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Diophantine Frobenius Problem

Let aj,...,a, be positive integers with ged(ay, ..., a,) = 1, find
the largest integer (called the Frobenius number and denoted by
g(a1,...,an)) that is not representable as a nonnegative integer

combination of ay, ..., a,.
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Diophantine Frobenius Problem

Let aj,...,a, be positive integers with ged(ay, ..., a,) = 1, find
the largest integer (called the Frobenius number and denoted by
g(a1,...,an)) that is not representable as a nonnegative integer

combination of ay, ..., a,.
If a1 = 3 and a, = 8 then
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Diophantine Frobenius Problem

Let aj,...,a, be positive integers with ged(ay, ..., a,) = 1, find
the largest integer (called the Frobenius number and denoted by
g(a1,...,an)) that is not representable as a nonnegative integer

combination of ay, ..., a,.

If a1 = 3 and a, = 8 then

1234567 10 13141516 ------
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Diophantine Frobenius Problem

Let aj,...,a, be positive integers with ged(ay, ..., a,) = 1, find
the largest integer (called the Frobenius number and denoted by
g(a1,...,an)) that is not representable as a nonnegative integer
combination of ay, ..., a,.

If a1 = 3 and a, = 8 then
1234567 10 13141516 ------
So, g(3,8) = 13.
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Some results

Theorem g(ai,...,ap) exists and it is finite.
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Some results

Theorem g(ai,...,ap) exists and it is finite.

Theorem (Sylvester, 1882) g(a1,a2) = aiax — a1 — aa.
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Some results

Theorem g(ai,...,ap) exists and it is finite.
Theorem (Sylvester, 1882) g(a1,a2) = aiax — a1 — aa.

Theorem (R.A., 1996) Computing g(a1,...,an) is N'P-hard.
(under Turing reductions)
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Some results

Theorem g(ai,...,ap) exists and it is finite.
Theorem (Sylvester, 1882) g(a1,a2) = aiax — a1 — aa.

Theorem (R.A., 1996) Computing g(a1,...,an) is N'P-hard.
(under Turing reductions)

Proof (sketch).
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Some results

Theorem g(ai,...,ap) exists and it is finite.
Theorem (Sylvester, 1882) g(a1,a2) = aiax — a1 — aa.

Theorem (R.A., 1996) Computing g(a1,...,an) is N'P-hard.
(under Turing reductions)

Proof (sketch).

[IKP] Input: positive integers a1, ..., a, and t,
Question: do there exist integers x; > 0,

n
with 1 </ < nsuch that > x;a; = t7
i=1
It is known that [IKP] is NP-complete.
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Procedure

Find g(a1,...,an)
IF t > g(a1,...,an) THEN is answered affirmatively
ELSE
IF t = g(a1,...a,) THEN
is answered negatively

ELSE

Find g(31,...,3n,3n41), 3 =2a;,i=1,...,nand

any1 =2g(a1,...,an) + 1 (note that (31,...,3,,3,41) = 1)

Find g(§17 cv ey an, §n+1a §n+2)v 5n+2 = g(éla -+ s an, 5n+1) -2t
is answered affirmatively if and only if
g(§1, ceey 5,,+2) < g(§1, ceey 5,,+1)
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Forn=3
e Selmer and Bayer, 1978
e Rodseth, 1978
e Davison, 1994
e Scarf and Shallcross, 1993
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Forn=3
e Selmer and Bayer, 1978
e Rodseth, 1978
e Davison, 1994
e Scarf and Shallcross, 1993

For n > 4
e Heap and Lynn, 1964
e Wilf, 1978
e Nijenhuis, 1979
e Greenberg, 1980
e Killingbergto, 2000
e Einstein, Lichtblau, Strzebonski and Wagon, 2007
e Roune, 2008
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Kannan's method

Let P be a closed bounded convex set in R” and let L be a lattice
of dimension n also in R".
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Kannan's method

Let P be a closed bounded convex set in R” and let L be a lattice
of dimension n also in R".

