Toric ideals and matroids I

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

San Luis, Argentina February 2016

J.L. Ramírez Alfonsín Toric ideals and matroids I IMAG, Université de Montpellier

Let M be a matroid on a finite ground set $E = \{1, ..., n\}$, we denote by \mathcal{B} the set of bases of M.

Let M be a matroid on a finite ground set $E = \{1, ..., n\}$, we denote by \mathcal{B} the set of bases of M.

Let k be an arbitrary field and consider $k[x_1, \ldots, x_n]$ a polynomial ring over k.

Let M be a matroid on a finite ground set $E = \{1, ..., n\}$, we denote by \mathcal{B} the set of bases of M.

Let k be an arbitrary field and consider $k[x_1, \ldots, x_n]$ a polynomial ring over k.

For each base $B \in \mathcal{B}$, we introduce a variable y_B and we denote by R the polynomial ring in the variables y_B , i.e., $R := k[y_B | B \in \mathcal{B}]$.

- Let M be a matroid on a finite ground set $E = \{1, ..., n\}$, we denote by \mathcal{B} the set of bases of M.
- Let k be an arbitrary field and consider $k[x_1, \ldots, x_n]$ a polynomial ring over k.
- For each base $B \in \mathcal{B}$, we introduce a variable y_B and we denote by R the polynomial ring in the variables y_B , i.e., $R := k[y_B | B \in \mathcal{B}]$.
- A binomial in R is a difference of two monomials, an ideal generated by binomials is called a *binomial ideal*.

We consider the homomorphism of k-algebras $\varphi: R \longrightarrow k[x_1, \ldots, x_n]$ induced by

$$y_B \mapsto \prod_{i \in B} x_i.$$

The image of φ is a standard graded *k*-algebra, which is called the bases monomial ring of the matroid *M* and it is denoted by S_M .

We consider the homomorphism of k-algebras $\varphi : R \longrightarrow k[x_1, \ldots, x_n]$ induced by

$$y_B\mapsto \prod_{i\in B}x_i.$$

The image of φ is a standard graded *k*-algebra, which is called the bases monomial ring of the matroid *M* and it is denoted by S_M .

The kernel of φ , which is the presentation ideal of S_M , is called the toric ideal of M and is denoted by I_M .

We consider the homomorphism of k-algebras $\varphi: R \longrightarrow k[x_1, \ldots, x_n]$ induced by

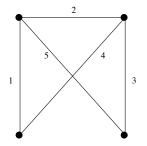
$$y_B\mapsto \prod_{i\in B}x_i.$$

The image of φ is a standard graded *k*-algebra, which is called the bases monomial ring of the matroid *M* and it is denoted by S_M .

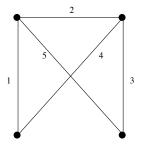
The kernel of φ , which is the presentation ideal of S_M , is called the toric ideal of M and is denoted by I_M .

Observation Let *b* be the number of bases of a matroid *M* on *n* elements. Then, I_M is generated by the kernel of the integer $n \times b$ matrix whose columns are the zero-one incidence vectors of the bases of *M*.

Matroid M(G) associated to graph G. We have r(M(G)) = 3.



Matroid M(G) associated to graph G. We have r(M(G)) = 3.



 $\mathcal{B}(M(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}$

 $\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}$

	B_1	B_2	<i>B</i> ₃	<i>B</i> ₄	B_5	<i>B</i> ₆	<i>B</i> ₇	B_8
1	1	1	1	1	1	0	0	0 \
	1	1	0	0	0	1	1	0
	1	0	1	1	0	1	0	1
	0	0		-	1	1	1	1
	0	1	0	1	1	0	1	1/

J.L. Ramírez Alfonsín

Toric ideals and matroids I

 $\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}$

	B_1	B_2	<i>B</i> ₃	<i>B</i> ₄	B_5	<i>B</i> ₆	<i>B</i> ₇	<i>B</i> 8
1	1	1	1	1	1	0	0	0 \
	1	1	0	0	0	1	1	0
	1	0	1	1	0	1	0	1
	0	0	1	0	1	1	1	1
	0	1	0	1	1	0	1	1/

