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A signed set X is a set X partitionned in two parts (X +,X−),
where X + is the set of positive elements of X and X− is the set of
negatives elements.

The set X = X + ∪ X− is the support of X .

We say that X is a restriction of Y if and only if X + ⊆ Y + and
X− ⊆ Y−. If A is a not signed set and X a signed set then X ∩ A
designe the signed set Y with Y + = X + ∩ A et Y− = X− ∩ A.
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The opposite of the set X , denoted by −X , is the signed set
defined by (−X )+ = X− and (−X )− = X +.

Generally, given a signed set X and a set A we denote by −AX the
signed set defined by (−AX )+ = (X + \ A) ∪ (X− ∩ A) and
(−AX )− = (X− \ A) ∪ (X + ∩ A). We say that the signed set −AX
is obtained by an reorientation of A.
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A collection C of signed sets of a finite set E is the set of circuits
of a oriented matroid on E if and only if the following axioms are
verified :

(C 0) ∅ 6∈ C,

(C 1) C = −C,

(C 2) for any X ,Y ∈ C, if X ⊆ Y , then X = Y or X = −Y ,

(C 3) for any X ,Y ∈ C,X 6= −Y , and e ∈ X + ∩ Y−, there exists
Z ∈ C such that Z + ⊆ (X + ∪ Y +) \ {e} and
Z− ⊆ (X− ∪ Y−) \ {e}.
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Observation (a) If sign are not taken into account,
(C 0), (C 2), (C 3) are reduced to the cicruits axioms of a
nonoriented matroid.

(b) All the objects of a matroid M are also consideredas as the
objects of the oriented matroid M, in particular the rank of M is
the same as the rank of M.

(c) Let M be an oriented matroid E and C the collection of
circuits. We clearly have that −AC is the set of circuits of an
oriented matroid, detoted by −AM and obtained from M by a
reorientation of A.

Notation. We may write X = abcde the signed circuit X defined
by X + = {a, d , e} and X− = {b, c}.
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Theory of oriented matroids and convexity



Oriented graph

Let G be an oriented graph. We obtain the signed circuits from the
cycles of G .

a

c

d

f
b

e

Then,

C = {(abc), (abd), (aef ), (cd), (bcef ), (bdef ),

(abc), (abd), (aef ), (cd), (bcef ), (bdef )}.
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Vector configuration

Let E = {v1, . . . , vn} be a set of vectors that generate the space of
dimension r over an ordered field.

Let us consider a minimal linear dependecy

n∑
i=1

λivi = 0

where λi ∈ IR.

We obtain an oriented matroid on E by considering the signed sets
X = (X +,X−) where

X + = {i : λi > 0} et X− = {i : λi < 0}

for all minimal dependencies among the vi .
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Let
a b c d e f

A =

 1 1 0 0 1 0
0 1 1 1 0 0
0 0 0 0 1 1


The columns of A correspond to the following vectors

b

f

1

e

1

a

1

c,d
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We can check that the circuits of

b

f

1

e

1

a

1

c,d

are the same as those arising from

a

c

d

f
b

e

For exemple, (abc) correspond to the linear combination
a− b + c = 0 or the circuit (bdef ) correspond to the linear
combination b − d − e + f = 0.
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Configurations of points

Any configuration of points induce an oriented matroid in the
affine space where the signed set of circuits are are the coefficients
of minimal affine dependencies of the form∑

i

λivi = 0 with
∑
i

λi = 0, λi ∈ IR
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a b c d e f

A =

(
−1 0 0 3 1 0

0 0 1 0 2 3

)

a b

c

e

f

d

C = {(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf ),

(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf )}.

For instance, circuit (abd) correspond to the affine dependecy
3(−1, 0)t − 4(0, 0)t + 1(3, 0)t = (0, 0)t with 3− 4 + 1 = 0.
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Theory of oriented matroids and convexity



The obtained oriented matroid is the one arising from

e

a

f

b d
c

Geometrically : circuits are minimal Radon partitions. The convex
hull of positive elements intersect the convex hull of negatives
elements.

For exemple, from circuit (abd) we see that point b is in the
segment [a, b] and from circuit (abef ) the segment [a, e] intersect
the segment [b, f ]
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Consider the oriented matroid −dM(A) obtained by reorienting
element d of M(A).

C(−dM(A)) = {(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf ),

(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf )}.