The least positive real t so that tP 4 L equals R" is called the
covering radius of P with respect to L (denoted by u(P,L)).
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Kannan's method

Let P be a closed bounded convex set in R” and let L be a lattice
of dimension n also in R".

The least positive real t so that tP 4 L equals R" is called the
covering radius of P with respect to L (denoted by u(P,L)).

Theorem (Kannan, 1992) Let

L={(x1,...,xn—1)|X; integers and nil aix; =0 (mod a,)
and =
S={(x,...,%n—1)|x;i > 0 reals and ’il aix; < 1}.

Then, p(S,L) = g(a1,...,an) + a1 v,
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Example 1

Let aj, a» be positive integers with ged(ag, a2) = 1.
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Example 1

Let aj, a» be positive integers with ged(ag, a2) = 1.
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Example 1

Let aj, a» be positive integers with ged(ag, a2) = 1.

The minimum integer t such that tS covers the interval [0, b] is ab.
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Example 1

Let aj, a» be positive integers with ged(ag, a2) = 1.

The minimum integer t such that tS covers the interval [0, b] is ab.
Then, g(a,b) = u(S,L)—a—b=ab—a—b.
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Example 2

Let a1 = 3,a» =4 and a3 = 5.
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Example 2

Let a1 = 3,a» =4 and a3 = 5.

S

X1
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Example 2 cont ...

Notice that (14)S covers the plane while (13)S does not.

X, X
7 (o] 7
6 o 6 [e]
[e] S [e]
o 4 o o) 4 o
o 3 o o
2 o 2 o
)
° b N
/
0 *1 "/n [ *1
> AN.s 6 2 \1\ 5 6\U
Uncovered

gaps
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Example 2 cont ...

Notice that (14)S covers the plane while (13)S does not.

X, X,
7 (o] 7
6 o 6 o
[e] S [e]
o 4 o o 4 o
o 3 o o
\ 0 - o
o L N
/
0 *1 "/n [ *1
N5 6 2 \1\ 5 6\U
Uncovered

gaps

Then u(S, L) = 14 and thus g(3,4,5) = u(S,L) —3—4—-5=2.
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Algorithms

Theorem (Kannan, 1992) There is a polynomial time algorithm to
compute g(a1,...,a,) when n > 2 is fixed.

J. L. Ramirez Alfonsin Frobenius’ number, semigroups and Mabius function



Algorithms

Theorem (Kannan, 1992) There is a polynomial time algorithm to
compute g(a1,...,a,) when n > 2 is fixed.

Theorem (Fukshansky, Robins, 2005) Relate the Frobenius number
to a covering radius of a Euclidean ball with respect to a different
lattices.
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Algorithms

Theorem (Kannan, 1992) There is a polynomial time algorithm to
compute g(a1,...,a,) when n > 2 is fixed.

Theorem (Fukshansky, Robins, 2005) Relate the Frobenius number
to a covering radius of a Euclidean ball with respect to a different

lattices.

Einstein, Lichtblau, Strzebonski and Wagon (algebraic method)
Find g(a1, ..., as) involving 100-digit numbers in about one second
Find g(a1,...,a10) involving 10-digit numbers in two days
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Algorithms

Theorem (Kannan, 1992) There is a polynomial time algorithm to
compute g(a1,...,a,) when n > 2 is fixed.

Theorem (Fukshansky, Robins, 2005) Relate the Frobenius number
to a covering radius of a Euclidean ball with respect to a different

lattices.

Einstein, Lichtblau, Strzebonski and Wagon (algebraic method)
Find g(a1, ..., as) involving 100-digit numbers in about one second
Find g(a1,...,a10) involving 10-digit numbers in two days

Roune (algebraic method)
Find g(a1,. .., as) involving 10 000-digit numbers in few second
Find g(a1,...,a13) involving 10-digit numbers in few days
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Algorithms

Theorem (Kannan, 1992) There is a polynomial time algorithm to
compute g(a1,...,a,) when n > 2 is fixed.