By considering $\varphi : k[y_{B_1}, \dots, y_{B_8}] \longrightarrow k[x_1, \dots, x_5]$ we have that $y_{B_1} \mapsto x_1 x_2 x_3, y_{B_2} \mapsto x_1 x_2 x_5, y_{B_3} \mapsto x_1 x_3 x_4, \dots$

J.L. Ramírez Alfonsín

 $\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}$

	B_1	B_2	<i>B</i> ₃	<i>B</i> ₄	B_5	<i>B</i> ₆	<i>B</i> ₇	B_8
1	1	1	1	1	1	0	0	0 \
	1	1	0	0	0	1	1	0
	1	0	1	1	0	1	0	1
	0	0		0	1	1	1	1
	0	1	0	1	1	0	1	1/

By considering $\varphi : k[y_{B_1}, \dots, y_{B_8}] \longrightarrow k[x_1, \dots, x_5]$ we have that $y_{B_1} \mapsto x_1 x_2 x_3, \quad y_{B_2} \mapsto x_1 x_2 x_5, \quad y_{B_3} \mapsto x_1 x_3 x_4, \quad \dots$ An element of the kernel of φ (*i.e.*, $I_{M(G)}$) is : $y_{B_7} y_{B_4} - y_{B_2} y_{B_8}$.

• It is well known that I_M is a prime, binomial and homogeneous ideal.

• It is well known that I_M is a prime, binomial and homogeneous ideal.

Observation Since $R/I_M \simeq S_M$, it follows that the height of I_M is $ht(I_M) = |\mathcal{B}| - \dim(S_M) = |\mathcal{B}| - (n - c + 1)$, where *c* is the number of connected components of *M*.

Let \mathcal{B} denote the set of bases of M. By definition \mathcal{B} is not empty and satisfies the following exchange axiom :

For every $B_1, B_2 \in \mathcal{B}$ and for every $e \in B_1 \setminus B_2$, there exists $f \in B_2 \setminus B_1$ such that $(B_1 \cup \{f\}) \setminus \{e\} \in \mathcal{B}$.

Let \mathcal{B} denote the set of bases of M. By definition \mathcal{B} is not empty and satisfies the following exchange axiom :

For every $B_1, B_2 \in \mathcal{B}$ and for every $e \in B_1 \setminus B_2$, there exists $f \in B_2 \setminus B_1$ such that $(B_1 \cup \{f\}) \setminus \{e\} \in \mathcal{B}$.

Brualdi proved that the exchange axiom is equivalent to the symmetric exchange axiom :

For every B_1, B_2 in \mathcal{B} and for every $e \in B_1 \setminus B_2$, there exists $f \in B_2 \setminus B_1$ such that both $(B_1 \cup \{f\}) \setminus \{e\} \in \mathcal{B}$ and $(B_2 \cup \{e\}) \setminus \{f\} \in \mathcal{B}$.

Suppose that a pair of bases D_1, D_2 is obtained from a pair of bases B_1, B_2 by a symmetric exchange. That is $D_1 = (B_1 \setminus e) \cup f$ and $D_2 = (B_2 \setminus f) \cup e$ for some $e \in B_1$ and $f \in B_2$.

Suppose that a pair of bases D_1, D_2 is obtained from a pair of bases B_1, B_2 by a symmetric exchange. That is $D_1 = (B_1 \setminus e) \cup f$ and $D_2 = (B_2 \setminus f) \cup e$ for some $e \in B_1$ and $f \in B_2$.

We say that the quadratic binomial $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ correspond to a symmetric exchange.

Suppose that a pair of bases D_1, D_2 is obtained from a pair of bases B_1, B_2 by a symmetric exchange. That is $D_1 = (B_1 \setminus e) \cup f$ and $D_2 = (B_2 \setminus f) \cup e$ for some $e \in B_1$ and $f \in B_2$.