•−dM(A) is graphic. Moreover, it correspond to the oriented
matroid

a b

c

e

f

d

under the permutation
σ(a) = b, σ(b) = a, σ(c) = c , σ(d) = d , σ(e) = f , σ(f ) = e.
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Bases and Chirotope

B is the set of bases of an oriented matroid if and only if there is
an application, called chirotope, χ : E r → {+,−, 0} such that.

(i) B 6= ∅ ;

(ii) for any B and B ′ in B and e ∈ B \ B ′ il there existes
f ∈ B ′ \ B such that B \ e ∪ f ∈ B ;

(iii) {b1, . . . , br} ∈ B if and only if χ(b1, . . . , br ) 6= 0 ;
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(iv) χ is alternating, i.e. χ(bσ(1), . . . , bσ(r)) = sign(σ)χ(b1, . . . , br )
for any b1, . . . , br ∈ E and any permutation σ ;

(v) (Three-terms Grassmann-Plücker relation ) for any
b1, . . . , br , x , y ∈ E , if χ(x , b2, . . . , br )χ(b1, y , b3, . . . , br ) ≥ 0 and
χ(y , b2, . . . , br )χ(x , b1, b3, . . . , br ) ≥ 0 then
χ(b1, b2, . . . , br )χ(x , y , b3, . . . , br ) ≥ 0.

Remark. In the realizable case, axiom (v) is directly verified with
the Grassmann-Plücker’s relation, it is thus a combinatorial
reformulation :

det(b1, . . . , br ) · det(b′1, . . . , b
′
r ) =∑

1≤i≤r det(b′i , b2, . . . , br ) · det(b′1, . . . , b
′
i−1, b1, b

′
i+1, . . . , b

′
r ).
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b1, . . . , br , x , y ∈ E , if χ(x , b2, . . . , br )χ(b1, y , b3, . . . , br ) ≥ 0 and
χ(y , b2, . . . , br )χ(x , b1, b3, . . . , br ) ≥ 0 then
χ(b1, b2, . . . , br )χ(x , y , b3, . . . , br ) ≥ 0.

Remark. In the realizable case, axiom (v) is directly verified with
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Bases and circuits

Given a base B and an element e 6∈ B then there is a unique
circuit C in B.

χ(y , b2, . . . , br ) = −C (e)C (f )χ(x , b2, . . . , br )

where {x , b2, . . . , br} and {y , b2, . . . , br} are two bases with x 6= y
and C (a) denote the sign of a in C , (one of the two opposite
circuits contained in{x , y , b2, . . . , br}).
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Arrangement of pseudospheres

A sphere S of Sd−1 is a pseudo-sphere if S is homeomorphe to
Sd−2 in an homomorphisme of Sd−1.

We have two connected components in Sd−1 \ S , each
homeomorphe to the d1 dimensional ball (called sides of S).
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A finite collection {S1, . . . ,Sn} of pseudo-spheres in Sd−1 is an
arrangement of pseudo-spheres if

(PS1) for all A ⊆ E = {1, . . . , n} the set SA = ∩e∈ASe is a
(topological) sphere

(PS2) If SA 6⊆ Se for A ⊆ E , e ∈ E and S+
e , S

−
e denotes the two

sides of Se then SA ∩ Se is a pseudo-sphere of SA having as sides
SA ∩ S+

e and SA ∩ S−e .

The arrangement is said to be essential if SE = ∅.
We say that the arrangement is signed if for each pseudosphere Se ,
e ∈ E it is chosen a positive and a negative side.
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Theory of oriented matroids and convexity



A finite collection {S1, . . . ,Sn} of pseudo-spheres in Sd−1 is an
arrangement of pseudo-spheres if

(PS1) for all A ⊆ E = {1, . . . , n} the set SA = ∩e∈ASe is a
(topological) sphere

(PS2) If SA 6⊆ Se for A ⊆ E , e ∈ E and S+
e , S

−
e denotes the two

sides of Se then SA ∩ Se is a pseudo-sphere of SA having as sides
SA ∩ S+

e and SA ∩ S−e .

The arrangement is said to be essential if SE = ∅.
We say that the arrangement is signed if for each pseudosphere Se ,
e ∈ E it is chosen a positive and a negative side.
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Topological representation

Topological Representation (Folkman+Lawrence) Any loop-free
oriented matroid of rank d + 1 (up to isomorphism) are in
one-to-one correspondence with arrangements of pseudo-spheres in
Sd (up to topological equivalence).
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Arrangement of pseudolines

a

a
b c

d

e

e

d

cb
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Arrangement of pseudolines

An arrangement of pseudolines in IP2 is a collection of pseudolines
such that any two of them intersect ones.

