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Introduction

A signed set X is a set X divided in two parts (X+,X−), where
X+ is the set of the positive elements of X and X− is the set of
the negative elements. The set X = X+ ∪ X− is called the support
of X .

The opposite of a signed set X , denoted by −X , is the signed set
defined by (−X )+ = X− and (−X )− = X+.
Given a signed set X and a set A we denote by −AX the signed set
defined by (−AX )+ = (X+ \ A) ∪ (X− ∩ A) and
(−AX )− = (X− \ A) ∪ (X+ ∩ A).
We say that the signed set −AX is obtained by a reorientation of
A.
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Circuits

A collection C of signed set of a finite set E is the set of circuits of
an oriented matroid on E if and only if the following axioms are
verified :

(C0) ∅ 6∈ C,

(C1) (symmetry) C = −C,

(C2) (incomparability) for any X ,Y ∈ C, if X ⊆ Y , then X = Y
or X = −Y ,

(C3) (weak elimination) for any X ,Y ∈ C,X 6= −Y , and
e ∈ X+ ∩ Y−, there exists Z ∈ C such that
Z+ ⊆ (X+ ∪ Y +) \ {e} and Z− ⊆ (X− ∪ Y−) \ {e}.
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• If we forget the signs then (C0), (C2), (C3) reduced to the
circuits axioms of a matroid.

• All matroid notions M are also considered as notions of oriented
matroids, in particular, the rank of M is the same rank as in M.

• Let A ⊆ E and put −AC = {−AX : X ∈ C}. It is clear that −AC
is also the set of circuits of an oriented matroid, denoted by −AM.

Notation For short, we write X = abcde the signed circuit X
defined by X+ = {a, d , e} and X− = {b, c}.
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Graphs

Let D be the following oriented graph.

a

c

d

f
b

e

C(D) = {(abc), (abd), (aef ), (cd), (bcef ), (bdef ),

(abc), (abd), (aef ), (cd), (bcef ), (bdef )}.
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Configurations of vectors in the space

Let E = {v1, . . . , vn} be a set of vectors generating a r -dimensional
vector space over a ordered field, says {v1, . . . , vn} ⊆ IRr .

We consider the minimal linear dependencies

n∑
i=1

λivi = 0

with λi ∈ IR. We obtain an oriented matroid from E by considering
the signed sets X = (X+,X−) where

X+ = {i : λi > 0} et X− = {i : λi < 0}

for all minimal dependencies among vi .
This oriented matroid is called vectorial (or linear).
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Configurations of points in the space

Any configuration of points in the affine space induces an oriented
matroid having as circuits the signed set from the coefficient of
minimal dependencies, that is, linear combinations of the form∑

i

λivi

with
∑

i λi = 0, λi ∈ IR.
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Configurations of points in the space

Let us consider the points in IR2 given by the columns of matrix :

a b c d e f

A =

(
−1 0 0 3 1 0

0 0 1 0 2 3

)

Matrix A correspond to points

a b

c

e

f

d
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The set of circuits of the corresponding affine oriented matroid is

C(A) = {(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf ),

(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf )}.

For instance, (abd) correspond to the affine dependecy
3(−1, 0)t − 4(0, 0)t + 1(3, 0)t = (0, 0)t with 3− 4 + 1 = 0.
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The circuits of an affine oriented matroid have a nice geometric
interpretation. They can be interprated as minimal Radon
partitions.

Indeed, given a circuit C , the convex hull of the positive elements
of C intersect the convex hull of the negative elements of C .

Exemple From the circuit (abd) we see that the point b lies in the
segment [a, b] and from circuit (abef ) the segment [a, e] intersect
the segment [b, f ] (in the affine real espace).
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We can check that the oriented matroid obtained form K4 with the
orientation illustrated below has the same set of circuits that M(A)

e

a

f

b d
c

They are isomorphic.
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Let us consider the oriented matroid −dM(A) obtained by
reorienting element d of M(A). The set of circuits of −dM(A) is :

C = {(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf ),

(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf )}.
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• −dM(A) is a graphic oriented matroid since it can be obtained
by changing the orientation of the edge d .