Theorem (Fukshansky, Robins, 2005) Relate the Frobenius number
to a covering radius of a Euclidean ball with respect to a different

lattices.

Einstein, Lichtblau, Strzebonski and Wagon (algebraic method)
Find g(a1, ..., as) involving 100-digit numbers in about one second
Find g(a1,...,a10) involving 10-digit numbers in two days

Roune (algebraic method)
Find g(a1,. .., as) involving 10 000-digit numbers in few second
Find g(a1,...,a13) involving 10-digit numbers in few days

http://www.broune.com/frobby/
http://www.math.ruu.nl/people/beukers/frobenius/
http://cmup.fc.up.pt/cmup/mdelgado/numericalsgps/
http://reference.wolfram.com/mathematica/ref/FrobeniusNumber.html
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Applications

A semigroup S is called symmetric if SU (g — S) = Z.
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Applications

A semigroup S is called symmetric if SU (g — S) = Z.

(Bresinsky, 1979) Monomial curves

(Kunz, 1979, Herzog, 1970) Gorestein rings

(Apéry, 1945) Classification plane of algebraic branches
(Buchweitz, 1981) Weierstrass semigroups

(Pellikaan and Torres, 1999) Algebraic codes
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Shell-sort m
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Shell-sort method

3,2,7,98,115.2,6
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Shell-sort method

3,2,7,9,8,1,1,5,2,6 (increment sequence: 7,3,1)
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Shell-sort method

3,2,7,9,8,1,1,5,2,6 (increment sequence: 7,3,1)
7-sorted: 3,2,6,9,8,1,1,5,2,7
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Shell-sort method

3,2,7,9,8,1,1,5,2,6 (increment sequence: 7,3,1)
7-sorted: 3,2,6,9,8,1,1,5,2,7
3-sorted: 1,2,1,3,5,2,7,8,6,9
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Shell-sort method

3,2,7,9,8,1,1,5,2,6 (increment sequence: 7,3,1)
7-sorted: 3,2,6,9,8,1,1,5,2,7
3-sorted: 1,2,1,3,5,2,7,8,6,9
1-sorted: 1,1,2,2,3,5,6,7,8,9
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Shell-sort method

Lemme (Incerpi and Sedgewick, 1985) The number of steps
required to hj-sort a set on N integers that is already
hjt1 — hjyo —--- — h-sorted is

0 (Ng(hj-‘rla hj+27 < ht))

hj
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Shell-sort method

Lemme (Incerpi and Sedgewick, 1985) The number of steps
required to hj-sort a set on N integers that is already
hjt1 — hjyo —--- — h-sorted is

0 <Ng(hj+17 hj+27 < ht))

hj

Theorem (Incerpi, Sedgewick, 1985) The running time of
Shell-sort is O(N3/?) where N is the number of elements in the file
(on average and in worst case).

J. L. Ramirez Alfonsin Frobenius’ number, semigroups and Mabius function



Shell-sort method

Lemme (Incerpi and Sedgewick, 1985) The number of steps
required to hj-sort a set on N integers that is already
hjt1 — hjyo —--- — h-sorted is

0 <Ng(hj+17 hj+27 < ht))

hj

Theorem (Incerpi, Sedgewick, 1985) The running time of
Shell-sort is O(N3/?) where N is the number of elements in the file
(on average and in worst case).

Conjecture (Gonnet, 1984)The asymptotic growth of the average
case running time of Shell-sort is O(N log N loglog N) where N is
the number of elements in the file.
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Basics on posets

Let (P, <) be a locally finite poset, i.e,
@ the set P is partially ordered by <, and
o for every a,b € P the set {c € P|a < ¢ < b} is finite.
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Basics on posets

Let (P, <) be a locally finite poset, i.e,
@ the set P is partially ordered by <, and
o for every a,b € P the set {c € P|a < ¢ < b} is finite.