An arrangement of pseudolines is simple if three or more
pseudolines do not intersect in the same point.
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Definitions

An oriented matroid is called acyclic if |C +|, |C−| ≥ 1 for any
circuit C .

An element e of an oriented matroid is called interior if there is a
cycle C with C + = {e} and , |C−| ≥ 0.

Remark Realizable oriented matroids are always acyclic.

Theorem The number of acyclic orientations of M is given by
t(M; 2, 0).

Theorem The set of acyclic orientations of M are in bijection with
the set of cells of the corresponding arrangement of pseudospheres.
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t(M; 2, 0).

Theorem The set of acyclic orientations of M are in bijection with
the set of cells of the corresponding arrangement of pseudospheres.
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Theorem Let AM be the arrangement of H = {h1, . . . , hn}
pseudo-sphere corresponding to the oriented matroid M on n
elements. Then, a cell of AM that is bounded by {hi1 , . . . , hik}
correspond to an acyclic reorientation of M having [n] \ {i1, . . . , ik}
as interior points.
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McMullen problem

A projective transformation P : IRd → IRd is such that
p(x) = Ax+b

〈c,x〉+δ where A is a linear transformation of IRd , b, c ∈ IRd

and δ ∈ IR such that at least one of c 6= 0 or δ 6= 0.

P is said permissible for a set X ⊂ IRd iff for all
x ∈ X , 〈c , x〉+ δ 6= 0.

Problem 1 Determine the largest integer f (d) such that given any
n points in general position in IRd there is a permissible projective
transformation mapping these points onto the vertices of a convex
polytope
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Gale transforms

Given a = (a1, . . . , an) points in IRd , we first convert the ai into
āi = (ai , 1) ∈ IRd+1. We suppose that āi are d + 1 affinely
independent.

Let V be the vector space generated by the rows of (d + 1× n)
matrix A having āi as ith column. V is a (d + 1)-dimensional
subspace of IRn.

Let
V⊥ = {v ∈ IRn | 〈u, v〉 = 0 for all u ∈ V }.

We have dim(V⊥) = n − d − 1. Choose some basis
(b1, . . . , bn−d−1) of V⊥ and let B be the (n − d − 1)× n matrix
with bj as the jth row.

Finally, let ḡi ∈ IRn−d−1 be the ith column of B. The sequence
ḡ = (ḡ1, . . . , ḡn) is the Gale transform of ā.
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independent.

Let V be the vector space generated by the rows of (d + 1× n)
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independent.

Let V be the vector space generated by the rows of (d + 1× n)
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Oriented matroid interpretation

Theorem Let E = {e1, . . . , en} be a set of n points in IRd , and
suppose Ē = {ē1, . . . , ēn} is a Gale transform of E . Then,
Aff (E )⊥ = Lin(Ē ).

Problem 2 Determine the smallest number λ(d) such that any set
X of λ points lying in general position in IRd can be partitioned in
two sets A,B such that conv(A \ x) ∩ conv(B \ x) 6= ∅ for all
x ∈ X .

Remark By using Gale transforms it can be proved that Problem 1
and Problem 2 are equivalent.

λ(d − 1) = min{w : w ≤ f (w − d − 2)}

f (d) = max{w : w ≥ λ(w − d − 2)}
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Back to McMullen problem

Problem 1 Determine the largest integer f (d) such that given any
n points in general position in IRd there is a permissible projective
transformation mapping these points onto the vertices of a convex
polytope.

(Larman 1972) 2d + 1 ≤ f (d) ≤ (d + 1)2, f (d) = 2d + 1 for
d = 2, 3 and conjectured that f (d) = 2d + 1 for any d ≥ 2.
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Theorem (Las Vergnas 1985) f (d) ≤ d(d + 1)/2 for any d ≥ 2.

Oriented matroid version (Cordovil+Silva 1985) Determine the
largest integer g(d) such that given any uniform oriented matroid
of rank r on g elements there is an orientation of M which is
acyclic and has no interior points.

Topological version Determine the largest integer g(d) such that
given any uniform oriented matroid of rank r on n elements the
corresponding arrangement of hyperplane has a complete cell.

Remark Conjecture can easily be checked when d = 2 via the
topological version.
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Theorem (R.A. 2001) f (d) ≤ 2d + dd2 e for any d ≥ 2.

By using oriented matroid version version and Lawrence oriented
matroids.
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Lawrence oriented matroid

A Lawrence oriented matroid M of rank r on the totally ordered
set E = {1, . . . , n}, r ≤ n, is a uniform oriented matroid obtained
as the union of r uniform oriented matroids M1, . . . ,Mr of rank 1
on (E , <).

