Toric ideals and matroids II

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

San Luis, Argentina February 2016

[Toric ideals and matroids II](#page-56-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

The toric ideal I_M is a complete intersection if and only if there exists a set of homogeneous binomials $g_1, \ldots, g_s \in R$ such that $s = ht(I_M)$ and $I_M = (g_1, \ldots, g_s)$.

The toric ideal I_M is a complete intersection if and only if there exists a set of homogeneous binomials $g_1, \ldots, g_s \in R$ such that $s = ht(I_M)$ and $I_M = (g_1, \ldots, g_s)$. Equivalently, I_M is a complete intersection if

$$
\mu(I_M)=\operatorname{ht}(I_M)=|\mathcal{B}|-(n-c+1)
$$

where $\mu(I_M)$ denotes the minimal number of generators of I_M and c the number of connected components of M.

[Toric ideals and matroids II](#page-0-0)

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation R defined as follows : aRb if and only if there exist a circuit of M containing both $a, b \in M$.

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation R defined as follows : aRb if and only if there exist a circuit of M containing both $a, b \in M$.

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation R defined as follows : aRb if and only if there exist a circuit of M containing both $a, b \in M$.

We have $\mathcal{B}(M(G)) = \{123, 124, 134, 234\}$. There is one equivalent classe, and thus $\text{ht}(I_M) = 4 - (4 - 1 + 1) = 0$.

[Toric ideals and matroids II](#page-0-0)

Recall that

 $I_M = (\{y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s} | B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s \})$ (1)

[Toric ideals and matroids II](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Recall that

$$
I_M = \left(\{ y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s} \mid B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s \} \right) (1)
$$

• If $r = n$ then $\text{ht}(I_M) = 1 - (n - n + 1) = 0$, and clearly by [\(1\)](#page-6-0), we have $I_M = (0)$. So, in this case I_M is complete intersection.

Recall that

$$
I_M = \left(\{ y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s} \mid B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s \} \right) (1)
$$

- If $r = n$ then $\text{ht}(I_M) = 1 (n n + 1) = 0$, and clearly by [\(1\)](#page-6-0), we have $I_M = (0)$. So, in this case I_M is complete intersection.
- If $r = n 1$ then $\text{ht}(I_M) = n (n 1 + 1) = 0$, and clearly by [\(1\)](#page-6-0), we have $I_M = (0)$. So, in this case I_M is also complete intersection.

Recall that

$$
I_M = \left(\{ y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s} \mid B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s \} \right) (1)
$$

- If $r = n$ then $\text{ht}(I_M) = 1 (n n + 1) = 0$, and clearly by [\(1\)](#page-6-0), we have $I_M = (0)$. So, in this case I_M is complete intersection.
- If $r = n 1$ then $\text{ht}(I_M) = n (n 1 + 1) = 0$, and clearly by [\(1\)](#page-6-0), we have $I_M = (0)$. So, in this case I_M is also complete intersection. Thus, we only consider the case $r \leq n-2$.

We denote by M^* the dual matroid of M .

[Toric ideals and matroids II](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

We denote by M^* the dual matroid of M . $σ$ is the isomorphism of k-algebras $σ: R \longrightarrow k[y_{E\setminus B} | B ∈ B]$ induced by $y_B \mapsto y_{E\setminus B}$.

We denote by M^* the dual matroid of M . $σ$ is the isomorphism of k-algebras $σ: R \longrightarrow k[y_{E\setminus B | B ∈ B]}$ induced by $y_B \mapsto y_{E\setminus B}$. It is straightforward to check that $\sigma(I_M) = I_{M^*}$

- We denote by M^* the dual matroid of M .
- $σ$ is the isomorphism of k-algebras $σ: R \longrightarrow k[y_{E\setminus B | B ∈ B]}$ induced by $y_B \mapsto y_{E\setminus B}$.
- It is straightforward to check that $\sigma(I_M) = I_{M^*}$
- Thus, I_M is a complete intersection if and only if I_{M*} also is.

- We denote by M^* the dual matroid of M . $σ$ is the isomorphism of k-algebras $σ: R \longrightarrow k[y_{E\setminus B} | B ∈ B]$
- induced by $y_B \mapsto y_{E\setminus B}$.
- It is straightforward to check that $\sigma(I_M) = I_{M^*}$
- Thus, I_M is a complete intersection if and only if I_{M*} also is. Proposition Let M' be a minor of M. If I_M is a complete intersection, then $I_{M'}$ also is.

If M has rank 2 then we associate to M the graph H_M with vertex set E and edge set B .