A chain of length / > 0 between a,b € P is
{a:ao<al<---<a/:b}C7?.

We denote by ¢/(a, b) the number of chains of length / between a
and b.
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Basics on posets

Let (P, <) be a locally finite poset, i.e,
@ the set P is partially ordered by <, and
o for every a,b € P the set {c € P|a < ¢ < b} is finite.

A chain of length / > 0 between a,b € P is
{a:ao<al<---<a/:b}C7?.

We denote by ¢/(a, b) the number of chains of length / between a
and b. The Moabius function pp is the function

up PXP—1Z

up(ab) = 3 (~1)ci(a, b)

>0
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Example

Consider the poset (N, |) of nonnegative integers ordered by
divisibility, i.e., a| b <= a divides b. Let us compute uy(2,36).
We observe that {c € N; 2| ¢ |36} = {2,4,6,12,18,36}. Chains

of
@ length 1 — {2,36}
{2,4,36}
{2,6,36}
o length 2 (2,12,36}
{2,18,36)
(2,4,12,36}
o length 3 {2,6,12,26}
{2,6,18,36}
Thus,

pn(2,36) = —c1(2,36) + c2(2,36) — ¢3(2,36) = —1 +4 — 3 =0.
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Mobius classical arithmetic function

Given n € N the Mabius arithmetic function p(n) is defined as

1 if n=1,
W(n) = (—1)% if n=py--- px with p; distincts primes,
f 10 otherwise i.e; n admits at least one square

factor bigger than one.
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Mobius classical arithmetic function

Given n € N the Mabius arithmetic function p(n) is defined as

1 if n=1,
W(n) = (—1)% if n=py--- px with p; distincts primes,
f 10 otherwise i.e; n admits at least one square

factor bigger than one.

1(2) = p(7) = =1, u(4) = (8) = 0, u(6) = 11(10) = 1.
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Mobius classical arithmetic function

Given n € N the Mabius arithmetic function p(n) is defined as

1 if n=1,
W(n) = (—1)% if n=py--- px with p; distincts primes,
f 10 otherwise i.e; n admits at least one square

factor bigger than one.

) = 1) = 18) = (6) = 0.46) = 100) =1
The inverse of the Riemann function ¢, s € C, Re(s) >
n)

C1(5)<+Zoionls>l [I A-p)= E“

n=1 p—prime
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Mobius classical arithmetic function

There are impressive results using p, for instance for an integer n

Pr(n do not contain a square factor ) = —
T
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Mobius classical arithmetic function

There are impressive results using p, for instance for an integer n

Pr(n do not contain a square factor ) = —
T
For (N, |) we have that for all a,b € N

(—=1)" if b/ais a product of r distinct primes,

pn(a, b) =
0 otherwise.

pni(2,36) = 0 because 36/2 = 18 =2 - 32
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Semigroup poset

Let S := (a1,...,an) C N™ denote the subsemigroup of N
generated by a1,...,a, € N7, ie.,

S:=(a1,...,an) ={x1a1+ -+ xpan|x1,...,xn € N}.
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Semigroup poset

Let S := (a1,...,an) C N™ denote the subsemigroup of N
generated by a1,...,a, € N7, ie.,

S:=(a1,...,an) ={x1a1+ -+ xpan|x1,...,xn € N}.

The semigroup S induces an partial order <s on N given by

x<gy<=y—x€S8.

We denote by ps the Mobius function associated to (N, <gs).
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Semigroup poset

Let S := (a1,...,a,) C N™ denote the subsemigroup of N™
generated by a1,...,a, € N7, ie.,

S:=(a1,...,an) ={x1a1+ -+ xpan|x1,...,xn € N}.

The semigroup S induces an partial order <s on N given by

x<gy<=y—x€S8.

We denote by ps the Mobius function associated to (N, <gs).