We say that the quadratic binomial $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ correspond to a symmetric exchange.

It is clear that such binomial belong to the ideal I_M .

Suppose that a pair of bases D_1, D_2 is obtained from a pair of bases B_1, B_2 by a symmetric exchange. That is $D_1 = (B_1 \setminus e) \cup f$ and $D_2 = (B_2 \setminus f) \cup e$ for some $e \in B_1$ and $f \in B_2$.

We say that the quadratic binomial $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ correspond to a symmetric exchange.

It is clear that such binomial belong to the ideal I_M .

Conjecture (White 1980) For every matroid M its toric ideal I_M is generated by quadratic binomials corresponding to symmetric exchanges.

Observation for $B_1, \ldots, B_s, D_1, \ldots, D_s \in \mathcal{B}$, the homogeneous binomial $y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s}$ belongs to I_M if and only if $B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s$ as multisets.

Observation for $B_1, \ldots, B_s, D_1, \ldots, D_s \in \mathcal{B}$, the homogeneous binomial $y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s}$ belongs to I_M if and only if $B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s$ as multisets.

Since I_M is a homogeneous binomial ideal, it follows that

 $I_M = (\{y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s} \mid B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s \text{ as multisets}\})$

Observation for $B_1, \ldots, B_s, D_1, \ldots, D_s \in \mathcal{B}$, the homogeneous binomial $y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s}$ belongs to I_M if and only if $B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s$ as multisets.

Since I_M is a homogeneous binomial ideal, it follows that

$$I_{M} = \left(\{ y_{B_{1}} \cdots y_{B_{s}} - y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s} = D_{1} \cup \cdots \cup D_{s} \text{ as multisets} \} \right)$$

White's original formulation Two sets of bases of a matroid have equal union (as multiset), then one can pass between them by a sequence of symmetric exchanges.

Observation for $B_1, \ldots, B_s, D_1, \ldots, D_s \in \mathcal{B}$, the homogeneous binomial $y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s}$ belongs to I_M if and only if $B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s$ as multisets.

Since I_M is a homogeneous binomial ideal, it follows that

$$I_{M} = \left(\{ y_{B_{1}} \cdots y_{B_{s}} - y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s} = D_{1} \cup \cdots \cup D_{s} \text{ as multisets} \} \right)$$

White's original formulation Two sets of bases of a matroid have equal union (as multiset), then one can pass between them by a sequence of symmetric exchanges.

Observation White's conjecture does not depend on the field k.

Example continued

We had $\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}.$ We also had that $y_{B_7}y_{B_4} - y_{B_2}y_{B_8} \in I_{\mathcal{M}(G)}.$ We can check that $B_7 \cup B_4 = \{2, 4, 5, 1, 3, 5\} = B_2 \cup B_8.$

• Blasiak (2008) has confirmed the conjecture for graphical matroids.

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank \leq 3.

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank \leq 3.
- Schweig (2011) proved the case of lattice path matroids which are a subclass of transversal matroids.

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank \leq 3.
- Schweig (2011) proved the case of lattice path matroids which are a subclass of transversal matroids.
- Bonin (2013) confirmed the conjecture for sparse paving matroids

- Blasiak (2008) has confirmed the conjecture for graphical matroids.
- Kashiwaba (2010) checked the case of matroids of rank \leq 3.
- Schweig (2011) proved the case of lattice path matroids which are a subclass of transversal matroids.
- Bonin (2013) confirmed the conjecture for sparse paving matroids
- Lasoń, Michałek (2014) proved for strongly base orderables matroids.

Blasiak's reduction

Let *M* be a matroid on a ground set *E* with |E| = nr(M) where r(M) is the rank of *M*.

Blasiak's reduction

Let *M* be a matroid on a ground set *E* with |E| = nr(M) where r(M) is the rank of *M*.

