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Diophantine Frobenius Problem

Let a1, . . . , an be positive integers with gcd(a1, . . . , an) = 1, find
the largest integer (called the Frobenius number and denoted by
g(a1, . . . , an)) that is not representable as a nonnegative integer
combination of a1, . . . , an.

Example: If a1 = 3 and a2 = 8 then

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · · · · ·

So, g(3, 8) = 13.
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Some results

Theorem g(a1, . . . , an) exists and it is finite.

Theorem (Sylvester, 1882) g(a1, a2) = a1a2 − a1 − a2.

Theorem (R.A., 1996) Computing g(a1, . . . , an) is NP-hard.
(under Turing reductions)

Proof (sketch).

[IKP] Input: positive integers a1, . . . , an and t,

Question: do there exist integers xi ≥ 0,

with 1 ≤ i ≤ n such that
n∑

i=1
xiai = t?

It is known that [IKP] is NP-complete.
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Some results

Theorem g(a1, . . . , an) exists and it is finite.

Theorem (Sylvester, 1882) g(a1, a2) = a1a2 − a1 − a2.

Theorem (R.A., 1996) Computing g(a1, . . . , an) is NP-hard.
(under Turing reductions)

Proof (sketch).

[IKP] Input: positive integers a1, . . . , an and t,

Question: do there exist integers xi ≥ 0,

with 1 ≤ i ≤ n such that
n∑

i=1
xiai = t?

It is known that [IKP] is NP-complete.
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Procedure

Find g(a1, . . . , an)
if t > g(a1, . . . , an) then IKP is answered affirmatively
else
if t = g(a1, . . . an) then

IKP is answered negatively
else

Find g(ā1, . . . , ān, ān+1), āi = 2ai , i = 1, . . . , n and
ān+1 = 2g(a1, . . . , an) + 1 (note that (ā1, . . . , ān, ān+1) = 1)
Find g(ā1, . . . , ān, ān+1, ān+2), ān+2 = g(ā1, . . . , ān, ān+1)− 2t
IKP is answered affirmatively if and only if
g(ā1, . . . , ān+2) < g(ā1, . . . , ān+1)
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Methods

For n = 3
• Selmer and Bayer, 1978
• Rödseth, 1978
• Davison, 1994
• Scarf and Shallcross, 1993

For n ≥ 4
• Heap and Lynn, 1964
• Wilf, 1978
• Nijenhuis, 1979
• Greenberg, 1980
• Killingbergto, 2000
• Einstein, Lichtblau, Strzebonski and Wagon, 2007
• Roune, 2008
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Kannan’s method

Let P be a closed bounded convex set in Rn and let L be a lattice
of dimension n also in Rn.

The least positive real t so that tP + L equals Rn is called the
covering radius of P with respect to L (denoted by µ(P, L)).

Theorem (Kannan, 1992) Let

L = {(x1, . . . , xn−1)|xi integers and
n−1∑
i=1

aixi ≡ 0 (mod an)

and

S = {(x1, . . . , xn−1)|xi ≥ 0 reals and
n−1∑
i=1

aixi ≤ 1}.

Then, µ(S , L) = g(a1, . . . , an) + a1 + · · ·+ an.
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Example 1

Let a1, a2 be positive integers with gcd(a1, a2) = 1.

S

0

1/a

b 2b 3b

The minimum integer t such that tS covers the interval [0, b] is ab.
Then, g(a, b) = µ(S , L)− a− b = ab − a− b.
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Example 1

Let a1, a2 be positive integers with gcd(a1, a2) = 1.

S

0

1/a

b 2b 3b

The minimum integer t such that tS covers the interval [0, b] is ab.
Then, g(a, b) = µ(S , L)− a− b = ab − a− b.
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Example 2

Let a1 = 3, a2 = 4 and a3 = 5.

0 1 2 3 4 5 6 7
x1

2x

7

6

5

3

4

2

1
S
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J. L. Raḿırez Alfonśın Frobenius’ number, semigroups and Möbius function



Example 2 cont ...

Notice that (14)S covers the plane while (13)S does not.

x2

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7
x1x1

76543210

1

2

3

4

5

6

7

x2

Uncovered
gaps

Then µ(S , L) = 14 and thus g(3, 4, 5) = µ(S , L)− 3− 4− 5 = 2.
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Algorithms

Theorem (Kannan, 1992) There is a polynomial time algorithm to
compute g(a1, . . . , an) when n ≥ 2 is fixed.

Theorem (Fukshansky, Robins, 2005) Relate the Frobenius number
to a covering radius of a Euclidean ball with respect to a different
lattices.

