[xlFgn)cs.
ieF

The ideal I is called the Stanley-Reisner ideal of A and S/Ia the
Stanley-Reisner ring of A.
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Facts
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Facts

e Hilbert function

hs//A(h) = dlmk[S//A]h

where [S/Ia] is the vector space of degree h homogeneous
polynomial outside of /a.
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Facts

e Hilbert function
hs//A(h) = dlmk[S//A]h

where [S/Ia] is the vector space of degree h homogeneous
polynomial outside of /a.

e Hilbert series

e}
N ho+hit+-+ hgt?
HS//A(t):ZhS/IA(I)t = (1—t)d
i=1

where d =dim /a.
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Facts

e Hilbert function
hs//A(h) = dlmk[S//A]h

where [S/Ia] is the vector space of degree h homogeneous
polynomial outside of /a.

e Hilbert series

e}
N ho+hit+-+ hgt?
HS//A(t):ZhS/IA(I)t = (1—t)d
i=1

where d =dim /a.

h(A) = (ho, ..., hg) is known as the h-vector of A.
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Assume that dim A = d — 1.
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Assume that dim A = d — 1.

We may study the h-vector of a simplicial complex of A

h(A) = (hg, ..., hg) from its f-vector via the relation

d , ood
fitl(1—t)9" =3 hit!

=0 i=0

1
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Assume that dim A = d — 1.

We may study the h-vector of a simplicial complex of A

h(A) = (hg, ..., hg) from its f-vector via the relation
d , . d _
fitl(1—t)9" =3 hit!
i=0 i=0
In particular, for any j =0,...,d, we have
J .
d—i
fi1= : (j—l)hf
‘/:0
J j—i(d—1
hj = ;)( 1)1_1(7—1)’3*1
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The h-vector of a matroid M may be interpreted combinatorially in
terms of certain invariants of M.
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The h-vector of a matroid M may be interpreted combinatorially in
terms of certain invariants of M.

Fix a total ordering {v1, < vo < --- < v,} on E(M).
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The h-vector of a matroid M may be interpreted combinatorially in
terms of certain invariants of M.

Fix a total ordering {v1, < vo < --- < v,} on E(M).

Given a bases B, an element v; € B is internally passive in B if
there is some v; € E '\ B such that v; < vj and (B\ vj)Uv; is a
bases of M.
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The h-vector of a matroid M may be interpreted combinatorially in
terms of certain invariants of M.

Fix a total ordering {v1, < vo < --- < v,} on E(M).

Given a bases B, an element v; € B is internally passive in B if
there is some v; € E '\ B such that v; < vj and (B\ vj)Uv; is a
bases of M.

Dually, v; € E'\ B is externally passive in B if there is some v; € B
such that v; < vj and (B '\ v;) U vj is a bases of M.
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The h-vector of a matroid M may be interpreted combinatorially in
terms of certain invariants of M.

Fix a total ordering {v1, < vo < --- < v,} on E(M).

Given a bases B, an element v; € B is internally passive in B if
there is some v; € E '\ B such that v; < vj and (B\ vj)Uv; is a
bases of M.

Dually, v; € E'\ B is externally passive in B if there is some v; € B
such that v; < vj and (B '\ v;) U vj is a bases of M.

Remark v; is externally passive in B if it is internally passive in
E\ B in M*.
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Bjorner proved that
d
> hjtj = 3 tip(B)
i=0 BeB(M)
where ip(B) counts the number of internally passive elements in B.
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Bjorner proved that

i=0 BEB(M)
where ip(B) counts the number of internally passive elements in B.
Remark This proves that the h-numbers of a matroid complex are
nonnegative.
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Bjorner proved that

i=0 BEB(M)
where ip(B) counts the number of internally passive elements in B.
Remark This proves that the h-numbers of a matroid complex are
nonnegative.