The *n*-base graph of M, which is denoted by $G_n(M)$, has as its vertex set the set of all sets of *n* disjoint bases (a set of *n* bases $\{B_1, \ldots, B_n\}$ of M is disjoint if and only if

$$E|=\bigcup_{i=1}^n B_i.$$

There is an edge between $\{B_1, \ldots, B_n\}$ and $\{D_1, \ldots, D_n\}$ if and only if $B_i = D_j$ for some i, j.

We have that $r(U_{2,6}) = 2$, and let us take n = 3.

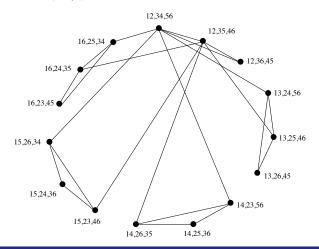
J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Toric ideals and matroids I

$G_2(U_{2,6})$

We have that $r(U_{2.6}) = 2$, and let us take n = 3. So

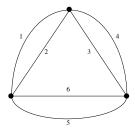


J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

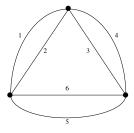
Toric ideals and matroids I

M(G)



J.L. Ramírez Alfonsín Toric ideals and matroids I IMAG, Université de Montpellier

M(G)

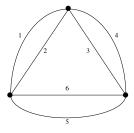


We have that r(M(G)) = 2 and we set n = 3.

J.L. Ramírez Alfonsín

Toric ideals and matroids I

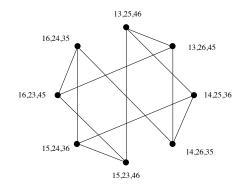
M(G)

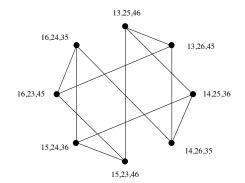


We have that r(M(G)) = 2 and we set n = 3. $\mathcal{B}(M(G)) = \{B_1 = \{1,3\}, B_2 = \{1,4\}, B_3 = \{1,5\}, B_4 = \{1,6\}, B_5 = \{2,3\}, B_6 = \{2,4\}, B_7 = \{2,5\}, B_8 = \{2,6\}, B_9 = \{3,5\}, B_{10} = \{3,6\}, B_{11} = \{4,5\}, B_{12} = \{4,6\}\}.$

J.L. Ramírez Alfonsín

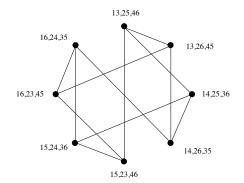
Toric ideals and matroids I





We notice that $y_{B_4}y_{B_6}y_{B_9} - y_{B_1}y_{B_7}y_{B_{12}} \in I_{M(G)}$

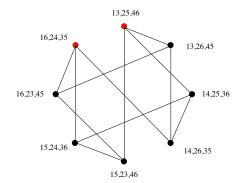
J.L. Ramírez Alfonsín Toric ideals and matroids I



We notice that $y_{B_4}y_{B_6}y_{B_9} - y_{B_1}y_{B_7}y_{B_{12}} \in I_{\mathcal{M}(G)}$ since $B_4 \cup B_6 \cup B_9 = \{1, 2, 3, 4, 5, 6\} = B_1 \cup B_7 \cup B_{12}$.

J.L. Ramírez Alfonsín

Toric ideals and matroids I



We notice that $y_{B_4}y_{B_6}y_{B_9} - y_{B_1}y_{B_7}y_{B_{12}} \in I_{\mathcal{M}(G)}$ since $B_4 \cup B_6 \cup B_9 = \{1, 2, 3, 4, 5, 6\} = B_1 \cup B_7 \cup B_{12}$.

J.L. Ramírez Alfonsín

Toric ideals and matroids I

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \ge 3$ and for every matroid M in \mathfrak{C} on a ground set of size nr(M) the *n*-base graph of M is connected. Then, for every matroid M in \mathfrak{C} , I_M is generated by quadratics polynomials.