Einstein, Lichtblau, Strzebonski and Wagon (algebraic method)
Find g(a1, . . . , a4) involving 100-digit numbers in about one second
Find g(a1, . . . , a10) involving 10-digit numbers in two days

Roune (algebraic method)
Find g(a1, . . . , a4) involving 10 000-digit numbers in few second
Find g(a1, . . . , a13) involving 10-digit numbers in few days

Packages
http://www.broune.com/frobby/

http://www.math.ruu.nl/people/beukers/frobenius/

http://cmup.fc.up.pt/cmup/mdelgado/numericalsgps/

http://reference.wolfram.com/mathematica/ref/FrobeniusNumber.html
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Algorithms

Theorem (Kannan, 1992) There is a polynomial time algorithm to
compute g(a1, . . . , an) when n ≥ 2 is fixed.

Theorem (Fukshansky, Robins, 2005) Relate the Frobenius number
to a covering radius of a Euclidean ball with respect to a different
lattices.

Einstein, Lichtblau, Strzebonski and Wagon (algebraic method)
Find g(a1, . . . , a4) involving 100-digit numbers in about one second
Find g(a1, . . . , a10) involving 10-digit numbers in two days

Roune (algebraic method)
Find g(a1, . . . , a4) involving 10 000-digit numbers in few second
Find g(a1, . . . , a13) involving 10-digit numbers in few days

Packages
http://www.broune.com/frobby/

http://www.math.ruu.nl/people/beukers/frobenius/

http://cmup.fc.up.pt/cmup/mdelgado/numericalsgps/

http://reference.wolfram.com/mathematica/ref/FrobeniusNumber.html
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Applications

A semigroup S is called symmetric if S ∪ (g − S) = Z.

(Bresinsky, 1979) Monomial curves
(Kunz, 1979, Herzog, 1970) Gorestein rings
(Apéry, 1945) Classification plane of algebraic branches
(Buchweitz, 1981) Weierstrass semigroups
(Pellikaan and Torres, 1999) Algebraic codes
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Shell-sort method

3,2,7,9,8,1,1,5,2,6 (increment sequence: 7,3,1)

7-sorted: 3,2,6,9,8,1,1,5,2,7

3-sorted: 1,2,1,3,5,2,7,8,6,9

1-sorted: 1,1,2,2,3,5,6,7,8,9
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J. L. Raḿırez Alfonśın Frobenius’ number, semigroups and Möbius function
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Shell-sort method

Lemme (Incerpi and Sedgewick, 1985) The number of steps
required to hj -sort a set on N integers that is already
hj+1 − hj+2 − · · · − ht-sorted is

O

(
Ng(hj+1, hj+2, . . . , ht)

hj

)

Theorem (Incerpi, Sedgewick, 1985) The running time of
Shell-sort is O(N3/2) where N is the number of elements in the file
(on average and in worst case).

Conjecture (Gonnet, 1984)The asymptotic growth of the average
case running time of Shell-sort is O(N logN log logN) where N is
the number of elements in the file.
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Basics on posets

Let (P,≤) be a locally finite poset, i.e,

the set P is partially ordered by ≤, and

for every a, b ∈ P the set {c ∈ P | a ≤ c ≤ b} is finite.

A chain of length l ≥ 0 between a, b ∈ P is

{a = a0 < a1 < · · · < al = b} ⊂ P.

We denote by cl(a, b) the number of chains of length l between a
and b. The Möbius function µP is the function

µP : P × P −→ Z

µP(a, b) =
∑
l≥0

(−1)lcl(a, b)
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µP(a, b) =
∑
l≥0

(−1)lcl(a, b)
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Example

Consider the poset (N, | ) of nonnegative integers ordered by
divisibility, i.e., a | b ⇐⇒ a divides b. Let us compute µN(2, 36).
We observe that {c ∈ N; 2 | c | 36} = {2, 4, 6, 12, 18, 36}. Chains
of

length 1 → {2, 36}

length 2


{2, 4, 36}
{2, 6, 36}
{2, 12, 36}
{2, 18, 36}

length 3


{2, 4, 12, 36}
{2, 6, 12, 26}
{2, 6, 18, 36}

2

64

12 18

36

Thus,
µN(2, 36) = −c1(2, 36) + c2(2, 36)− c3(2, 36) = −1 + 4− 3 = 0.
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Möbius classical arithmetic function

Given n ∈ N the Möbius arithmetic function µ(n) is defined as

µ(n) =


1 if n = 1,
(−1)k if n = p1 · · · pk with pi distincts primes,
0 otherwise i.e; n admits at least one square

factor bigger than one.