[Toric ideals and matroids II](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

If M has rank 2 then we associate to M the graph H_M with vertex set E and edge set B . Example : $B(U_{2,4}) = \{B_1 = \{1,2\}, B_2 = \{1,3\}, B_3 = \{1,4\}, B_4 =$ $\{2, 3\}, B_5 = \{2, 4\}, B_6 = \{3, 4\}\}$ $\sqrt{ }$ B_1 B_2 B_3 B_4 B_5 B_6 $\overline{}$ 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 \setminus $\overline{}$

0 0 1 0 1 1

[Toric ideals and matroids II](#page-0-0)

[Toric ideals and matroids II](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

If M has rank 2 then we associate to M the graph H_M with vertex set E and edge set B .

• It turns out that I_M coincides with the toric ideal of the graph H_M .

If M has rank 2 then we associate to M the graph H_M with vertex set E and edge set B .

• It turns out that I_M coincides with the toric ideal of the graph H_M .

Theorem (I. Bermejo, I. Garcia-Marco, E. Reyes) Whenever $I_{H(M)}$ is a complete intersection, then H_M does not contain $K_{2,3}$ as subgraph.

[Toric ideals and matroids II](#page-0-0)

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

[Toric ideals and matroids II](#page-0-0)

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

Therefore I_G is not complete intersection.

[Toric ideals and matroids II](#page-0-0)

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if $n = 4$.

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if $n = 4$.

Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_M is not a complete intersection.

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if $n = 4$.

Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_M is not a complete intersection.

Since M has no loops or coloops, we may assume that $B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{1, 5\} \in \mathcal{B}.$

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if $n = 4$.

Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_M is not a complete intersection.

Since M has no loops or coloops, we may assume that $B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{1, 5\} \in \mathcal{B}.$

Since $B_1, B_2 \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_4 = \{1, 3\}, B_5 = \{2, 4\} \in \mathcal{B}$.

- Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if $n = 4$.
- Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_M is not a complete intersection.
- Since M has no loops or coloops, we may assume that $B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{1, 5\} \in \mathcal{B}.$
- Since $B_1, B_2 \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_4 = \{1, 3\}, B_5 = \{2, 4\} \in \mathcal{B}$.
- If $\{4,5\} \in \mathcal{B}$, then H_M has a subgraph $K_{2,3}$ and I_M is not a complete intersection.

- Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if $n = 4$.
- Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_M is not a complete intersection.
- Since M has no loops or coloops, we may assume that $B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{1, 5\} \in \mathcal{B}.$
- Since $B_1, B_2 \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_4 = \{1, 3\}, B_5 = \{2, 4\} \in \mathcal{B}$.
- If $\{4,5\} \in \mathcal{B}$, then H_M has a subgraph $K_{2,3}$ and I_M is not a complete intersection.

If $\{4, 5\} \notin \mathcal{B}$ also implies that H_M has a subgraph $K_{2,3}$.

- Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if $n = 4$.
- Proof (idea) (\Rightarrow) Assume that $n \geq 5$ and let us prove that I_M is not a complete intersection.
- Since M has no loops or coloops, we may assume that $B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{1, 5\} \in \mathcal{B}.$
- Since $B_1, B_2 \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_4 = \{1, 3\}, B_5 = \{2, 4\} \in \mathcal{B}$.
- If $\{4,5\} \in \mathcal{B}$, then H_M has a subgraph $K_{2,3}$ and I_M is not a complete intersection.

If $\{4,5\} \notin \mathcal{B}$ also implies that H_M has a subgraph $K_{2,3}$. (\Leftarrow) By computer.

Complete Intersection : general case

Theorem Let M be a matroid without loops or coloops and with $n > r + 1$. Then, I_M is a complete intersection if and only if $n = 4$ and M is the matroid whose set of bases is :

\n- **1**
$$
\mathcal{B} = \{\{1, 2\}, \{3, 4\}, \{1, 3\}, \{2, 4\}\},
$$
\n- **2** $\mathcal{B} = \{\{1, 2\}, \{3, 4\}, \{1, 3\}, \{2, 4\}, \{1, 4\}\}, \text{or}$
\n- **3** $\mathcal{B} = \{\{1, 2\}, \{3, 4\}, \{1, 3\}, \{2, 4\}, \{1, 4\}, \{2, 3\}\}, \text{ i.e.,}$ $M = U_{2,4}.$
\n

[Toric ideals and matroids II](#page-0-0)

We consider the following binary equivalence relation \sim on the set of pairs of bases :

 ${B_1, B_2} \sim {B_3, B_4} \iff B_1 \cup B_2 = B_3 \cup B_4$ as multisets,

and we denote by $\Delta_{\{B_1,B_2\}}$ the cardinality of the equivalence class of ${B_1, B_2}$.