• Moreover −dM(A) correspond to the affine oriented matroid
illustrated as before under the permutation
σ(a) = b, σ(b) = a, σ(c) = c , σ(d) = d , σ(e) = f , σ(f ) = e.
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Oriented Matroids



Minors

(Deletion) Let M = (E , C) be an oriented matroid and let F ⊂ E .
Then,

C′ = {X ∈ C : X ⊆ F}

the set of circuits in M contained in F , is the set of circuits of an
oriented matroid in F .

This oriented matroid is called a sub-matroid induced by F , and
denoted by M|F
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Minors

(Contraction) Let M = (E , C) be an oriented matroid and let
F ⊂ E . Then,

Min({X |F : X ∈ C})

the set of non-empty intersections, minimal by inclusion of the
circuits of M with F , is the set of circuits of an oriented matroid in
F .

This oriented matroid is called a contraction of M over F , and it is
denoted by M/F
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Duality

Two signed sets X et Y are said orthogonal, denoted by X ⊥ Y , if
either X ∩ Y = ∅ or if X |X∩Y and Y |X∩Y are neither opposite nor
equal, that is, there exists e, f ∈ X ∩ Y such that
X (e)Y (e) = −X (f )Y (f ).

Let M = (E , C) be an oriented matroid, then

(i) there exists a unique signature of C∗ the cocircuits of M such
that

(⊥) X ⊥ Y pour tout X ∈ C et Y ∈ C∗.

(ii) The collection C∗ is the set of circuits of an oriented matroid

over E , denoted by M∗ and called dual (or orthogonal) of M.

(iiii) We have M∗∗ = M.
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Geometric interpretation of cocircuits

Let E be a set of vectors generating IRd and let M = (E , C) be the
oriented matroid of rank r of linear dependencies of E .

Let H be a hyperplane of M, i.e., a closed set of E generating a
hyperplane in IRd . We recall that D = E \ H is a cocircuit of M.

Let h be the linear function in IRd such that kernel(h) is H
(unique up to scaling).

The signature of D in M∗ is given by

D+ = {e ∈ D : h(e) > 0} and D− = {e ∈ D : h(e) < 0}.

J.L. Raḿırez Alfonśın IMAG, Université de Montpellier
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Let V = {a, b, c , e, f } be the vectors given in the following matrix

a c f b e

A′ =

 1 0 0 1 1
0 1 0 1 0
0 0 1 0 1



corresponding to vectors

b

f

1

e

1

a

1

c
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The set of circuits of M(A′) is given by M(A) \ d where A is the
previous matrix.

The vector configuration of the dual space V is given by the
columns of

a⊥ c⊥ f ⊥ b⊥ e⊥

A′⊥ =

(
−1 −1 0 1 0
−1 0 −1 0 1

)
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We thus have that minimal dependencies among the columns of
A′⊥ are :

C(A′⊥) = C∗(A′) = {a⊥e⊥b⊥, a⊥e⊥c⊥, a⊥f ⊥b⊥, a⊥f ⊥c⊥, b⊥c⊥, e⊥f ⊥,
a⊥e⊥b⊥, a⊥e⊥c⊥, a⊥f ⊥b⊥, a⊥

⊥
c⊥, b⊥c⊥, e⊥f ⊥}.
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We notice that the complement of each cocircuit correspond to an
hyperplane of M(A).

Indeed, M(A⊥) is isomorphic to M(D ′) where D ′ is the oriented
graph dual to the planar signed graph D \ {d}, D ′ as follows

b

f

e

a

c

J.L. Raḿırez Alfonśın IMAG, Université de Montpellier

Oriented Matroids



We notice that the complement of each cocircuit correspond to an
hyperplane of M(A).

Indeed, M(A⊥) is isomorphic to M(D ′) where D ′ is the oriented
graph dual to the planar signed graph D \ {d}, D ′ as follows

b

f

e

a

c
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We can check that the circuits M(D ′) are the cocircuits of
M(D \ {d}) = M(A \ {d}) corresponding to hyperplanes of
M(D \ {d}).