Example : µ(2) = µ(7) = −1, µ(4) = µ(8) = 0, µ(6) = µ(10) = 1.

The inverse of the Riemann function ζ, s ∈ C,Re(s) > 0

ζ−1(s) =

(
+∞∑
n=1

1
ns

)−1

=
∏

p−prime
(1− p−1) =

+∞∑
n=1

µ(n)
n2 .
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Möbius classical arithmetic function

There are impressive results using µ, for instance for an integer n

Pr(n do not contain a square factor ) =
6

π2

For (N, | ) we have that for all a, b ∈ N

µN(a, b) =


(−1)r if b/a is a product of r distinct primes,

0 otherwise.

µN(2, 36) = 0 because 36/2 = 18 = 2 · 32
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Semigroup poset

Let S := 〈a1, . . . , an〉 ⊂ Nm denote the subsemigroup of Nm

generated by a1, . . . , an ∈ Nm, i.e.,

S := 〈a1, . . . , an〉 = {x1a1 + · · ·+ xnan | x1, . . . , xn ∈ N}.

The semigroup S induces an partial order ≤S on Nm given by

x ≤S y ⇐⇒ y − x ∈ S.

We denote by µS the Möbius function associated to (Nm,≤S).

It is easy to check that µS(x , y) = 0 if y − x /∈ Nm, or
µS(x , y) = µS(0, y − x) otherwise. Hence we shall only consider
the reduced Möbius function µS : Nm −→ Z defined by

µS(x) := µS(0, x) for all x ∈ Nm.
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J. L. Raḿırez Alfonśın Frobenius’ number, semigroups and Möbius function



Known results about µS

Theorem (Deddens, 1979) For S = 〈a, b〉 ⊂ N where a, b ∈ Z+ are
relatively prime:

µS(x) =


1 if x ≡ 0 or a + b (mod ab),
−1 if x ≡ a or b (mod ab),

0 otherwise.

Theorem (Chappelon, R.A., 2013) Provide a recursive formula for
µS when S = 〈a, a + d , . . . , a + kd〉 ⊂ N for some a, k , d ∈ Z+,
and a semi-explicit formula for S = 〈a, a + d , a + 2d〉 ⊂ N where

a, d ∈ Z+, gcd{a, a + d , a + 2d} = 1 and a is even.

Remark In both papers the authors approach the problem by a
thorough study of the intrinsic properties of each semigroup.
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Hilbert series of a semigroup

Let S ⊂ Nm be a semigroup and let k be a field of characteristic 0.
A ring R is called affine semigroup ring associated to S if
R = k[S] is the subring of k[x1, . . . , xn] with k-basis given by the
monomials xλ = xλ1

1 · · · xλnn for each element λ = (λ1, . . . , λn) ∈ S.

The multivariate Hilbert series associated to S is

HS(t) :=
∑
b∈S

tb ∈ Z[[t1, . . . , tm]]

where tb := tb1
1 · · · tbmm for each b = (b1, . . . , bm) ∈ Nm.

Hilbert has proved that

HS(t) =
Q(t)

(1− tc1) · · · (1− tck )

for some c1, . . . , ck ∈ Nm
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Hilbert series

If S = 〈a1, . . . , an〉 then HS(t) = Q(t)
(1−ta1 )···(1−tan )

and g(a1, . . . , an) = degree of HS(t).

The Apéry set of S for m ∈ S is Ap(S;m) = {s ∈ S | s −m 6∈ S}.

S = Ap(S;m) + mZ≥0, HS(t) =
1

1− tm

∑
w∈Ap(S;m)

tw

Theorem (R.A., Rödseth, 2008) For S = 〈a, a + d , . . . , a + kd , c〉

HS(t) =
Fsv (a; t)(1− tc(Pv+1−Pv )) + Fsv−sv+1(a; t)(tc(Pv+1−Pv ) − tcPv+1)

(1− ta)(1− td)(1− ta+kd)(1− tc)

where sv , sv+1,Pv ,Pv+1 are some particular integers.
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Theorem (R.A., Rödseth, 2008) For S = 〈a, a + d , . . . , a + kd , c〉

HS(t) =
Fsv (a; t)(1− tc(Pv+1−Pv )) + Fsv−sv+1(a; t)(tc(Pv+1−Pv ) − tcPv+1)

(1− ta)(1− td)(1− ta+kd)(1− tc)

where sv , sv+1,Pv ,Pv+1 are some particular integers.
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Example 1