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \ge 3$ and for every matroid M in \mathfrak{C} on a ground set of size nr(M) the *n*-base graph of M is connected. Then, for every matroid M in \mathfrak{C} , I_M is generated by quadratics polynomials. Proof (idea) The following statement is proved by induction on n:

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \ge 3$ and for every matroid M in \mathfrak{C} on a ground set of size nr(M) the *n*-base graph of M is connected. Then, for every matroid M in \mathfrak{C} , I_M is generated by quadratics polynomials. Proof (idea) The following statement is proved by induction on n: for every $M \in \mathfrak{C}$ and every binomial $b \in I_M$ of degree n, b is in the ideal generated by the quadratics of I_M .

Lemma (Blasiak) Let \mathfrak{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $n \ge 3$ and for every matroid M in \mathfrak{C} on a ground set of size nr(M) the *n*-base graph of M is connected. Then, for every matroid M in \mathfrak{C} , I_M is generated by quadratics polynomials. Proof (idea) The following statement is proved by induction on n: for every $M \in \mathfrak{C}$ and every binomial $b \in I_M$ of degree n, b is in the ideal generated by the quadratics of I_M . This will prove the result because I_M , as a toric ideal, is generated

by binomials.

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_M .

J.L. Ramírez Alfonsín Toric ideals and matroids l

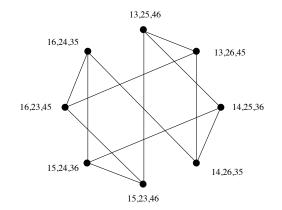
Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_M . The binomial b is necessarily of the form $b = \prod_{i=1}^n y_{B_i} - \prod_{i=1}^n y_{D_i}$ for some bases $\{B_1, \ldots, B_n\}$ and $\{D_1, \ldots, D_n\}$ of M such that the B_i and D_i have the same multiset union.

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_M . The binomial b is necessarily of the form $b = \prod_{i=1}^n y_{B_i} - \prod_{i=1}^n y_{D_i}$ for some bases $\{B_1, \ldots, B_n\}$ and $\{D_1, \ldots, D_n\}$ of M such that the B_i and D_i have the same multiset union. It is proved that b is in the ideal generated by the degree n - 1binomials of I_M (this is done by constructing a new matroid M'that depends on the binomial b).

Proof (continuation ...) $M \in \mathfrak{C}$ and b is binomial of degree n in I_M . The binomial b is necessarily of the form $b = \prod_{i=1}^n y_{B_i} - \prod_{i=1}^n y_{D_i}$ for some bases $\{B_1, \ldots, B_n\}$ and $\{D_1, \ldots, D_n\}$ of M such that the B_i and D_i have the same multiset union. It is proved that b is in the ideal generated by the degree n-1binomials of I_M (this is done by constructing a new matroid M'

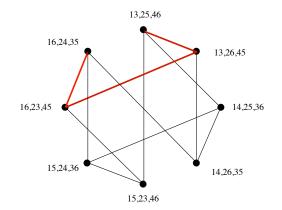
that depends on the binomial b).

By induction the degree n-1 binomials are in the ideal generated by the quadratics of I_M so this will complete the proof.



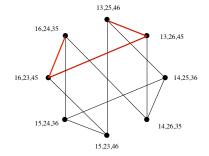
$y_{16}y_{24}y_{35} - y_{13}y_{25}y_{46} \in I_{M(G)}.$

J.L. Ramírez Alfonsín Toric ideals and matroids I



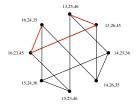
$y_{16}y_{24}y_{35} - y_{13}y_{25}y_{46} \in I_{M(G)}.$

J.L. Ramírez Alfonsín Toric ideals and matroids I



By following the path we construct $y_{16}y_{24}y_{35} - y_{16}y_{23}y_{45} + y_{16}y_{23}y_{45} - y_{13}y_{26}y_{45} + y_{13}y_{26}y_{55} - y_{13}y_{25}y_{46} =$ $y_{16}y_{24}y_{35} - y_{13}y_{25}y_{46} \in I_{M(G)}.$

