Toric ideals and matroids II

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

San Luis, Argentina February 2016

The toric ideal I_M is a complete intersection if and only if there exists a set of homogeneous binomials $g_1, \ldots, g_s \in R$ such that $s = \operatorname{ht}(I_M)$ and $I_M = (g_1, \ldots, g_s)$.

The toric ideal I_M is a complete intersection if and only if there exists a set of homogeneous binomials $g_1, \ldots, g_s \in R$ such that $s = \operatorname{ht}(I_M)$ and $I_M = (g_1, \ldots, g_s)$.

Equivalently, I_M is a complete intersection if

$$\mu(I_M) = \operatorname{ht}(I_M) = |\mathcal{B}| - (n - c + 1)$$

where $\mu(I_M)$ denotes the minimal number of generators of I_M and c the number of connected components of M.

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation \mathcal{R} defined as follows: $a\mathcal{R}b$ if and only if there exist a circuit of M containing both $a,b\in M$.

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation \mathcal{R} defined as follows: $a\mathcal{R}b$ if and only if there exist a circuit of M containing both $a,b\in M$.

The number of connected components of a matroid M is given by the number of equivalent classes induced by the relation \mathcal{R} defined as follows : $a\mathcal{R}b$ if and only if there exist a circuit of M containing both $a,b\in M$.

We have $\mathcal{B}(M(G)) = \{123, 124, 134, 234\}$. There is one equivalent classe, and thus $\operatorname{ht}(I_M) = 4 - (4 - 1 + 1) = 0$.

Recall that

$$I_{M} = (\{y_{B_{1}} \cdots y_{B_{s}} - y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s} = D_{1} \cup \cdots \cup D_{s}\})$$
 (1)

Recall that

$$I_{M} = (\{y_{B_{1}} \cdots y_{B_{s}} - y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s} = D_{1} \cup \cdots \cup D_{s}\})$$
 (1)

• If r = n then $ht(I_M) = 1 - (n - n + 1) = 0$, and clearly by (1), we have $I_M = (0)$. So, in this case I_M is complete intersection.

Recall that

$$I_{M} = (\{y_{B_{1}} \cdots y_{B_{s}} - y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s} = D_{1} \cup \cdots \cup D_{s}\})$$
 (1)

- If r = n then $ht(I_M) = 1 (n n + 1) = 0$, and clearly by (1), we have $I_M = (0)$. So, in this case I_M is complete intersection.
- If r = n 1 then $ht(I_M) = n (n 1 + 1) = 0$, and clearly by (1), we have $I_M = (0)$. So, in this case I_M is also complete intersection.

Recall that

$$I_{M} = (\{y_{B_{1}} \cdots y_{B_{s}} - y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s} = D_{1} \cup \cdots \cup D_{s}\})$$
 (1)

- If r = n then $ht(I_M) = 1 (n n + 1) = 0$, and clearly by (1), we have $I_M = (0)$. So, in this case I_M is complete intersection.
- If r = n 1 then $\operatorname{ht}(I_M) = n (n 1 + 1) = 0$, and clearly by (1), we have $I_M = (0)$. So, in this case I_M is also complete intersection. Thus, we only consider the case $r \le n 2$.

We denote by M^* the dual matroid of M.

We denote by M^* the dual matroid of M.

 σ is the isomorphism of k-algebras $\sigma: R \longrightarrow k[y_{E \setminus B} \mid B \in \mathcal{B}]$ induced by $y_B \mapsto y_{E \setminus B}$.

We denote by M^* the dual matroid of M.

 σ is the isomorphism of k-algebras $\sigma: R \longrightarrow k[y_{E \setminus B} \mid B \in \mathcal{B}]$ induced by $y_B \mapsto y_{E \setminus B}$.

It is straightforward to check that $\sigma(I_M) = I_{M^*}$

We denote by M^* the dual matroid of M.

 σ is the isomorphism of k-algebras $\sigma: R \longrightarrow k[y_{E \setminus B} \mid B \in \mathcal{B}]$ induced by $y_B \mapsto y_{E \setminus B}$.

It is straightforward to check that $\sigma(I_M) = I_{M^*}$

Thus, I_M is a complete intersection if and only if I_{M^*} also is.

We denote by M^* the dual matroid of M.