It is easy to check that us(x,y) =0if y — x ¢ N7, or
us(x,y) = pus(0,y — x) otherwise. Hence we shall only consider
the reduced Mobius function ps : N™ — 7Z defined by

us(x) == ps(0,x)  for all x € N™.
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Known results about s

Theorem (Deddens, 1979) For S = (a, b) C N where a,b € Z* are
relatively prime:

1 if x=0o0ra+ b (mod ab),
us(x) =< =1 if x=aor b (mod ab),
0 otherwise.
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Known results about s

Theorem (Deddens, 1979) For S = (a, b) C N where a,b € Z* are
relatively prime:

1 if x=0o0ra+ b (mod ab),
us(x) =< =1 if x=aor b (mod ab),
0 otherwise.

Theorem (Chappelon, R.A., 2013) Provide a recursive formula for
ps when S = (a,a+d,...,a+ kd) C N for some a, k,d € Z+,
and a semi-explicit formula for S = (a,a+ d,a+ 2d) C N where

a,d € Z", ged{a,a+d,a+2d} =1 and ais even.
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Known results about s

Theorem (Deddens, 1979) For S = (a, b) C N where a,b € Z* are
relatively prime:

1 if x=0o0ra+ b (mod ab),
us(x) =< =1 if x=aor b (mod ab),
0 otherwise.

Theorem (Chappelon, R.A., 2013) Provide a recursive formula for
ps when S = (a,a+d,...,a+ kd) C N for some a, k,d € Z+,
and a semi-explicit formula for S = (a,a+ d,a+ 2d) C N where

a,d € Z", ged{a,a+d,a+2d} =1 and ais even.

Remark
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Hilbert series of a semigroup

Let S C N be a semigroup and let k be a field of characteristic 0.
A ring R is called affine semigroup ring associated to S if
R = k[S] is the subring of k[x1, ..., xn] with k-basis given by the

monomials x = x{' - - - x for each element A\ = (\1,...,\,) € S.

J. L. Ramirez Alfonsin Frobenius’ number, semigroups and Mabius function



Hilbert series of a semigroup

Let S C N be a semigroup and let k be a field of characteristic 0.
A ring R is called affine semigroup ring associated to S if
R = k[S] is the subring of k[x1, ..., xn] with k-basis given by the

monomials x = x{' - - - x for each element A\ = (\1,...,\,) € S.

The multivariate Hilbert series associated to S is

Hs(t) =) tP e Z[[tr, ..., tm]]

beS

where t? ;= tfl - tbm for each b = (by, ..., by) € N™.
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Hilbert series of a semigroup

Let S C N be a semigroup and let k be a field of characteristic 0.
A ring R is called affine semigroup ring associated to S if

R = k[S] is the subring of k[x1, ..., xn] with k-basis given by the
monomials x = x{' - - - x for each element A\ = (\1,...,\,) € S.

The multivariate Hilbert series associated to S is

Hs(t) =) tP e Z[[tr, ..., tm]]

beS

where t? ;= tfl - tbm for each b = (by, ..., by) € N™.
Hilbert has proved that

Hs(t) =

for some c1,...,¢c, € N7
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Hilbert series

If S =(a1,...,an) then Hs(t) = %

and g(a1,...,an) = degree of Hs(t).
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Hilbert series

If S =(a1,...,an) then Hs(t) = %

and g(a1,...,an) = degree of Hs(t).
The Apéry set of S for me Sis Ap(S;m) ={se€S|s—m¢S}.

J. L. Ramirez Alfonsin Frobenius’ number, semigroups and Mabius function



Hilbert series

If S =(a1,...,an) then Hs(t) = %

and g(a1,...,an) = degree of Hs(t).
The Apéry set of S for me Sis Ap(S;m) ={se€S|s—m¢S}.

