Oriented Matroids II

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

San Luis, Argentina February 2016

J.L. Ramírez Alfonsín Oriented Matroids II IMAG, Université de Montpellier

• Let M be the affine oriented matroid associated to a set of points in \mathbb{R}^d . If the points are in general position then M is uniform of rank r = d + 1.

IMAG, Université de Montpellier

• Let M be the affine oriented matroid associated to a set of points in \mathbb{R}^d . If the points are in general position then M is uniform of rank r = d + 1.

• (Cordovil and da Silvia) Let M be the affine oriented matroid associated to a set of points. Then, an acyclic reorientation of M correspond to a permissible projective transformation.

• Let M be the affine oriented matroid associated to a set of points in \mathbb{R}^d . If the points are in general position then M is uniform of rank r = d + 1.

• (Cordovil and da Silvia) Let M be the affine oriented matroid associated to a set of points. Then, an acyclic reorientation of M correspond to a permissible projective transformation.

• An oriented matroid *M* is called acyclic if it does not contain positive circuits.

• Let M be the affine oriented matroid associated to a set of points in \mathbb{R}^d . If the points are in general position then M is uniform of rank r = d + 1.

• (Cordovil and da Silvia) Let *M* be the affine oriented matroid associated to a set of points. Then, an acyclic reorientation of *M* correspond to a permissible projective transformation.

• An oriented matroid *M* is called acyclic if it does not contain positive circuits.

• Let *M* be an oriented matroid. We say that an element *e* of *M* is interior if there is a circuit $C = (C^+, C^-)$ of *M* with $C^+ = \{e\}$.

McMullen's problem

Problem Determine the largest integer n = f(d) such that for any given *n* points in general position in affine *d*-space \mathbb{R}^d there is a projective transformation mapping these points onto the vertices of a convex polytope.

McMullen's problem

Problem Determine the largest integer n = f(d) such that for any given *n* points in general position in affine *d*-space \mathbb{R}^d there is a projective transformation mapping these points onto the vertices of a convex polytope.

Oriented matroid version Determine the largest integer n = g(r)such that for any uniform rank r oriented matroid M there is an acyclic reorientation of M without interior elements.

(Larman) $2d + 1 \le f(d) \le (d + 1)^2$, $d \ge 2$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへの

IMAG, Université de Montpellier

(Larman) $2d + 1 \le f(d) \le (d + 1)^2$, $d \ge 2$. (Larman's conjecture) f(d) = 2d + 1 and showed the validity when d = 2, 3.

IMAG, Université de Montpellier

(Larman) $2d + 1 \le f(d) \le (d+1)^2$, $d \ge 2$.

(Larman's conjecture) f(d) = 2d + 1 and showed the validity when d = 2, 3.

(Las Vergnas) $f(d) \le (d+1)(d+2)/2$.

IMAG, Université de Montpellier

(Larman) $2d + 1 \le f(d) \le (d+1)^2$, $d \ge 2$.

(Larman's conjecture) f(d) = 2d + 1 and showed the validity when d = 2, 3.

(Las Vergnas) $f(d) \le (d+1)(d+2)/2$.

(Forge, Las Vergnas, Schuchert) Validity of conjecture when d = 4.

(Larman) $2d + 1 \le f(d) \le (d + 1)^2$, $d \ge 2$.

(Larman's conjecture) f(d) = 2d + 1 and showed the validity when d = 2, 3.

(Las Vergnas) $f(d) \le (d+1)(d+2)/2$.

(Forge, Las Vergnas, Schuchert) Validity of conjecture when d = 4. (R.A.) $f(d) \le 2d + \lfloor \frac{d+1}{2} \rfloor$, $d \ge 4$.

(Larman) $2d + 1 \le f(d) \le (d + 1)^2$, $d \ge 2$.

(Larman's conjecture) f(d) = 2d + 1 and showed the validity when d = 2, 3.

(Las Vergnas) $f(d) \le (d+1)(d+2)/2$.

(Forge, Las Vergnas, Schuchert) Validity of conjecture when d = 4. (R.A.) $f(d) \le 2d + \lfloor \frac{d+1}{2} \rfloor$, $d \ge 4$.

Strategy We contruct a representable oriented matroid m of rank $r \ge 3$ with $2(r-1) + \lfloor \frac{r}{2} \rfloor$ elements such that any acyclic reorientation of M has at least one interior element.

Lawrence oriented matroids

A Lawrence oriented matroid M of rank r on E is any uniform oriented matroid obtained as the union of r uniform oriented matroids M_1, \ldots, M_r of rank 1 on E.

Lawrence oriented matroids

A Lawrence oriented matroid M of rank r on E is any uniform oriented matroid obtained as the union of r uniform oriented matroids M_1, \ldots, M_r of rank 1 on E.

A chirotope χ correspond to a Lawrence oriented matroids M_A iff there exists a matrix $A = (a_{i,j})$ with entries from $\{+1, -1\}$ where the *i*-th row correspond to the chirotope of M_i such that

$$\chi(B)=\prod_{i=1}^r a_{i,j_i}$$

where $B = \{j_1 \leq \cdots \leq j_r\}$ is an ordered base.

J.L. Ramírez Alfonsín Oriented Matroids II IMAG, Université de Montpellier

Properties

• The coefficients $a_{i,j}$ with $i \ge j$ or $j - n \ge i - r$ do not play any role in the definition of M_A .

IMAG, Université de Montpellier

Image: A mathematical states and a mathem

Properties

• The coefficients $a_{i,j}$ with $i \ge j$ or $j - n \ge i - r$ do not play any role in the definition of M_A .