 σ is the isomorphism of k-algebras $\sigma: R \longrightarrow k[y_{E \setminus B} \mid B \in \mathcal{B}]$ induced by $y_B \mapsto y_{E \setminus B}$.

It is straightforward to check that $\sigma(I_M) = I_{M^*}$

Thus, I_M is a complete intersection if and only if I_{M^*} also is.

Proposition Let M' be a minor of M. If I_M is a complete intersection, then $I_{M'}$ also is.

If M has rank 2 then we associate to M the graph H_M with vertex set E and edge set B.

If M has rank 2 then we associate to M the graph H_M with vertex set E and edge set B.

Example:

$$\mathcal{B}(U_{2,4}) = \{B_1 = \{1,2\}, B_2 = \{1,3\}, B_3 = \{1,4\}, B_4 = \{2,3\}, B_5 = \{2,4\}, B_6 = \{3,4\}\}$$

$$\begin{pmatrix}
B_1 & B_2 & B_3 & B_4 & B_5 & B_6 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{pmatrix}$$

 $H_{U_{2,4}}$

If M has rank 2 then we associate to M the graph H_M with vertex set E and edge set B.

• It turns out that I_M coincides with the toric ideal of the graph H_M .

If M has rank 2 then we associate to M the graph H_M with vertex set E and edge set B.

• It turns out that I_M coincides with the toric ideal of the graph H_M .

Theorem (I. Bermejo, I. Garcia-Marco, E. Reyes) Whenever $I_{H(M)}$ is a complete intersection, then H_M does not contain $K_{2,3}$ as subgraph.

 $K_{2,3}$

 $K_{2,3}$

Therefore I_G is not complete intersection.

Proposition Let M be a rank 2 matroid on a ground set of $n \ge 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.

Proposition Let M be a rank 2 matroid on a ground set of $n \ge 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.

Proof (idea) (\Rightarrow) Assume that $n \ge 5$ and let us prove that I_M is not a complete intersection.

Proposition Let M be a rank 2 matroid on a ground set of $n \ge 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.

Proof (idea) (\Rightarrow) Assume that $n \ge 5$ and let us prove that I_M is not a complete intersection.

Since M has no loops or coloops, we may assume that $B_1=\{1,2\}, B_2=\{3,4\}, B_3=\{1,5\}\in\mathcal{B}.$

Proposition Let M be a rank 2 matroid on a ground set of $n \ge 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.

Proof (idea) (\Rightarrow) Assume that $n \ge 5$ and let us prove that I_M is not a complete intersection.

Since M has no loops or coloops, we may assume that $B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{1, 5\} \in \mathcal{B}$.

Since $B_1, B_2 \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_4 = \{1,3\}, B_5 = \{2,4\} \in \mathcal{B}$.

Proposition Let M be a rank 2 matroid on a ground set of $n \ge 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.

Proof (idea) (\Rightarrow) Assume that $n \ge 5$ and let us prove that I_M is not a complete intersection.

Since M has no loops or coloops, we may assume that $B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{1, 5\} \in \mathcal{B}$.

Since $B_1, B_2 \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_4 = \{1, 3\}, B_5 = \{2, 4\} \in \mathcal{B}$.

If $\{4,5\} \in \mathcal{B}$, then H_M has a subgraph $K_{2,3}$ and I_M is not a complete intersection.

Proposition Let M be a rank 2 matroid on a ground set of $n \ge 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.

Proof (idea) (\Rightarrow) Assume that $n \ge 5$ and let us prove that I_M is not a complete intersection.

Since M has no loops or coloops, we may assume that $B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{1, 5\} \in \mathcal{B}$.

Since $B_1, B_2 \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_4 = \{1, 3\}, B_5 = \{2, 4\} \in \mathcal{B}$.

If $\{4,5\} \in \mathcal{B}$, then H_M has a subgraph $K_{2,3}$ and I_M is not a complete intersection.

If $\{4,5\} \notin \mathcal{B}$ also implies that H_M has a subgraph $K_{2,3}$.

Proposition Let M be a rank 2 matroid on a ground set of $n \geq 4$ elements without loops or coloops. Then, I_M is a complete intersection if and only if n = 4.

Proof (idea) (\Rightarrow) Assume that $n \ge 5$ and let us prove that I_M is not a complete intersection.