Example The set {e, f } of D ′ is a minimal cut (and thus a
cocircuit) of D \ {d} corresponding to the hyperplane
E \ {e, f } = {a, b, c} of D \ {d}. The set {abc} is a hyperplane
since r({abc}) = 2 and cl({a, b, c}) = {a, b, c}.
Geometrically, the vectors {a, b, c} generate a hyperplane but they
do not form a base.
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Geometric interpretation of cocircuits : affine case

Let E be a configuration of points in the (d − 1)-affine space. Let
D be a cocircuit of the oriented matroid of affine linear
dependecies of E . The signature of D in M∗ is

D+ = D ∩ H+ et D− = D ∩ H−

where H+ and H− are the two open spaces in IRd−1 determined
by a hyperplan affine H containing E \ D.
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Bases orientations

A basis orientation of an oriented matroid M is an application from
the set of ordered bases of M to {−1,+1} verifying

(B1) χ est alternating

(P) (pivotage property) if (e, x2, . . . , xr ) and (f , x2, . . . , xr ) are two
ordered bases of M with e 6= f then,

χ(f , x2, . . . xr ) = −C (e)C (f )χ(e, x2, . . . , xr )

where C is one of the two circuits of M in (e, f , x2, . . . , xr ).
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Oriented Matroids



We notice that if χ is a basis orientation of M then M is
determinde only by M and χ.

Indeed, we can find the signs of the elements C ∈ C(M) from χ as
follows : Choose x1, . . . xr , xr+1 ∈ M such that C ⊂ {x1, . . . , xr+1}
and {x1, . . . , xr} is a base of M. Then,

C (xi ) = (−1)iχ(x1, . . . , xi−1, xi+1, . . . , xr+1) for any xi ∈ C .
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We can extend χ to an application defined on E r , r = r(M) to
{−1, 0,+1} by setting χ(x1, . . . , xr ) = 0 if {x1, . . . , xr} 6∈ B(M).

We also have the dual version for the pivotage property (P) :

(P∗) (pivotage dual property) if (e, x2, . . . , xr ) and (f , x2, . . . , xr )
are two ordered bases of M with e 6= f then,

χ(f , x2, . . . , xr ) = −D(e)D(f )χ(e, x2, . . . , xr )

where D is one of the two cocircuits of M complement to the
hyperplane generated by (x2, . . . , xr ) in M.
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Chirotope

A chirotope of rank r over E is an application
χ : E r −→ {−1, 0,+1} verifying

(CH0) χ 6= 0,

(CH1) χ is alternating, i.e.,
χ(xσ(1), . . . , xσ(r)) = sign(σ)χ(x1, . . . , xr ) for any x1, . . . , xr ∈ E r

and any permutation σ.

(CH2) for any x1, . . . , xr , y1, . . . , yr ∈ E r such that

χ(yi , x2, . . . , xr )·χ(y1, . . . , yi1 , x1, yi+1, . . . , yr ) ≥ 0 for any i = 1, . . . , r

then
χ(x1, . . . , xr ) · χ(y1, . . . , yr ) ≥ 0.
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If M is an oriented matroid of rank r of the linear dependencies of
a set of vectors E ⊂ IRr , then the corresponding chirotope χ is
given by

χ(x1, . . . , xr ) = sign(det(x1, . . . , xr ))

for any x1, . . . , xr ∈ E .

In this case the axiom (CH2) is an abtraction of the
Grassmann-Plücker relation for the determinant claiming that if
x1, . . . , xr , y1, . . . , yr ∈ IRr then

det(x1, . . . , xr ) · det(y1, . . . , yr ) =
r∑

i=1

det(yi , x2, . . . , xr ) · det(y1, . . . , yi1 , x1, yi+1, . . . , yr )
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Theorem Let r ≥ 1 be an integer and let E be a finite set. An
application

χ : E r −→ {−1, 0,+1}

is a basis orientation of an oriented matroid of rank r over E if and
only if χ is a chirotope.
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Contraction Let A ⊂ E . Recall that C/A = Min{C \ A : C ∈ C}.
Let a1, . . . , ar−s be a base of A in M. Then,

χ/A : (E \ A)s −→ {−1, 0,+1}
(x1, . . . , xs) 7−→ χ(x1, . . . , xs , a1, . . . , ar−s)