J.L. Ramírez Alfonsín Toric ideals and matroids I



By following the path we construct

 $y_{16}y_{24}y_{35} - y_{16}y_{23}y_{45} + y_{16}y_{23}y_{45} - y_{13}y_{26}y_{45} + y_{13}y_{26}y_{55} - y_{13}y_{25}y_{46} = y_{16}y_{24}y_{35} - y_{13}y_{25}y_{46} \in I_{M(G)}.$ Or equivalently $y_{16}(y_{24}y_{35} - y_{23}y_{45}) + y_{45}(y_{16}y_{23} - y_{13}y_{26}) + y_{13}(y_{26}y_{55} - y_{25}y_{46}) = y_{16}y_{24}y_{35} - y_{13}y_{25}y_{46} \in I_{M(G)}.$

J.L. Ramírez Alfonsín

Toric ideals and matroids I

A matroid is strongly base order able if for any two bases B_1 and B_2 there is a bijection $\pi : B_1 \longrightarrow B_2$ satisfying the multiple symmetric exchange property, that is : $(B_1 \setminus A) \cup \pi(A)$ is a basis for every $A \subset B_1$.

A matroid is strongly base order able if for any two bases B_1 and B_2 there is a bijection $\pi : B_1 \longrightarrow B_2$ satisfying the multiple symmetric exchange property, that is : $(B_1 \setminus A) \cup \pi(A)$ is a basis for every $A \subset B_1$.

• π restricted to the intersection $B_1 \cap B_2$ is the identity.

A matroid is strongly base order able if for any two bases B_1 and B_2 there is a bijection $\pi : B_1 \longrightarrow B_2$ satisfying the multiple symmetric exchange property, that is : $(B_1 \setminus A) \cup \pi(A)$ is a basis for every $A \subset B_1$.

- π restricted to the intersection $B_1 \cap B_2$ is the identity.
- $(B_2 \setminus \pi(A)) \cup A$ is a basis for every $A \subset B_1$ (by the multiple symmetric exchange property for $B_1 \setminus A$).

A matroid is strongly base order able if for any two bases B_1 and B_2 there is a bijection $\pi : B_1 \longrightarrow B_2$ satisfying the multiple symmetric exchange property, that is : $(B_1 \setminus A) \cup \pi(A)$ is a basis for every $A \subset B_1$.

- π restricted to the intersection $B_1 \cap B_2$ is the identity.
- $(B_2 \setminus \pi(A)) \cup A$ is a basis for every $A \subset B_1$ (by the multiple symmetric exchange property for $B_1 \setminus A$).
- The class of strongly base orderable matroids is closed under taking minors.

Theorem (Lasoń, M. Michałek) If M is a strong order able base matroid, then the toric ideal I_M is generated by quadratics binomials corresponding to symmetric exchanges.

Theorem (Lasoń, M. Michałek) If M is a strong order able base matroid, then the toric ideal I_M is generated by quadratics binomials corresponding to symmetric exchanges.

Proof (idea) Since I_M , as a toric ideal, is generated by binomials then it is enough to prove that all binomials of I_M belong to the ideal J_M generated by quadratics binomials corresponding to symmetric exchanges.

Theorem (Lasoń, M. Michałek) If M is a strong order able base matroid, then the toric ideal I_M is generated by quadratics binomials corresponding to symmetric exchanges.

Proof (idea) Since I_M , as a toric ideal, is generated by binomials then it is enough to prove that all binomials of I_M belong to the ideal J_M generated by quadratics binomials corresponding to symmetric exchanges.

Fix $n \ge 2$. We shall prove by decreasing induction on the overlap function

$$d(y_{B_1}\cdots y_{B_n}, y_{D_1}\cdots y_{D_n}) := \max_{\pi\in S_n}\sum_{i=1}^n |B_i\cap D_{\pi(i)}|$$

that a binomial $y_{B_1} \cdots y_{B_n} - y_{D_1} \cdots y_{D_n} \in I_M$ belongs to J_M .