We consider the graph

[Toric ideals and matroids II](#page-0-0)

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

We consider the graph

Therefore, $B(M(G)) = \{B_1 = \{123\}, B_2 = \{124\}, B_3 = \{134\}, B_4 = \{234\}\}.$

[Toric ideals and matroids II](#page-0-0)

We consider the graph

Therefore, $\mathcal{B}(M(G)) = \{B_1 = \{123\}, B_2 = \{124\}, B_3 = \{134\}, B_4 = \{234\}\}.$ It can be checked that the equivalent class of $\{B_i,B_j\}$ is $\{B_i,B_j\}$, that is, $\Delta_{\{B_i,B_j\}}=1$ for any pair $1\leq i\neq j\leq 4.$

[Toric ideals and matroids II](#page-0-0)

Lemma (bounds) For every $B_1, B_2 \in \mathcal{B}$, then $2^{d-1}\leq \Delta_{\{B_1,B_2\}}\leq {2d-1\choose d}$ $\binom{d-1}{d}$, where $d := |B_1 \setminus B_2|$.

[Toric ideals and matroids II](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Lemma (bounds) For every $B_1, B_2 \in \mathcal{B}$, then $2^{d-1}\leq \Delta_{\{B_1,B_2\}}\leq {2d-1\choose d}$ $\binom{d-1}{d}$, where $d := |B_1 \setminus B_2|$. Proof Take $e \in B_1 \setminus B_2$. By the multiple symmetric exchange property, for every A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, there exists $A_2 \subset B_2$ such that both $B_1' := (B_1 \cup A_2) \setminus A_1$ and $B'_2 := (B_2 \cup A_1) \setminus A_2$ are bases.

Lemma (bounds) For every $B_1, B_2 \in \mathcal{B}$, then $2^{d-1}\leq \Delta_{\{B_1,B_2\}}\leq {2d-1\choose d}$ $\binom{d-1}{d}$, where $d := |B_1 \setminus B_2|$. Proof Take $e \in B_1 \setminus B_2$. By the multiple symmetric exchange property, for every A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, there exists $A_2 \subset B_2$ such that both $B_1' := (B_1 \cup A_2) \setminus A_1$ and $B'_2 := (B_2 \cup A_1) \setminus A_2$ are bases. Since $B_1 \cup B_2 = B_1' \cup B_2'$ as multisets, we derive that $\Delta_{\{B_1,B_2\}}$ is greater or equal to the number of sets A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, which is exactly 2^{d-1} .

Lemma (bounds) For every $B_1, B_2 \in \mathcal{B}$, then $2^{d-1}\leq \Delta_{\{B_1,B_2\}}\leq {2d-1\choose d}$ $\binom{d-1}{d}$, where $d := |B_1 \setminus B_2|$. Proof Take $e \in B_1 \setminus B_2$. By the multiple symmetric exchange property, for every A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, there exists $A_2 \subset B_2$ such that both $B_1' := (B_1 \cup A_2) \setminus A_1$ and $B'_2 := (B_2 \cup A_1) \setminus A_2$ are bases.

Since $B_1 \cup B_2 = B_1' \cup B_2'$ as multisets, we derive that $\Delta_{\{B_1,B_2\}}$ is greater or equal to the number of sets A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, which is exactly 2^{d-1} .

We set $A := B_1 \cap B_2$, $C := B_1 \triangle B_2$ and take $e \in B_1 \setminus B_2$. Take $B_3, B_4 \in \mathcal{B}$ such that $B_1 \cup B_2 = B_3 \cup B_4$ as multisets and assume that $e \in B_4$. Then, $B_3 \setminus A \subset C \setminus \{e\}$ with $|B_3| = |B_1 \setminus B_2| = d$ elements ; thus, $\Delta_{\{B_1,B_2\}}\leq {2d-1\choose d}$ $\binom{d-1}{d}$.