1
S = Ap(S; m)+mZZo, Hs(t) = 1_ tm Z t"
wEApP(S;m)

J. L. Ramirez Alfonsin Frobenius’ number, semigroups and Mabius function



Hilbert series

If S = <31,. ..,a,,> then Hs(t) = %
and g(a1,...,an) = degree of Hs(t).
The Apéry set of S for me Sis Ap(S;m) ={se€S|s—m¢S}.

1
S = Ap(S; m)+mZZo, Hs(t) = 1_ tm Z t"
wEApP(S;m)

Theorem (R.A., Rodseth, 2008) For S = (a,a+ d,...,a+ kd, c)

Fo(art)(1 — PPy 4 Fy o, (a ) (P P) — P

Hs(t) = 1- )1 )1 k)1 19)

where s,, s, 11, Py, P,11 are some particular integers.
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Example 1

For S = (2,3) C N, we have that S = {0,2,3,4,5...}

Hs(t)= 1 + 2 + £ + t* + 5 +--
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Example 1

For S = (2,3) C N, we have that S = {0,2,3,4,5...}
Hs(t)= 1 + 2 + £ + t* + 5 +--
t>Hs(t) = 2 + o

Then, (1 — t?)Hs(t) =1+ t3, and
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Example 2

For S = N we have that

_ bm
=2 (b1, bm)enm Tt

—
—
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Mobius function via Hilbert series

Assume that one can write

>ben o t?
t) =
Hs(t) (I—ta)- - (1—t)
for some finite set A C N and some c1,...,c, € N7,
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Mobius function via Hilbert series

Assume that one can write

>ben o t?
t) =
Hs(t) (I—ta)- - (1—t)
for some finite set A C N and some c1,...,c, € N7,

Theorem 1 (Chappelon, Montejano, Garcia Marco, R.A., 2015)

>y ps(x —b)=0

beA

forall x & {d jcaci|AC{L, ... k}}.
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Example: S = (2, 3)

We know that,
o 1+8

Hs(t) 12
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Example: S = (2, 3)

We know that,
o 1+8

By we have that
pns(x) + ps(x —3) =0

for all x ¢ {0,2}.
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Example: S = (2, 3)

We know that, ,

1+t
t) = ——0.
Hs(t) -

By we have that
pns(x) + ps(x —3) =0
for all x ¢ {0,2}. It is evident that us(0) = 1 and a direct

computation yields us(2) = —1.

Hence,
1 if x=0or5 (mod 6),
ps(x) =< =1 if x=2 or 3 (mod 6),
0 otherwise.
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Mobius function via Hilbert series

We consider Gs the generating function of the Mobius function,

which is
gs(t) = Z ps(b) b

beNm
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Mobius function via Hilbert series

We consider Gs the generating function of the Mobius function,

which is
gs(t) = Z ps(b) b

beNm

Theorem 2 (Chappelon, Montejano, Garcia Marco, R.A., 2015)

Hs(t) Gs(t) = 1.
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Example: § = N

We denote {ey,...,en} the canonical basis of N7, i.e.,
e1 =(1,0,...,0),...,em =(0,...,0,1) € N™.

)
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Example: § = N

We denote {ey,...,en} the canonical basis of N7, i.e.,
e1=(1,0,...,0),...,em=(0,...,0,1) € N™.
We know that

1

() = Ty a6
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Example: § = N

We denote {ey,...,en} the canonical basis of N7, i.e.,
e1=(1,0,...,0),...,em=(0,...,0,1) € N™.
We know that

1

() = Ty a6

By we have that

Gum(t) =(1—t1)--- (1 —ty) = Z (—1) /A tZieacr

AC{1,...,m}
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Example: S = N7

We denote {ey,...,en} the canonical basis of N7, i.e.,
e1=(1,0,...,0),...,em=(0,...,0,1) € N™.
We know that

1

M) = G i)

By we have that

Gum(t) =(1—t1)--- (1 —ty) = Z (—1) /A tZieacr
Ac{1,...,m}

Hence,

()AL if x = Y ica€i for some AC {1,...,m}

0 otherwise.
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Explicit formulas for ps

A semigroup & C N is said to be a semigroup with a unique Betti
element b € N7 if Is is generated by S-homogeneous polynomials
of S-degree b.
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Explicit formulas for ps

A semigroup & C N is said to be a semigroup with a unique Betti
element b € N7 if Is is generated by S-homogeneous polynomials
of S-degree b.