The chirotope χ corresponds to some Lawrence oriented matroid
MA if and only if there exists a matrix A = (ai ,j), 1 ≤ i ≤ r ,
1 ≤ j ≤ n with entries from {+1,−1} (where the ith row
corresponds to the chirotope of the oriented matroid Mi ) such
that

χ(B) =
r∏

i=1

ai ,ji

where B is an ordered r -tuple j1 ≤ . . . ≤ jr elements of E .
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Remarks

(i) The coefficients ai ,j with i > j or j − n > i − r do not play
any role in the definition of MA (since they never appear in
the chirotope). So, we may give them any arbitrary value from
{+1,−1} or ignore them completely.

(ii) An opposite chirotope −χ is obtained by reversing the sign of
all the coefficients of a line of A.

(iii) The oriented matroid c̄MA is obtained by reversing the sign
of all the coefficients of a column c in A.
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We construct the Top Travel [TT ] and the Bottom Travel [BT ] on
the entries of A, formed by horizontal and vertical movements.
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Lemma Let MA be a Lawrence oriented matroid and A the matrix
associated A = (ai ,j) with 1 ≤ i ≤ r , 1 ≤ j ≤ n and entries from
{+1,−1}. Then the following conditions are equivalent.

(a) MA is cyclic,

(b) TT ends at ar ,s for some 1 ≤ s < n,

(c) BT ends at a1,s′ for some 1 < s ≤ n.
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We say that TT and BT are parallel at column k with
2 ≤ k ≤ n − 1 in A if TT = (a1,1, . . . , ai ,k−1, ai ,k , ai ,k+1, . . .) and
either BT = (ar ,n, . . . , ai ,k+1, ai ,k , ai ,k−1, . . .) or
BT = (ar ,n, . . . , ai+1,k+1, ai+1,k , ai+1,k−1, . . .), 1 ≤ i ≤ r .
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Lemma Let MA be a Lawrence oriented matroid and A the matrix
associated A = (ai ,j) with 1 ≤ i ≤ r , 1 ≤ j ≤ n and entries from
{+1,−1}. Then k is an interior element of MA if and only if

(a) BT = (ar ,n, . . . , a1,2, a1,1) for k = 1,

(b) TT = (a1,1, . . . , ar ,n−1, ar ,n) for k = n,

(c) TT and BT are parallel at k for 2 ≤ k ≤ n − 1.
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Example

+
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We notice that MA′ is acyclic and that 4, 5 and 6 are interior
elements.
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Observation There is a bijection between the set of all plain travels
of A and the set of all acyclic reorientations of MA :

associate to P the set of elements of MA that should be
reoriented to transform P to the Top Travel of the new matrix
AP = (aPi ,j) (obtained by reversing the signs of all coefficients of
the columns in A corresponding the reoriented elements).
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Generalizing McMullen problem

A d-polytope is k-neighbourly if for k ≤ dd2 e fixed, every subset of
at most k vertices of the vertex set of the polytope is a face of the
polytope.

Theorem (Garcia-Colin 2014 Let 2 ≤ k ≤ dd2 e and v(d , k) be the
largest integer such that any v(d , k) points in general position in
IRd can be mapped by a permissible projective transformation onto
points onto the vertices of a k-neighbourly convex polytope.Then,
d + ddk e+ 1 ≤ v(d , k) < 2d − k + 1.

Proof of the upper bound (idea) Find a realizable, acyclic oriented
matroid such that one of their acyclic reorientations contains at
least on circuit C with |C +| ≤ k (or |C−| ≤ k). Such a matroid
couldn’t possibly have a realization which is is a kneighbourly
polytope.
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Theorem (Garcia-Colin) Let λ(d , k) be the smallest number such
that for any set X of λ points lying in general position in IRd there
exists a partition of X into two sets A,B such that
conv(A \ Y ) ∩ conv(B \ Y ) 6= ∅ for all 2 ≤ k ≤ dd2 eY ⊂ X , with
|Y | = k . Then, 2d + k + 1 ≤ λ(d , k) ≤ (k + 1)d + (k + 2).

Question Determine tha smallest λ(d , s, k) number such that for
any set X of λ points lying in general position in IRd there exists a
partition of X into s sets A1, . . . ,As such that
∩si=1conv(Ai \ Y ) 6= ∅ for all Y ⊂ X , with |Y | = k.
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