Since M has no loops or coloops, we may assume that

$$B_1 = \{1, 2\}, B_2 = \{3, 4\}, B_3 = \{1, 5\} \in \mathcal{B}.$$

Since $B_1, B_2 \in \mathcal{B}$, by the symmetric exchange axiom, we can also assume that $B_4 = \{1, 3\}, B_5 = \{2, 4\} \in \mathcal{B}$.

If $\{4,5\} \in \mathcal{B}$, then H_M has a subgraph $K_{2,3}$ and I_M is not a complete intersection.

If $\{4,5\} \notin \mathcal{B}$ also implies that H_M has a subgraph $K_{2,3}$. (\Leftarrow) By computer.

Complete Intersection: general case

Theorem Let M be a matroid without loops or coloops and with n > r + 1. Then, I_M is a complete intersection if and only if n = 4 and M is the matroid whose set of bases is :

2
$$\mathcal{B} = \{\{1,2\},\{3,4\},\{1,3\},\{2,4\},\{1,4\}\},$$
 or

3
$$\mathcal{B} = \{\{1,2\}, \{3,4\}, \{1,3\}, \{2,4\}, \{1,4\}, \{2,3\}\}, \text{ i.e., } M = U_{2,4}.$$

We consider the following binary equivalence relation \sim on the set of pairs of bases :

$$\{B_1,B_2\}\sim\{B_3,B_4\}\iff B_1\cup B_2=B_3\cup B_4 \text{ as multisets,}$$

and we denote by $\Delta_{\{B_1,B_2\}}$ the cardinality of the equivalence class of $\{B_1,B_2\}$.

We consider the graph

We consider the graph

Therefore,

$$\mathcal{B}(M(G)) = \{B_1 = \{123\}, B_2 = \{124\}, B_3 = \{134\}, B_4 = \{234\}\}.$$

We consider the graph

Therefore, $\mathcal{B}(M(G)) = \{B_1 = \{123\}, B_2 = \{124\}, B_3 = \{134\}, B_4 = \{234\}\}.$ It can be checked that the equivalent class of $\{B_i, B_j\}$ is $\{B_i, B_j\}$, that is, $\Delta_{\{B_i, B_i\}} = 1$ for any pair $1 \le i \ne j \le 4$.

Lemma (bounds) For every $B_1, B_2 \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\{B_1, B_2\}} \leq {2d-1 \choose d}$, where $d := |B_1 \setminus B_2|$.

Lemma (bounds) For every $B_1, B_2 \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\{B_1, B_2\}} \leq {2d-1 \choose d}$, where $d := |B_1 \setminus B_2|$.

Proof Take $e \in B_1 \setminus B_2$. By the multiple symmetric exchange property, for every A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, there exists $A_2 \subset B_2$ such that both $B_1' := (B_1 \cup A_2) \setminus A_1$ and $B_2' := (B_2 \cup A_1) \setminus A_2$ are bases.

Lemma (bounds) For every $B_1, B_2 \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\{B_1, B_2\}} \leq {2^{d-1} \choose d}$, where $d := |B_1 \setminus B_2|$.

Proof Take $e \in B_1 \setminus B_2$. By the multiple symmetric exchange property, for every A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, there exists $A_2 \subset B_2$ such that both $B_1' := (B_1 \cup A_2) \setminus A_1$ and $B_2' := (B_2 \cup A_1) \setminus A_2$ are bases.

Since $B_1 \cup B_2 = B_1' \cup B_2'$ as multisets, we derive that $\Delta_{\{B_1,B_2\}}$ is greater or equal to the number of sets A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, which is exactly 2^{d-1} .

Lemma (bounds) For every $B_1, B_2 \in \mathcal{B}$, then $2^{d-1} \leq \Delta_{\{B_1, B_2\}} \leq {2^{d-1} \choose d}$, where $d := |B_1 \setminus B_2|$.

Proof Take $e \in B_1 \setminus B_2$. By the multiple symmetric exchange property, for every A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, there exists $A_2 \subset B_2$ such that both $B_1' := (B_1 \cup A_2) \setminus A_1$ and $B_2' := (B_2 \cup A_1) \setminus A_2$ are bases.

Since $B_1 \cup B_2 = B_1' \cup B_2'$ as multisets, we derive that $\Delta_{\{B_1,B_2\}}$ is greater or equal to the number of sets A_1 such that $e \in A_1 \subset (B_1 \setminus B_2)$, which is exactly 2^{d-1} .