Theorem (Chappelon, Montejano, Garcia Marco, R.A., 2015) Set
r:=dim(Q{ai,...,an}). Then,

t

us(x) = Z (—1)A (kj + nl: r— 1)7

j=1 /

ifx:zieAla,-—i—klb:---:ZieAta,-—i—ktbforkl,...,ktEN.
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Application

Let D = {d,...,dn} be a finite set and let us consider (P, C),
the poset of all multisets of D ordered by inclusion.
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Application

Let D = {d,...,dn} be a finite set and let us consider (P, C),
the poset of all multisets of D ordered by inclusion.

For the semigroup & = N, we consider the map

v (P,C) — (N <ym)
A = (ma(di),...,ma(dm)),

where mu(d;) denotes the number of times that d; belongs to A.
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Application

Let D = {d,...,dn} be a finite set and let us consider (P, C),
the poset of all multisets of D ordered by inclusion.

For the semigroup & = N, we consider the map
7/} : (P> C) — (va SN”’)
A — (mA(dl),...,mA(dm)),
where mu(d;) denotes the number of times that d; belongs to A.

1) is an poset isomorphism (an order preserving and order reflecting
bijection).
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Application

Let D = {d,...,dn} be a finite set and let us consider (P, C),
the poset of all multisets of D ordered by inclusion.

For the semigroup & = N, we consider the map
7/} : (P> C) — (va SN”’)
A — (mA(dl),...,mA(dm)),
where mu(d;) denotes the number of times that d; belongs to A.

1) is an poset isomorphism (an order preserving and order reflecting
bijection). Hence,

pp(A, B) = pnm(¥(A),¥(B)),
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Application

Let D = {d,...,dn} be a finite set and let us consider (P, C),
the poset of all multisets of D ordered by inclusion.

For the semigroup & = N, we consider the map
7/} : (P> C) — (va SN”’)
A — (mA(dl),...,mA(dm)),
where mu(d;) denotes the number of times that d; belongs to A.

1) is an poset isomorphism (an order preserving and order reflecting
bijection). Hence,

pp(A, B) = pnm(¥(A),¥(B)),

We can obtain the formula for pp by means of pym.

(-1)B\ALif AC Band B\ A'is a set,
pp(A, B) =
0 otherwise.
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Application more

Let p1,..., pm be m distinct prime numbers, and consider

N,, ;:{p?l--~pg,m|0q,...,(lmEN}CN-
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Application more

Let p1,..., pm be m distinct prime numbers, and consider
Np = {p* --pp"|ai,...,am e N} CN.

Let us consider the poset (N,
divisibility.

), i.e., Ny, partially ordered by
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Application more

Let p1,..., pm be m distinct prime numbers, and consider
Np = {p* --pp"|ai,...,am e N} CN.

Let us consider the poset (N,
divisibility.

), i.e., Ny, partially ordered by

For the semigroup & = N, we consider the order isomorphism

( (Nm,[) — (N7, <nm)
piteoepar = (o, am).
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Application more

Let p1,..., pm be m distinct prime numbers, and consider
Np = {p* --pp"|ai,...,am e N} CN.

Let us consider the poset (N, |), i.e., Np, partially ordered by
divisibility.
For the semigroup & = N, we consider the order isomorphism
o (Nm,[) — (N7, <nm)
piteoepar = (o, am).

Hence, un,, (a, b) = punm(1(a),1(b)), and we can recover the
formula for puy, by means of fiym.

(=1)" if b/ais a product of r distinct primes,
N, (2, b) =
0 otherwise.
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