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $\mathcal{M}':=(\mathcal{M}/(\mathcal{B}_1\cap\mathcal{B}_2))|_{(\mathcal{B}_1\triangle\mathcal{B}_2)}$ on the ground set $\mathcal{B}_1\triangle\mathcal{B}_2$. Then, the number of bases-cobases of M' is equal to 2 $\Delta_{\{B_1,B_2\}}.$

[Toric ideals and matroids II](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $\mathcal{M}':=(\mathcal{M}/(\mathcal{B}_1\cap\mathcal{B}_2))|_{(\mathcal{B}_1\triangle\mathcal{B}_2)}$ on the ground set $\mathcal{B}_1\triangle\mathcal{B}_2$. Then, the number of bases-cobases of M' is equal to 2 $\Delta_{\{B_1,B_2\}}.$ Theorem If M has a minor $M' \simeq U_{d,2d}$ for some $d \geq 2$, then there exist $B_1,B_2\in\mathcal{B}$ such that $\Delta_{\{B_1,B_2\}}=\binom{2d-1}{d}$ $\binom{1-1}{d}$.

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $\mathcal{M}':=(\mathcal{M}/(\mathcal{B}_1\cap\mathcal{B}_2))|_{(\mathcal{B}_1\triangle\mathcal{B}_2)}$ on the ground set $\mathcal{B}_1\triangle\mathcal{B}_2$. Then, the number of bases-cobases of M' is equal to 2 $\Delta_{\{B_1,B_2\}}.$ Theorem If M has a minor $M' \simeq U_{d,2d}$ for some $d \geq 2$, then there exist $B_1,B_2\in\mathcal{B}$ such that $\Delta_{\{B_1,B_2\}}=\binom{2d-1}{d}$ $\binom{1-1}{d}$. Theorem (binary) M is binary if and only if $\Delta_{\{B_1,B_2\}} \neq 3$ for every $B_1, B_2 \in \mathcal{B}$.

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $\mathcal{M}':=(\mathcal{M}/(\mathcal{B}_1\cap\mathcal{B}_2))|_{(\mathcal{B}_1\triangle\mathcal{B}_2)}$ on the ground set $\mathcal{B}_1\triangle\mathcal{B}_2$. Then, the number of bases-cobases of M' is equal to 2 $\Delta_{\{B_1,B_2\}}.$ Theorem If M has a minor $M' \simeq U_{d,2d}$ for some $d \geq 2$, then there exist $B_1,B_2\in\mathcal{B}$ such that $\Delta_{\{B_1,B_2\}}=\binom{2d-1}{d}$ $\binom{1-1}{d}$. Theorem (binary) M is binary if and only if $\Delta_{\{B_1,B_2\}} \neq 3$ for every $B_1, B_2 \in \mathcal{B}$. Theorem M has a minor $M' \simeq U_{3,6}$ if and only if $\Delta_{\{B_1,B_2\}} = 10$ for some $B_1, B_2 \in \mathcal{B}$.

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $\mathcal{M}':=(\mathcal{M}/(\mathcal{B}_1\cap\mathcal{B}_2))|_{(\mathcal{B}_1\triangle\mathcal{B}_2)}$ on the ground set $\mathcal{B}_1\triangle\mathcal{B}_2$. Then, the number of bases-cobases of M' is equal to 2 $\Delta_{\{B_1,B_2\}}.$

Theorem If M has a minor $M' \simeq U_{d,2d}$ for some $d \geq 2$, then there exist $B_1,B_2\in\mathcal{B}$ such that $\Delta_{\{B_1,B_2\}}=\binom{2d-1}{d}$ $\binom{1-1}{d}$.

Theorem (binary) M is binary if and only if $\Delta_{\{B_1,B_2\}} \neq 3$ for every $B_1, B_2 \in \mathcal{B}$.

Theorem M has a minor $M' \simeq U_{3,6}$ if and only if $\Delta_{\{B_1,B_2\}} = 10$ for some $B_1, B_2 \in \mathcal{B}$.

Proposition Let $\{g_1, \ldots, g_s\}$ be a minimal set of binomial generators of I_M . Then,

 $\Delta_{\{B_1,B_2\}}=1+|\{g_i=y_{B_{i_1}}y_{B_{i_2}}-y_{B_1}y_{B_2} \mid \ B_{i_1}\cup B_{i_2}=B_1\cup B_2$ as a multiset $\{ \}$ for every $B_1, B_2 \in \mathcal{B}$.

 $\nu(I_M)$ = the number of minimal sets of binomial generators of I_M , where the sign of a binomial does not count $\mu(I_M)$ = the minimal number of generators of I_M .