• The opposite chirotope $-\chi$ is obtained by inversing the sign of all the coefficients of a line of A.

Image: Image:

Properties

• The coefficients $a_{i,j}$ with $i \ge j$ or $j - n \ge i - r$ do not play any role in the definition of M_A .

• The opposite chirotope $-\chi$ is obtained by inversing the sign of all the coefficients of a line of A.

• The oriented matroid $-_c M$ is obtained by inversing the sign of all the coefficients of column c of A.

Chess board

Let $A = (a_{i,j})$, $1 \le i \le r, 1 \le j \le n$ be a matrix with entries from $\{+1, -1\}$. The chess board B[A] is a chess board of size $(r-1) \times (n-1)$ and a square is white if the product of its corresponding corners is +1, black otherwise.

Chess board

Let $A = (a_{i,j})$, $1 \le i \le r, 1 \le j \le n$ be a matrix with entries from $\{+1, -1\}$. The chess board B[A] is a chess board of size $(r-1) \times (n-1)$ and a square is white if the product of its corresponding corners is +1, black otherwise.

Observation The chess board is inviarant under reversing the signs of the coefficient of a given column.

Top and Bottom Travels

- (1) TT(BT) starts at $a_{1,1}$ (at $a_{r,n}$)
- (2) Suppose that *TT* (*BT*) arrives at $a_{i,j}$. Let s(s') be the minimum (maximal) integer $j < s \le n$ $(1 < s' \le j)$ such that $a_{i,j} = -a_{i,s}$ ($a_{i,j} = -a_{i,s'}$).
- (3) If s(s') does not exists then TT goes horizontally to $a_{i,n}$ and stops (BT goes horizontally to $a_{i,1}$ and stops)
- (4) else
 - (a) if $1 \le i \le r 1$ $(2 \le i \le r)$ then

TT goes horizontally to $a_{i,s}$ and then goes vertically to $a_{i+1,s}$ (*BT* goes horizontally to $a_{i,s'}$ and then goes vertically to $a_{i-1,s'}$)

(a) **else** TT goes horizontally to $a_{r,s}$ and stops (*BT* goes horizontally to $a_{1,s'}$ and stops)

Example of a Top Travel

IMAG, Université de Montpellier

æ

Lemma 1 Let M_A be a Lawrence oriented matroid and A the matrix associated $A = (a_{i,j})$ with $1 \le i \le r, \ 1 \le j \le n$ and entries from $\{+1, -1\}$. Then the following conditions are equivalent. (a) M_A is cyclic, (b) TT ends at $a_{r,s}$ for some $1 \le s < n$, (c) BT ends at $a_{1,s'}$ for some $1 < s \le n$.

We say that *TT* and *BT* are parallel at column *k* with $2 \le k \le n-1$ in *A* if *TT* = $(a_{1,1}, \ldots, a_{i,k-1}, a_{i,k}, a_{i,k+1}, \ldots)$ and either $BT = (a_{r,n}, \ldots, a_{i,k+1}, a_{i,k}, a_{i,k-1}, \ldots)$ or $BT = (a_{r,n}, \ldots, a_{i+1,k+1}, a_{i+1,k}, a_{i+1,k-1}, \ldots), 1 \le i \le r.$

We say that TT and BT are parallel at column k with $2 \le k \le n-1$ in A if $TT = (a_{1,1}, \ldots, a_{i,k-1}, a_{i,k}, a_{i,k+1}, \ldots)$ and either $BT = (a_{r,n}, ..., a_{i,k+1}, a_{i,k}, a_{i,k-1}, ...)$ or $BT = (a_{r,n}, \ldots, a_{i+1,k+1}, a_{i+1,k}, a_{i+1,k-1}, \ldots), 1 \le i \le r.$ Lemma 2 Let M_A be a Lawrence oriented matroid and A the matrix associated $A = (a_{i,j})$ with $1 \le i \le r$, $1 \le j \le n$ and entries from $\{+1, -1\}$. Then k is an interior element of M_A if and only if (a) $BT = (a_{r,n}, \ldots, a_{1,2}, a_{1,1})$ for k = 1, (b) $TT = (a_{1,1}, \dots, a_{r,n-1}, a_{r,n})$ for k = n, (c) TT and BT are parallel at k for $2 \le k \le n-1$.

IMAG, Université de Montpellier

4 D N 4 B N 4 B N 4

Let M_A be the Lawrence oriented matroid associated to the matrix A given below

 M_A is acyclic and 4, 5 and 6 are interior elements

IMAG, Université de Montpellier

A plain travel T on the entries of A is formed by horizontal and vertical mouvements such that T starts with $a_{1,1}, a_{1,2}$ and T cannot make two consecutive vertical mouvements.

IMAG, Université de Montpellier

A plain travel T on the entries of A is formed by horizontal and vertical mouvements such that T starts with $a_{1,1}, a_{1,2}$ and T cannot make two consecutive vertical mouvements.

Lemma 3 Let $A = (a_{i,j})$, $1 \le i \le r$, $1 \le j \le n$ be a matrix with entries from $\{+1, -1\}$. Then, there exists a natural bijection between the set of all plain travels of A and the set of all acyclic reorientations of M_A .

Construction

It is sufficient to contruct a matrix A of size $r \times 2(r-1) + \lfloor \frac{r}{2} \rfloor$, $r \ge 3$ such that for any given plain travel T of A the corresponding Top Travel in the matrix A' (obtained from A sucht that T is transformed in TT of A') has at least one interior elements.

Good matrix from a chess board

J.L. Ramírez Alfonsín Oriented Matroids II

-IMAG, Université de Montpellier

3

(日)