Deletion Let A ⊂ E and suppose that M \ A is of rank s < r .
Recall that C \ A = {C ∈ C : C ∩ A = ∅}. Let a1, . . . , ar−s ∈ A
such that E \ A ∪ {a1, . . . , ar−s} generate M. Then,

χ \ A : (E \ A)s −→ {−1, 0,+1}
(x1, . . . , xs) 7−→ χ(x1, . . . , xs , a1, . . . , ar−s)
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Reorientation Let A ⊂ E then the set of circuits of −AM is given
by −AC = {−AC : C ∈ C} where the signature of −AC is defined
by (−AC )(x) = (−1)|A∩{x}| · C (x). Then

−Aχ : E r −→ {−1, 0,+1}
(x1, . . . , xr ) 7−→ χ(x1, . . . , xr )(−1)|A∩{x1,...,xr}|

Duality Let E = {1, . . . , n}. Given a (n − r)-set (x1, . . . , xn−r ), we
write (x ′1, . . . , x

′
r ) for one permutation of E \ {x1, . . . , xn−r}. In

particular, {x1, . . . , xn−r , x
′
1, . . . , x

′
r} is a permutation of {1, . . . , n}

where its sign, denoted by sign{x1, . . . , xn−r , x
′
1, . . . , x

′
r}, is given

by the parity of the number of inversions of this set. Then,

χ∗ : En−r −→ {−1, 0,+1}
(x1, . . . , xn−r ) 7−→ χ(x ′1, . . . , x

′
r )sign{x1, . . . , xn−r , x

′
1, . . . , x

′
r}
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Topological Representation

A sphere S of Sd−1 is a pseudo-sphere if S is homeomorphic to
Sd−2 in a homeomorphisme of Sd−1. There are then two
connected components in Sd−1 \ S , each homeomorphic to a ball
of dimension d1 (called sides of S).

A finite collection {S1, . . . ,Sn} of pseudo-spheres in Sd−1 is an
arrangement of pseudo-spheres if

(PS1) For all A ⊆ E = {1, . . . , n} the set SA = ∩e∈ASe is a
topological sphere

(PS2) If SA 6⊆ Se for A ⊆ E , e ∈ E and S+
e ,S

−
e denote the two

sides of Se then SA ∩ Se is a pseudo-sphere of SA having as sides
SA ∩ S+

e and SA ∩ S−e .
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• The condition (PS1) allows SA = ∅ (we suppose that ∅ is a
(−1)-sphere).

• The arrangement is said essential if SE = ∅.
• We say that the arrangement is signed if for each pseudo-sphere
Se , e ∈ E it is choosen a positive and a negative side.
• Every essential arrangement of signed pseudo-sphere S partition
the topological (d − 1)-sphere in a complexe cellular Γ(S). Each
cell of Γ(S) is uniquely determined by a sign vector in {−, 0,+}E
which is the codification of its relative position relative according
to each pseudo-sphere Si . Conversely Γ(S) characterize S.
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Two arrangements (resp. signed arrangement) are equivalent if
they are the same up to a homomorphisme de Sd1 (resp. also the
homeorphisme preserve the signs). S is called realizable if there
exists arrangement of sphere S ′ such that Γ(S) is isomorphic to
Γ(S ′).

Theorem (Topological Representation)) A loop-free oriented
matroids of rank d + 1 (up to isomorphism) are in one-to-one
correspondence with arrangements of pseudospheres in Sd (up to
topological equivalence) or equivalently to affine arrangements of
pseudohyperplanes in Rd−1 (up to topological equivalence).
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Oriented Matroids



An arrangement of pseudo-lines is simple if three or more lines are
not concurrent.

a

a
b c

d

e

e

d

cb
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Acyclic Reorientations

Let M be an oriented matroid on E .

• There exists a bijection between the subsets A of E such that
−A M is acyclic and the regions in the corresponding topological
representation of M.

• The number of subsets A of E such that −A M are acyclic is
equals to t(M; 2, 0).

• The number of subsets A of E such that −A M are totally cyclic
is equals to t(M; 0, 2).
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