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I3M, Université Montpellier 2
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Independents

A matroid M is an ordered pair (E , I) where E is a finite set
(E = {1, . . . , n}) and I is a family of subsets of E verifying the
following conditions :

(I1) ∅ ∈ I,

(I2) If I ∈ I and I ′ ⊂ I then I ′ ∈ I,

(I3) If I1, I2 ∈ I and |I1| < |I2| then there exists e ∈ I2\I1 such that
I1 ∪ e ∈ I.

The members in I are called the independents of M. A subset in E
not belonging to I is called dependent.
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Representable Matroids

Theorem (Whitney 1935) Let {e1, . . . , en} a set of columns
(vectors) of a matrix with coefficients in a field F. Let I be the
family of subsets {i1, . . . , im} ⊆ {1, . . . , n} = E such that the
columns {ei1 , . . . , eim} are linearly independent in F. Then, (E , I)
is a matroid.

Proof : (I1) et (I2) are trivial.
(I3)] Let I ′1, I

′
2 ∈ I such that the corresponding columns, say I1 et

I2, are linearly independent with |I1| < |I2|.
By contradiction, suppose that I1 ∪ e is linearly dependent for any
e ∈ I2\I1. Let W the space generated by I1 and I2.
On one hand, dim(W ) ≥ |I2|, on the other hand W is contained in
the space generated by I1.

|I2| ≤ dim(W ) ≤ |I1| < |I2| !!!
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Representable Matroids

Let A be the following matrix with coefficients in R.

A =
1 2 3 4 5(
1 0 0 1 1
0 1 0 0 1

)
{∅, {1}, {2}, {4}, {4}, {5}, {1, 2}, {1, 5}, {2, 4}, {2, 5}, {4, 5}} ⊆ I(M)

A matroid obtained form a matrix A with coefficients in F is
denoted by M(A) and is called representable over F or
F-representable.
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Circuits

A subset X ⊆ E is said to be minimal dependent if any proper
subset of X is independent. A minimal dependent set of matroid
M is called circuit of M.
We denote by C the set of circuits of a matroid.

C is the set of circuits of a matrid on E if and only if C verifies the
following properties :

(C1) ∅ 6∈ C,

(C2) C1,C2 ∈ C and C1 ⊆ C2 then C1 = C2,

(C3) (elimination property) If C1,C2 ∈ C,C1 6= C2 and e ∈ C1 ∩ C2

then there exists C3 ∈ C such that C3 ⊆ {C1 ∪ C2}\{e}.
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Graphic Matroid

Let G = (V ,E ) be a graph. A cycle in G is a closed walk without
repeated vertices.

Theorem The set of cycles in a graph

G = (V ,E ) is the set of circuits of a matroid on E .

This matroid is denoted by M(G ) and called graphic.

Proof : Verify (C1), (C2) and (C3).

A subset of edges I ⊂ {e1, . . . , en} of G is independent if the
graph induced by I does not contain a cycle.
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Graphic Matroid

3e e

e

e

e

2
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It can be checked that M(G ) is isomorphic to M(A) (under the

bijection ei → i).

A =
1 2 3 4 5(
1 0 0 1 1
0 1 0 0 1

)
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Graphic Matroid

Theorem A graphic matroid is always representable over R.

Proof (idea) Let G = (V ,E ) be an oriented graph and let
{xi , i ∈ V } be the canonical base of R.

Exercice : Verify that the graph G = (V ,E ) gives the same
matroid that the one given by the set of vectors ye = xi − xj where
e = (i , j) ∈ E .
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Graphic Matroid

G

a b

c d

1

2 3 4 A =

ya yb yc yd
1 1 0 0
−1 0 1 0

0 −1 −1 1
0 0 0 −1



M(G ) is isomorphic to M(A) (a→ ya, b → yb, c → yc , d → yd).

The cycle formed by the edges a = {1, 2}, b = {1, 3} et c = {2, 3}
in the graph correspond to the linear dependency yb − ya = yc .
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Bases

A base of a matroid is a maximal independent set. We denote by B
the set of all bases of a matroid.

Lemma The bases of a matroid have the same cardinality.

Proof : exercices.

The family B verifies the following conditions :

(B1) B 6= ∅,
(B2) (exchange propety) B1,B2 ∈ B and x ∈ B1\B2 then there

exist y ∈ B2\B1 such that (B1\x) ∪ y ∈ B.

If I is the family of subsets contained in a set of B then (E , I) is a
matroid.
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Theory of matroids and applications : I



Bases

Proof of (B2) : Let B1,B2 two bases. Then B1\x ∈ I with
|B1\x | < |B2|.

So, by (I3), there exists y ∈ B2\(B1\x) such that (B1\x) ∪ y ∈ I.

Since B1\x ∪ y ∈ I then it is contained in a maximal independent
set B ′.
Since |B ′| = |B1| and |B1| = |(B1\x) ∪ y | (because
y ∈ B2\(B1\x)) then (B1\x) ∪ y = B ′.