We set $A:=B_1\cap B_2$, $C:=B_1\triangle B_2$ and take $e\in B_1\setminus B_2$. Take $B_3, B_4\in \mathcal{B}$ such that $B_1\cup B_2=B_3\cup B_4$ as multisets and assume that $e\in B_4$. Then, $B_3\setminus A\subset C\setminus \{e\}$ with $|B_3|=|B_1\setminus B_2|=d$ elements; thus, $\Delta_{\{B_1,B_2\}}\leq {2d-1\choose d}$.

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $M' := (M/(B_1 \cap B_2))|_{(B_1 \triangle B_2)}$ on the ground set $B_1 \triangle B_2$. Then, the number of bases-cobases of M' is equal to $2\Delta_{\{B_1,B_2\}}$.

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $M' := (M/(B_1 \cap B_2))|_{(B_1 \triangle B_2)}$ on the ground set $B_1 \triangle B_2$. Then, the number of bases-cobases of M' is equal to $2\Delta_{\{B_1,B_2\}}$. Theorem If M has a minor $M' \simeq U_{d,2d}$ for some $d \geq 2$, then there exist $B_1, B_2 \in \mathcal{B}$ such that $\Delta_{\{B_1,B_2\}} = {2d-1 \choose d}$.

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $M' := (M/(B_1 \cap B_2))|_{(B_1 \triangle B_2)}$ on the ground set $B_1 \triangle B_2$. Then, the number of bases-cobases of M' is equal to $2\Delta_{\{B_1,B_2\}}$.

Theorem If M has a minor $M' \simeq U_{d,2d}$ for some $d \geq 2$, then there exist $B_1, B_2 \in \mathcal{B}$ such that $\Delta_{\{B_1, B_2\}} = {2d-1 \choose d}$.

Theorem (binary) M is binary if and only if $\Delta_{\{B_1,B_2\}} \neq 3$ for every $B_1, B_2 \in \mathcal{B}$.

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $M' := (M/(B_1 \cap B_2))|_{(B_1 \triangle B_2)}$ on the ground set $B_1 \triangle B_2$. Then, the number of bases-cobases of M' is equal to $2\Delta_{\{B_1,B_2\}}$.

Theorem If M has a minor $M' \simeq U_{d,2d}$ for some $d \geq 2$, then there exist $B_1, B_2 \in \mathcal{B}$ such that $\Delta_{\{B_1, B_2\}} = {2d-1 \choose d}$.

Theorem (binary) M is binary if and only if $\Delta_{\{B_1,B_2\}} \neq 3$ for every $B_1, B_2 \in \mathcal{B}$.

Theorem M has a minor $M' \simeq U_{3,6}$ if and only if $\Delta_{\{B_1,B_2\}} = 10$ for some $B_1, B_2 \in \mathcal{B}$.

Lemma Let $B_1, B_2 \in \mathcal{B}$ of a matroid M and consider the matroid $M' := (M/(B_1 \cap B_2))|_{(B_1 \triangle B_2)}$ on the ground set $B_1 \triangle B_2$. Then, the number of bases-cobases of M' is equal to $2\Delta_{\{B_1,B_2\}}$.

Theorem If M has a minor $M' \simeq U_{d,2d}$ for some $d \geq 2$, then there exist $B_1, B_2 \in \mathcal{B}$ such that $\Delta_{\{B_1, B_2\}} = {2d-1 \choose d}$.

Theorem (binary) M is binary if and only if $\Delta_{\{B_1,B_2\}} \neq 3$ for every $B_1, B_2 \in \mathcal{B}$.

Theorem M has a minor $M' \simeq U_{3,6}$ if and only if $\Delta_{\{B_1,B_2\}} = 10$ for some $B_1, B_2 \in \mathcal{B}$.

Proposition Let $\{g_1, \ldots, g_s\}$ be a minimal set of binomial generators of I_M . Then,

 $\Delta_{\{B_1,B_2\}} = 1 + |\{g_i = y_{B_{i_1}}y_{B_{i_2}} - y_{B_1}y_{B_2} \mid B_{i_1} \cup B_{i_2} = B_1 \cup B_2 \text{ as a multiset } \}| \text{ for every } B_1, B_2 \in \mathcal{B}.$

```
\nu(I_M)= the number of minimal sets of binomial generators of I_M, where the sign of a binomial does not count \mu(I_M)= the minimal number of generators of I_M.
```

Complete intersection

 $\nu(I_M)$ = the number of minimal sets of binomial generators of I_M , where the sign of a binomial does not count

 $\mu(I_M)$ = the minimal number of generators of I_M .