For S = 〈2, 3〉 ⊂ N, we have that S = {0, 2, 3, 4, 5 . . .}

HS(t) = 1 + t2 + t3 + t4 + t5 + · · ·

t2HS(t) = t2 + t4 + t5 + · · ·

Then, (1− t2)HS(t) = 1 + t3, and

HS(t) =
1 + t3

1− t2
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Example 2

For S = Nm, we have that

HS(t) =
∑

b∈Nm tb

=
∑

(b1,...,bm)∈Nm tb1
1 · · · tbmm

= (1 + t1 + t2
1 + · · · ) · · · (1 + tm + t2

m + · · · )
= 1

(1−t1) · · ·
1

(1−tm)

= 1
(1−t1)···(1−tm) .
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Möbius function via Hilbert series

Assume that one can write

HS(t) =

∑
b∈∆ fb tb

(1− tc1) · · · (1− tck )

for some finite set ∆ ⊂ Nm and some c1, . . . , ck ∈ Nm.

Theorem 1 (Chappelon, Montejano, Garcia Marco, R.A., 2015)∑
b∈∆

fb µS(x − b) = 0

for all x /∈ {
∑

i∈A ci |A ⊂ {1, . . . , k}}.
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Example: S = 〈2, 3〉

We know that,

HS(t) =
1 + t3

1− t2
.

By Theorem 1 we have that

µS(x) + µS(x − 3) = 0

for all x /∈ {0, 2}. It is evident that µS(0) = 1 and a direct

computation yields µS(2) = −1.

Hence,

µS(x) =


1 if x ≡ 0 or 5 (mod 6),
−1 if x ≡ 2 or 3 (mod 6),

0 otherwise.
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Möbius function via Hilbert series

We consider GS the generating function of the Möbius function,
which is

GS(t) :=
∑
b∈Nm

µS(b) tb.

Theorem 2 (Chappelon, Montejano, Garcia Marco, R.A., 2015)

HS(t) GS(t) = 1.
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Example: S = Nm

We denote {e1, . . . , em} the canonical basis of Nm, i.e.,
e1 = (1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1) ∈ Nm.

We know that

HNm(t) =
1

(1− t1) · · · (1− tm)

By Theorem 2 we have that

GNm(t) = (1− t1) · · · (1− tm) =
∑

A⊂{1,...,m}

(−1)|A| t
∑

i∈A ei .

Hence,

µNm(x) =


(−1)|A| if x =

∑
i∈A ei for some A ⊂ {1, . . . ,m}

0 otherwise.
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Explicit formulas for µS

A semigroup S ⊂ Nm is said to be a semigroup with a unique Betti
element b ∈ Nm if IS is generated by S-homogeneous polynomials
of S-degree b.

Theorem (Chappelon, Montejano, Garcia Marco, R.A., 2015) Set
r := dim(Q{a1, . . . , an}). Then,

µS(x) =
t∑

j=1

(−1)|Aj |
(
kj + n − r − 1

kj

)
,

if x =
∑

i∈A1
ai + k1 b = · · · =

∑
i∈At
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J. L. Raḿırez Alfonśın Frobenius’ number, semigroups and Möbius function



Application

Let D = {d1, . . . , dm} be a finite set and let us consider (P,⊂),
the poset of all multisets of D ordered by inclusion.

For the semigroup S = Nm, we consider the map

ψ : (P,⊂) −→ (Nm,≤Nm)
A 7→ (mA(d1), . . . ,mA(dm)),

where mA(di ) denotes the number of times that di belongs to A.

ψ is an poset isomorphism (an order preserving and order reflecting
bijection). Hence,

µP(A,B) = µNm(ψ(A), ψ(B)),

We can obtain the formula for µP by means of µNm .

µP(A,B) =


(−1)|B\A| if A ⊂ B and B \ A is a set,

0 otherwise.
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J. L. Raḿırez Alfonśın Frobenius’ number, semigroups and Möbius function



Application more

Let p1, . . . , pm be m distinct prime numbers, and consider

Nm := {pα1
1 · · · p

αm
m |α1, . . . , αm ∈ N} ⊂ N.

Let us consider the poset (Nm, |), i.e., Nm partially ordered by
divisibility.

For the semigroup S = Nm, we consider the order isomorphism

ψ : (Nm, |) −→ (Nm,≤Nm)
pα1

1 · · · pαm
m 7→ (α1, . . . , αm).

Hence, µNm(a, b) = µNm(ψ(a), ψ(b)), and we can recover the
formula for µNm by means of µNm .

µNm(a, b) =


(−1)r if b/a is a product of r distinct primes,

0 otherwise.
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