Alternatively,

> hjtf = ¥ rer(B)

i=0 BeB(M*)
where ep(B) counts the number of externally passive elements in
B.
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Remarks

e Since the f-numbers (and hence the h-numbers) of a matroid
depend only on its independent sets, then above equations hold for
any ordering of the ground set of M.
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Remarks

e Since the f-numbers (and hence the h-numbers) of a matroid
depend only on its independent sets, then above equations hold for
any ordering of the ground set of M.

e h-vector of a matroid complex Ay, is actually a specialization of
the Tutte polynomial of the corresponding matroid ; precisely we
have T(M;x,1) = hox? + hix% + - + hy

J.L. Ramirez Alfonsin IIMAG, Université de Montpellier
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We consider the matroid complex A(Us3)
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We consider the matroid complex A(Us3)
We have that dmA =1and 1 =1,fp =3 and f; = 3.
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We consider the matroid complex A(Us3)
We have that dmA =1and 1 =1,fp =3 and f; = 3.

Therefore

fioti(1—t)2" = F 1% — t)2 + fot(1 — t) + AL3(1 — t)°

0
=(1—1t)2+3¢t(1 —t) +3¢t2
=1—2t+t2+3t—3t—3t2 + 3¢t2

2
=t?+t+1=) hit'
i=0

2

1
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We consider the matroid complex A(Us3)
We have that dmA =1and 1 =1,fp =3 and f; = 3.

Therefore

fioti(1—t)2" = F 1% — t)2 + fot(1 — t) + AL3(1 — t)°

0
=(1—1t)2+3¢t(1 —t) +3¢t2
=1—2t+t2+3t—3t—3t2 + 3¢t2

2
=t?+t+1=) hit'
i=0

2

1

Obtaining that h(A) = (1,1,1).
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Let B(U2,3) ={B1={1,2},B, = {1,3}, B35 = {2,3}}.
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Let B(U273) = {Bl = {1,2}, Bz = {1,3}, B3 = {2,3}}.
We can check that

- there is not internally passive element in B;

- 3 is internally passive element of By
- 2 and 3 are internally passive elements of B3
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Let B(U273) = {Bl = {1,2}, Bz = {1,3}, B3 = {2,3}}.
We can check that

- there is not internally passive element in B;

- 3 is internally passive element of By
- 2 and 3 are internally passive elements of B3
Thus
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Let B(U;S = U173) = {Bl = {1}, B, = {2}, Bs = {3}}
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Let B(U; 5 = U13) = {B1 = {1}, Bo = {2}, B3 = {3} }.
We can check that

- 2 and 3 are externally passive elements of By

- 3 is externally passive element of B;

- there is not externally passive element in Bs

J.L. Ramirez Alfonsin IIMAG, Université de Montpellier

Ideals and complexes of matroids



Let B(U; 5 = U13) = {B1 = {1}, Bo = {2}, B3 = {3} }.
We can check that

- 2 and 3 are externally passive elements of By

- 3 is externally passive element of B;
- there is not externally passive element in Bs
Thus
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We have that

T(Us2ix,y) = x> +x+y,
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We have that

T(Us2ix,y) = x> +x+y,

and thus
2

T(Usgit, 1) =2+ t+1=>Y Mt
i=0
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An order ideal O is a family of monomials (say of degree at most
r) with the property that if € O and v|u then v € O.
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An order ideal O is a family of monomials (say of degree at most
r) with the property that if € O and v|u then v € O.

Let O; denote the collection of monomials in O of degree i. Let
Fi(O) :=10j| and F(O) = (Fo(O), F1(0),..., F(0)).
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An order ideal O is a family of monomials (say of degree at most
r) with the property that if € O and v|u then v € O.

Let O; denote the collection of monomials in O of degree i. Let
Fi(O) :=10j| and F(O) = (Fo(O), F1(0),..., F(0)).

We say that O is pure if all its maximal monomials (under
divisibility) have the same degree.
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An order ideal O is a family of monomials (say of degree at most
r) with the property that if € O and v|u then v € O.

Let O; denote the collection of monomials in O of degree i. Let
Fi(O) :=10j| and F(O) = (Fo(O), F1(0),..., F(0)).

We say that O is pure if all its maximal monomials (under
divisibility) have the same degree.