J.L. Ramírez Alfonsín

Toric ideals and matroids I

Proof (Cont...) If $d(y_{B_1} \cdots y_{B_n}, y_{D_1} \cdots y_{D_n}) = r(M)n$ then there exists a permutation $\pi \in S_n$ such that $B_i = D_{\pi(i)}$ for each *i*. Hence, $y_{B_1} \cdots y_{B_n} - y_{D_1} \cdots y_{D_n} = 0 \in J_M$.

Proof (Cont...) If $d(y_{B_1} \cdots y_{B_n}, y_{D_1} \cdots y_{D_n}) = r(M)n$ then there exists a permutation $\pi \in S_n$ such that $B_i = D_{\pi(i)}$ for each *i*. Hence, $y_{B_1} \cdots y_{B_n} - y_{D_1} \cdots y_{D_n} = 0 \in J_M$.

Suppose the assertion holds for all binomials with overlap function greater that d < r(M)n. Let $y_{B_1} \cdots y_{B_n} - y_{D_1} \cdots y_{D_n}$ be a binomial of I_M with the overlap function equal to d.

Proof (Cont...) Since *M* is strongly base orderable matroid, there exist bijections $\pi_B : B_1 \longrightarrow B_2$ and $\pi_D : D_1 \longrightarrow D_2$ with the multiple symmetric exchange property.

Proof (Cont...) Since *M* is strongly base orderable matroid, there exist bijections $\pi_B : B_1 \longrightarrow B_2$ and $\pi_D : D_1 \longrightarrow D_2$ with the multiple symmetric exchange property.

Let G be a graph on a vertex set $B_1 \cup B_2 \cup D_1 \cup D_2$ with edges $\{b, \pi_B(b)\}$ for all $b \in B_1 \setminus B_2$ and $\{d, \pi_B(d)\}$ for all $d \in D_1 \setminus D_2$.

Proof (Cont...) Since *M* is strongly base orderable matroid, there exist bijections $\pi_B : B_1 \longrightarrow B_2$ and $\pi_D : D_1 \longrightarrow D_2$ with the multiple symmetric exchange property.

Let G be a graph on a vertex set $B_1 \cup B_2 \cup D_1 \cup D_2$ with edges $\{b, \pi_B(b)\}$ for all $b \in B_1 \setminus B_2$ and $\{d, \pi_B(d)\}$ for all $d \in D_1 \setminus D_2$. G is bipartite since it is the sum of two matchings. Split the vertex set of G into two independent (in the graph sense) sets S and T.

Proof (Cont...) Since *M* is strongly base orderable matroid, there exist bijections $\pi_B : B_1 \longrightarrow B_2$ and $\pi_D : D_1 \longrightarrow D_2$ with the multiple symmetric exchange property.

Let G be a graph on a vertex set $B_1 \cup B_2 \cup D_1 \cup D_2$ with edges $\{b, \pi_B(b)\}$ for all $b \in B_1 \setminus B_2$ and $\{d, \pi_B(d)\}$ for all $d \in D_1 \setminus D_2$. G is bipartite since it is the sum of two matchings. Split the vertex set of G into two independent (in the graph sense) sets S and T. We define

 $B'_1 = (S \cap (B_1 \cup B_2)) \cup (B_1 \cap B_2), \ B'_2 = (T \cap (B_1 \cup B_2)) \cup (B_1 \cap B_2)$ $D'_1 = (S \cap (D_1 \cup D_2)) \cup (D_1 \cap D_2), \ D'_2 = (T \cap (D_1 \cup D_2)) \cup (D_1 \cap D_2)$

J.L. Ramírez Alfonsín

Proof (Cont...) By the multiple symmetric exchange property of π_B sets B'_1, B'_2 are bases obtained from the pair B_1, B_2 by a sequence of symmetric exchanges. Therefore the binomial

 $y_{B_1}y_{B_2}y_{B_3}\cdots y_{B_n}-y_{B_1'}y_{B_2'}y_{B_3}\cdots y_{B_n}$ (1)

belongs to J_M .