Therefor, (B1\x) ∪ y is a base.
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Bases

Theorem B is the set of basis of a matroid if and only if it verifies
(B1) and (B2).
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Theory of matroids and applications : I



Bases

Theorem B is the set of basis of a matroid if and only if it verifies
(B1) and (B2).
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Bases

x
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Rank

The rank of a set X ⊆ E is defined by

rM(X ) = max{|Y | : Y ⊆ X ,Y ∈ I}.

r = rM is the rank function of a matroid (E , I) (where

I = {I ⊆ E : r(I ) = |I |}) if and only if r verifies the following
conditions :

(R1) 0 ≤ r(X ) ≤ |X |, for all X ⊆ E ,

(R2) r(X ) ≤ r(Y ), for all X ⊆ Y ,

(R3) (sub-modulairity) r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X ) + r(Y ) for all
X ,Y ⊂ E .
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Bases

Proof (necessity) : Let r(X ) = max{|Y ||Y ⊆ X ,Y ∈ I}.
Properties (R1) and (R2) trivial.

For (R3), let BX∩Y be a base of X ∩ Y . Then, BX∩Y is a maximal
independent in M|(X∩Y ) and thus BX∩Y is contained in a base
BX∪Y of M|(X∪Y ). We have that
BX∪Y ∩ X is an independent set of M|X and |BX∪Y ∩ X | ≤ r(X )
BX∪Y ∩ Y is an independent set of M|Y and |BX∪Y ∩ Y | ≤ r(Y )
By using the fact that |A|+ |B| = |A ∪ B|+ |A ∩ B| we obtain
r(X ) + r(Y ) ≥ |BX∪Y ∩ X |+ |BX∪Y ∩ Y |
= |(BX∪Y ∩ X ) ∪ (BX∪Y ∩ Y )|+ |(BX∪Y ∩ X ) ∩ (BX∪Y ∩ Y )|
= |BX∪Y ∩ (X ∪ Y )|+ |BX∪Y ∩ (X ∩ Y )| = |BX∪Y |+ |BX∩Y |
= r(X ∪ Y ) + r(X ∩ Y ).
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Theory of matroids and applications : I



Bases

Proof (necessity) : Let r(X ) = max{|Y ||Y ⊆ X ,Y ∈ I}.
Properties (R1) and (R2) trivial.
For (R3), let BX∩Y be a base of X ∩ Y . Then, BX∩Y is a maximal
independent in M|(X∩Y ) and thus BX∩Y is contained in a base
BX∪Y of M|(X∪Y ). We have that
BX∪Y ∩ X is an independent set of M|X and |BX∪Y ∩ X | ≤ r(X )
BX∪Y ∩ Y is an independent set of M|Y and |BX∪Y ∩ Y | ≤ r(Y )
By using the fact that |A|+ |B| = |A ∪ B|+ |A ∩ B| we obtain
r(X ) + r(Y ) ≥ |BX∪Y ∩ X |+ |BX∪Y ∩ Y |
= |(BX∪Y ∩ X ) ∪ (BX∪Y ∩ Y )|+ |(BX∪Y ∩ X ) ∩ (BX∪Y ∩ Y )|

= |BX∪Y ∩ (X ∪ Y )|+ |BX∪Y ∩ (X ∩ Y )| = |BX∪Y |+ |BX∩Y |
= r(X ∪ Y ) + r(X ∩ Y ).
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Rank

Let M be a graphic matroid obtained from G

a b

c d

1

2 3 4

It can be verified that :
rM({a, b, c}) = rM({c , d}) = rM({a, d}) = 2 et
r(M(G )) = rM({a, b, c , d}) = 3 .
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Greedy Algorithm

Let I be a set of subsets of E verifying (I1) and (I2). Let
w : E → R, and let w(X ) =

∑
x∈X w(x),X ⊆ E ,w(∅) = 0.

An optimization problem consist of finding a maximal set B of I
with maximal weight (or minimal).

Greedy algorithm for (I,w)

X0 = ∅
j = 0
While e ∈ E\Xj : Xj ∪ {e} ∈ I do

Choose an element ej+1 of maximal weight
Xj+1 ← Xj ∪ {ej+1}
j ← j + 1

BG ← Xj

Return BG
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Greedy Algorithm

Theorem (I,E ) is a matroid if and only if the following conditions
are verified :

(I1) ∅ ∈ I,

(I2) I ∈ I, I ′ ⊆ I ⇒ I ′ ∈ I,

(G ) For any function w : E → R, the greedy algorithm gives a
maximal set of I of maximal weight.
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Application 1 : Spanning tree of minimal weight

We want to construct a network (of minimal cost) connecting the
9 cities.
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Application 1 : Spanning tree of minimal weight

We want to construct a network (of minimal cost) connecting the
9 cities.

Theorem (Caley) There exist nn−2 labeled trees on n vertices.
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Application 1 : Spanning tree of minimal weight

Theorem (Kruskal) Given a complete graph with weights on the
edges there exist a polynomial time algorithm that finds a spanning
tree of minimal weight.

Indeed, the greedy algorithm returns a base (maximal independent)
of minimal weight by considering the graphic matroid associated to
a complete graph and w(e), e ∈ E (G ) is the the weight of each
edge.
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