 $\nu(I_M)$ = the number of minimal sets of binomial generators of I_M , where the sign of a binomial does not count $\mu(I_M)$ = the minimal number of generators of I_M . Theorem Let $R = \{\{B_1, B_2\}, \ldots, \{B_{2s-1}, B_{2s}\}\}\)$ be a set of representatives of \sim and set $r_i:=\Delta_{\{B_{2i-1},B_{2i}\}}$ for all $i \in \{1, \ldots, s\}$. Then, $1\!\!1\!\!1~\mu(l_M)\geq (b^2-b-2s)/2,$ where $b:=|\mathcal{B}|,$ and 2 $\nu(I_M) \ge \prod_{i=1}^s r_i^{r_i-2}$. Moreover, in both cases equality holds whenever I_M is generated by quadratics.

 $\nu(I_M)$ = the number of minimal sets of binomial generators of I_M , where the sign of a binomial does not count $\mu(I_M)$ = the minimal number of generators of I_M . Theorem Let $R = \{\{B_1, B_2\}, \ldots, \{B_{2s-1}, B_{2s}\}\}\)$ be a set of representatives of \sim and set $r_i:=\Delta_{\{B_{2i-1},B_{2i}\}}$ for all $i \in \{1, \ldots, s\}$. Then, $1\!\!1\!\!1~\mu(l_M)\geq (b^2-b-2s)/2,$ where $b:=|\mathcal{B}|,$ and 2 $\nu(I_M) \ge \prod_{i=1}^s r_i^{r_i-2}$.

Moreover, in both cases equality holds whenever I_M is generated by quadratics.

Question Can we characterize those matroids M with $\nu(I_M) = 1$?

The basis graph of a matroid M is the undirected graph G_M with vertex set $\mathcal B$ and edges $\{B,B'\}$ such that $|B\setminus B'|=1.$ The diameter of a graph is the maximum distance between two vertices of the graph.

The basis graph of a matroid M is the undirected graph G_M with vertex set $\mathcal B$ and edges $\{B,B'\}$ such that $|B\setminus B'|=1.$ The diameter of a graph is the maximum distance between two vertices of the graph.

Basis graph $G_{U_{2,4}}$

[Toric ideals and matroids II](#page-0-0)

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

Theorem Let M be a rank $r \geq 2$ matroid. Then, $\nu(I_M) = 1$ if and only if M is binary and the diameter of G_M is at most 2.

Theorem Let M be a rank $r \geq 2$ matroid. Then, $\nu(I_M) = 1$ if and only if M is binary and the diameter of G_M is at most 2.

Proof (idea) (\Rightarrow) By the previous theorem, we have that $\Delta_{\{B_1,B_2\}} = 1$ or 2 for all $B_1, B_2 \in \mathcal{B}$.

Theorem Let M be a rank $r \geq 2$ matroid. Then, $\nu(I_M) = 1$ if and only if M is binary and the diameter of G_M is at most 2.

Proof (idea) (\Rightarrow) By the previous theorem, we have that $\Delta_{\{B_1,B_2\}} = 1$ or 2 for all $B_1, B_2 \in \mathcal{B}$. By Lemma bounds and Theorem binary, this is equivalent to M is binary and $|B_1 \setminus B_2| \in \{1,2\}$ for all $B_1, B_2 \in \mathcal{B}$. Clearly this implies that the diameter of G_M is less or equal to 2.

Theorem Let M be a rank $r \geq 2$ matroid. Then, $\nu(I_M) = 1$ if and only if M is binary and the diameter of G_M is at most 2.

Proof (idea) (\Rightarrow) By the previous theorem, we have that $\Delta_{\{B_1,B_2\}} = 1$ or 2 for all $B_1, B_2 \in \mathcal{B}$. By Lemma bounds and Theorem binary, this is equivalent to M is binary and $|B_1 \setminus B_2| \in \{1,2\}$ for all $B_1, B_2 \in \mathcal{B}$. Clearly this implies that the diameter of G_M is less or equal to 2.

 (\Leftarrow) More complicated.

Matroid $M(G)$ associated to graph G .

[Toric ideals and matroids II](#page-0-0)

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

Matroid $M(G)$ associated to graph G.

 $B(M(G)) = \{B_1 = \{124\}, B_2 = \{125\}, B_3 = \{134\}, B_4 =$ $\{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{235\}, B_8 = \{345\}\}$

[Toric ideals and matroids II](#page-0-0)

The base graph $G_{M(G)}$

[Toric ideals and matroids II](#page-0-0)

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

The base graph $G_{M(G)}$

Since diameter of $G_{\mathcal{M}(G)}$ is at most two, and $\mathcal{M}(G)$ is binary then $\nu(I_M) = 1.$

[Toric ideals and matroids II](#page-0-0)

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and The MAG, Université de Montpellier