Proof (Cont...) By the multiple symmetric exchange property of π_B sets B'_1, B'_2 are bases obtained from the pair B_1, B_2 by a sequence of symmetric exchanges. Therefore the binomial

$$y_{B_1}y_{B_2}y_{B_3}\cdots y_{B_n} - y_{B_1'}y_{B_2'}y_{B_3}\cdots y_{B_n}$$
(1)

belongs to J_M .

Analogously, the binomial

$$y_{D_1}y_{D_2}y_{D_3}\cdots y_{D_n} - y_{D_1'}y_{D_2'}y_{D_3}\cdots y_{D_n}$$
(2)

belongs to J_M .

< - >

Proof (Cont...) By the multiple symmetric exchange property of π_B sets B'_1, B'_2 are bases obtained from the pair B_1, B_2 by a sequence of symmetric exchanges. Therefore the binomial

$$y_{B_1}y_{B_2}y_{B_3}\cdots y_{B_n} - y_{B_1'}y_{B_2'}y_{B_3}\cdots y_{B_n}$$
(1)

belongs to J_M .

Analogously, the binomial

$$y_{D_1}y_{D_2}y_{D_3}\cdots y_{D_n} - y_{D_1'}y_{D_2'}y_{D_3}\cdots y_{D_n}$$
(2)

belongs to J_M .

Moreover since S and T are disjoint we have that

 $d(y_{B'_1}y_{B'_2}y_{B_3}\cdots y_{B_n}, y_{D'_1}y_{D'_2}y_{D_3}\cdots y_{D_n}) > d(y_{B_1}y_{B_2}y_{B_3}\cdots y_{B_n}, y_{D_1}y_{D_2}y_{D_3}\cdots y_{D_n})$

1-1

< - >

Proof (Cont...) By the inductive assumption

 $y_{B_1'}y_{B_2'}y_{B_3}\cdots y_{B_n}-y_{D_1'}y_{D_2'}y_{D_3}\cdots y_{D_n}$

also belongs to J_M .

J.L. Ramírez Alfonsín Toric ideals and matroids I IMAG, Université de Montpellier

(3)

Proof (Cont...) By the inductive assumption

$$y_{B_1'}y_{B_2'}y_{B_3}\cdots y_{B_n}-y_{D_1'}y_{D_2'}y_{D_3}\cdots y_{D_n}$$

also belongs to J_M . By adding (1) and (3) and subtracting (2) we have that

```
y_{B_1}y_{B_2}y_{B_3}\cdots y_{B_n}-y_{D_1}y_{D_2}y_{D_3}\cdots y_{D_n}
```

belongs to J_M , as desired.

J.L. Ramírez Alfonsín Toric ideals and matroids I (3)

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials.

J.L. Ramírez Alfonsín Toric ideals and matroids I

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials. Sturmfels (1996) proved that Conjecture 1 holds for uniform matroids.

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials.

Sturmfels (1996) proved that Conjecture 1 holds for uniform matroids.

Conjecture 2 For any matroid M, the toric ideal I_M is generated by quadratics binomials.

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials.

Sturmfels (1996) proved that Conjecture 1 holds for uniform matroids.

Conjecture 2 For any matroid M, the toric ideal I_M is generated by quadratics binomials.

Conjecture 3 For any matroid M, the quadratic binomials of I_M are in the ideal generated by the binomials $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ such that the pair of bases D_1 , D_2 can be obtained from the pair B_1 , B_2 by a symmetric exchange.

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials.

Sturmfels (1996) proved that Conjecture 1 holds for uniform matroids.

Conjecture 2 For any matroid M, the toric ideal I_M is generated by quadratics binomials.

Conjecture 3 For any matroid M, the quadratic binomials of I_M are in the ideal generated by the binomials $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ such that the pair of bases D_1 , D_2 can be obtained from the pair B_1 , B_2 by a symmetric exchange.

Remark : Conjectures 2 and 3 together imply White's conjecture.