Theorem Let $R = \{\{B_1, B_2\}, \ldots, \{B_{2s-1}, B_{2s}\}\}$ be a set of representatives of \sim and set $r_i := \Delta_{\{B_{2i-1}, B_{2i}\}}$ for all $i \in \{1, \ldots, s\}$. Then,

- **1** $\mu(I_M) \ge (b^2 b 2s)/2$, where $b := |\mathcal{B}|$, and
- 2 $\nu(I_M) \geq \prod_{i=1}^s r_i^{r_i-2}$.

Moreover, in both cases equality holds whenever I_M is generated by quadratics.

Complete intersection

 $\nu(I_M)$ = the number of minimal sets of binomial generators of I_M , where the sign of a binomial does not count

 $\mu(I_M)$ = the minimal number of generators of I_M .

Theorem Let $R = \{\{B_1, B_2\}, \ldots, \{B_{2s-1}, B_{2s}\}\}$ be a set of representatives of \sim and set $r_i := \Delta_{\{B_{2i-1}, B_{2i}\}}$ for all $i \in \{1, \ldots, s\}$. Then,

- **1** $\mu(I_M) \ge (b^2 b 2s)/2$, where $b := |\mathcal{B}|$, and
- 2 $\nu(I_M) \ge \prod_{i=1}^s r_i^{r_i-2}$.

Moreover, in both cases equality holds whenever I_M is generated by quadratics.

Question Can we characterize those matroids M with $\nu(I_M) = 1$?

The basis graph of a matroid M is the undirected graph G_M with vertex set \mathcal{B} and edges $\{B,B'\}$ such that $|B\setminus B'|=1$. The diameter of a graph is the maximum distance between two vertices of the graph.

The basis graph of a matroid M is the undirected graph G_M with vertex set \mathcal{B} and edges $\{B,B'\}$ such that $|B\setminus B'|=1$. The diameter of a graph is the maximum distance between two vertices of the graph.

Basis graph $G_{U_{2,4}}$

Theorem Let M be a rank $r \ge 2$ matroid. Then, $\nu(I_M) = 1$ if and only if M is binary and the diameter of G_M is at most 2.

Theorem Let M be a rank $r \ge 2$ matroid. Then, $\nu(I_M) = 1$ if and only if M is binary and the diameter of G_M is at most 2.

Proof (idea) (\Rightarrow) By the previous theorem,we have that $\Delta_{\{B_1,B_2\}} = 1$ or 2 for all $B_1, B_2 \in \mathcal{B}$.

Theorem Let M be a rank $r \ge 2$ matroid. Then, $\nu(I_M) = 1$ if and only if M is binary and the diameter of G_M is at most 2.

Proof (idea) (\Rightarrow) By the previous theorem,we have that $\Delta_{\{B_1,B_2\}}=1$ or 2 for all $B_1,B_2\in\mathcal{B}$.

By Lemma bounds and Theorem binary, this is equivalent to M is binary and $|B_1 \setminus B_2| \in \{1,2\}$ for all $B_1, B_2 \in \mathcal{B}$. Clearly this implies that the diameter of G_M is less or equal to 2.

Theorem Let M be a rank $r \ge 2$ matroid. Then, $\nu(I_M) = 1$ if and only if M is binary and the diameter of G_M is at most 2.

Proof (idea) (\Rightarrow) By the previous theorem,we have that $\Delta_{\{B_1,B_2\}}=1$ or 2 for all $B_1,B_2\in\mathcal{B}$.

By Lemma bounds and Theorem binary, this is equivalent to M is binary and $|B_1 \setminus B_2| \in \{1,2\}$ for all $B_1, B_2 \in \mathcal{B}$. Clearly this implies that the diameter of G_M is less or equal to 2.

 (\Leftarrow) More complicated.

Matroid M(G) associated to graph G.

Matroid M(G) associated to graph G.

$$\mathcal{B}(M(G)) = \{B_1 = \{124\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{235\}, B_8 = \{345\}\}$$

The base graph $G_{M(G)}$

The base graph $G_{M(G)}$

Since diameter of $G_{M(G)}$ is at most two, and M(G) is binary then $\nu(I_M)=1$.