A vector h = (hg, ..., hg) is a pure O-sequence if there is a pure
ideal O such that h = F(O).
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The pure monomlal order ideal inside k[x, y, z] with maximal

monomials xy3z and x2z3 i

X = {xy3z,x223;
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The pure monomial order ideal inside k[x, y, z] with maximal
monomials xy3z and x%23 is :

X = {xy3z,x223;y:“z,xy2z,xy3,xz3,x222,y2z7
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The pure monomial order ideal inside k[x, y, z] with maximal
monomials xy3z and x%23 is :

— 3 2,3..3 2 3 3,22 2 3
X = {Xy Z,X"Z7, Yy Z,Xy"Z, Xy", XZ", X" Z7, Yyt Z, YT, XyZ,

xy?, xz%,23,x%z,
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The pure monomial order ideal inside k[x, y, z] with maximal
monomials xy3z and x%23 is :

— 3 2,3..3 2 3 3,22 2 3
X = {Xy Z,X"Z7, Yy Z,Xy"Z, Xy", XZ", X" Z7, Yyt Z, YT, XyZ,

2 2 3,2 2 2 2
XY=, Xz", 27, X"Z,yZ, Y=, XZ, Xy, 27, X",
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The pure monomial order ideal inside k[x, y, z] with maximal
monomials xy3z and x%23 is :

— 3 2,3..3 2 3 3,22 2 3
X = {Xy Z,X"Z7, Yy Z,Xy"Z, Xy", XZ", X" Z7, Yyt Z, YT, XyZ,

2 2 3,2 2 2 2
XY=, Xz2", 27, X"Z,yZ, Yy, XZ, Xy, 27, X", Z, ¥, X,
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The pure monomial order ideal inside k[x, y, z] with maximal
monomials xy3z and x%23 is :

— 3 2,3..3 2 3 3,22 2 3
X = {Xy Z,X"Z7, Yy Z,Xy"Z, Xy", XZ", X" Z7, Yyt Z, YT, XyZ,

2 2 3,2 2 2 2
Xy©,Xz",z7, X"Z,yZ, Yy, Xz, Xy, Z7, X azaan71}'
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The pure monomial order ideal inside k[x, y, z] with maximal
monomials xy3z and x%23 is :

— 3 2,3..3 2 3 3,22 2 3
X = {Xy Z,X"Z7, Yy Z,Xy"Z, Xy", XZ", X" Z7, Yyt Z, YT, XyZ,

2 2 3,2 2 2 2
Xy©,Xz",z7, X"Z,yZ, Yy, Xz, Xy, Z7, X azaan71}'

Hence the h-vector of X is the pure O-sequence
h=(1,3,6,7,5,2).
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A longstanding conjecture of Stanley suggest that matroid
h-vectors are highly structured
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A longstanding conjecture of Stanley suggest that matroid
h-vectors are highly structured

Conjecture (Stanley, 1976) For any matroid M, h(M) is a pure
O-sequence.
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A longstanding conjecture of Stanley suggest that matroid
h-vectors are highly structured

Conjecture (Stanley, 1976) For any matroid M, h(M) is a pure
O-sequence.

Conjecture hold for several families of matroid complexes :
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A longstanding conjecture of Stanley suggest that matroid
h-vectors are highly structured

Conjecture (Stanley, 1976) For any matroid M, h(M) is a pure
O-sequence.

Conjecture hold for several families of matroid complexes :
(Merino, Noble, Ramirez-lbafiez, Villarroel, 2010) Paving matroids
(Merino, 2001) Cographic matroids

(Oh, 2010) Cotranversal matroids

(Schweig, 2010) Lattice path matroids

(Stokes, 2009) Matroids of rank at most three

(

De Loera, Kemper, Klee, 2012) for all matroids on at most nine
elements all matroids of corank two.
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We consider the matroid complexe A associated to the rank 2
matroid induced by the graph G
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We consider the matroid complexe A associated to the rank 2
matroid induced by the graph G

1 3
2 4

We have thatdm A =1and 1 =1,y =4 and f; = 4.
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B(M(G)) ={B1 ={1,3},B, ={1,4},B3 = {2,3}, By = {2,4}}.
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B(M(G)) ={B1 ={1,3},B, ={1,4},B3 = {2,3}, By = {2,4}}.
- there is not internally passive element in B;

- 4 is internally passive element of B,
- 2 is internally passive element of Bs
- 2 and 4 are internally passive elements of By
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Obtaining the h-vector h(1,2,1).
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Thus,
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Shiti= Y tPB) =1t 4t t2 =142t + 2
i=0 BEB(M(G))

Obtaining the h-vector h(1,2,1). Since O = (1, x1, x2, x1x2) is an
order ideal then h(1,2,1) is pure O-sequence.
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