Theory of matroids and applications : I

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

CIMPA school: Modern Methods in Combinatorics ECOS 2013,

San Luis, Argentina, August 2, 2013

J.L. Ramírez Alfonsín

A matroid *M* is an ordered pair (E, \mathcal{I}) where *E* is a finite set $(E = \{1, ..., n\})$ and \mathcal{I} is a family of subsets of *E* verifying the following conditions :

- $(I1) \ \emptyset \in \mathcal{I},$
- (12) If $I \in \mathcal{I}$ and $I' \subset I$ then $I' \in \mathcal{I}$,
- (13) If $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$ then there exists $e \in I_2 \setminus I_1$ such that $I_1 \cup e \in \mathcal{I}$.

The members in \mathcal{I} are called the independents of M. A subset in E not belonging to \mathcal{I} is called dependent.

Proof : (11) et (12) are trivial.

J.L. Ramírez Alfonsín

Proof : (I1) et (I2) are trivial.

(13)] Let $I'_1, I'_2 \in \mathcal{I}$ such that the corresponding columns, say I_1 et I_2 , are linearly independent with $|I_1| < |I_2|$.

Proof : (I1) et (I2) are trivial.

(13)] Let $l'_1, l'_2 \in \mathcal{I}$ such that the corresponding columns, say l_1 et l_2 , are linearly independent with $|l_1| < |l_2|$. By contradiction, suppose that $l_1 \cup e$ is linearly dependent for any

 $e \in I_2 \setminus I_1.$

Proof : (I1) et (I2) are trivial.

(13)] Let $I'_1, I'_2 \in \mathcal{I}$ such that the corresponding columns, say I_1 et I_2 , are linearly independent with $|I_1| < |I_2|$. By contradiction, suppose that $I_1 \cup e$ is linearly dependent for any

 $e \in I_2 \setminus I_1$. Let W the space generated by I_1 and $\overline{I_2}$.

Proof : (I1) et (I2) are trivial.

(13)] Let $I'_1, I'_2 \in \mathcal{I}$ such that the corresponding columns, say I_1 et I_2 , are linearly independent with $|I_1| < |I_2|$. By contradiction, suppose that $I_1 \cup e$ is linearly dependent for any

 $e \in I_2 \setminus I_1$. Let W the space generated by I_1 and $\overline{I_2}$.

On one hand, $dim(W) \ge |I_2|$,

Proof : (1) et (12) are trivial.

(13)] Let $l'_1, l'_2 \in \mathcal{I}$ such that the corresponding columns, say l_1 et l_2 , are linearly independent with $|l_1| < |l_2|$. By contradiction, suppose that $l_1 \cup e$ is linearly dependent for any

 $e \in I_2 \setminus I_1$. Let *W* the space generated by I_1 and I_2 .

On one hand, $dim(W) \ge |I_2|$, on the other hand W is contained in the space generated by I_1 .

Proof : (1) et (12) are trivial.

(13)] Let $I'_1, I'_2 \in \mathcal{I}$ such that the corresponding columns, say I_1 et I_2 , are linearly independent with $|I_1| < |I_2|$. By contradiction, suppose that $I_1 \cup e$ is linearly dependent for any

 $e \in I_2 \setminus I_1$. Let *W* the space generated by I_1 and I_2 .

On one hand, $dim(W) \ge |I_2|$, on the other hand W is contained in the space generated by I_1 .

 $|I_2| \le dim(W) \le |I_1| < |I_2|$!!!

Let A be the following matrix with coefficients in \mathbb{R} .

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

 $\{\emptyset, \{1\}, \{2\}, \{4\}, \{4\}, \{5\}, \{1,2\}, \{1,5\}, \{2,4\}, \{2,5\}, \{4,5\}\} \subseteq \mathcal{I}(M)$

A matroid obtained form a matrix A with coefficients in \mathbb{F} is denoted by M(A) and is called representable over \mathbb{F} or \mathbb{F} -representable.

Circuits

A subset $X \subseteq E$ is said to be minimal dependent if any proper subset of X is independent. A minimal dependent set of matroid M is called circuit of M. We denote by C the set of circuits of a matroid.

Circuits

- A subset $X \subseteq E$ is said to be minimal dependent if any proper subset of X is independent. A minimal dependent set of matroid M is called circuit of M.
- We denote by C the set of circuits of a matroid.
- ${\cal C}$ is the set of circuits of a matrid on E if and only if ${\cal C}$ verifies the following properties :
- (C1) $\emptyset \notin C$,
- (C2) $C_1, C_2 \in \mathcal{C}$ and $C_1 \subseteq C_2$ then $C_1 = C_2$,
- (C3) (elimination property) If $C_1, C_2 \in C, C_1 \neq C_2$ and $e \in C_1 \cap C_2$ then there exists $C_3 \in C$ such that $C_3 \subseteq \{C_1 \cup C_2\} \setminus \{e\}$.

Let G = (V, E) be a graph. A cycle in G is a closed walk without repeated vertices.

Let G = (V, E) be a graph. A cycle in G is a closed walk without repeated vertices. Theorem The set of cycles in a graph G = (V, E) is the set of circuits of a matroid on E.

Let G = (V, E) be a graph. A cycle in G is a closed walk without repeated vertices. Theorem The set of cycles in a graph G = (V, E) is the set of circuits of a matroid on E. This matroid is denoted by M(G) and called graphic.

J.L. Ramírez Alfonsín Theory of matroids and applications : I Let G = (V, E) be a graph. A cycle in G is a closed walk without repeated vertices. Theorem The set of cycles in a graph G = (V, E) is the set of circuits of a matroid on E. This matroid is denoted by M(G) and called graphic. Proof : Verify (C1), (C2) and (C3).

Let G = (V, E) be a graph. A cycle in G is a closed walk without repeated vertices. Theorem The set of cycles in a graph G = (V, E) is the set of circuits of a matroid on E. This matroid is denoted by M(G) and called graphic. Proof : Verify (C1), (C2) and (C3). A subset of edges $I \subset \{e_1, \ldots, e_n\}$ of G is independent if the graph induced by I does not contain a cycle.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

It can be checked that M(G) is isomorphic to M(A) (under the bijection $e_i \rightarrow i$).

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Theorem A graphic matroid is always representable over \mathbb{R} .

J.L. Ramírez Alfonsín

Theorem A graphic matroid is always representable over \mathbb{R} . Proof (idea) Let G = (V, E) be an oriented graph and let $\{x_i, i \in V\}$ be the canonical base of \mathbb{R} .

Theorem A graphic matroid is always representable over \mathbb{R} .

Proof (idea) Let G = (V, E) be an oriented graph and let $\{x_i, i \in V\}$ be the canonical base of \mathbb{R} .

Exercice : Verify that the graph G = (V, E) gives the same matroid that the one given by the set of vectors $y_e = x_i - x_j$ where $e = (i, j) \in E$.

 $A = \begin{pmatrix} y_a & y_b & y_c & y_d \\ 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$

J.L. Ramírez Alfonsín

G

I3M, Université Montpellier 2

M(G) is isomorphic to M(A) $(a \rightarrow y_a, b \rightarrow y_b, c \rightarrow y_c, d \rightarrow y_d)$.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

M(G) is isomorphic to M(A) $(a \rightarrow y_a, b \rightarrow y_b, c \rightarrow y_c, d \rightarrow y_d)$. The cycle formed by the edges $a = \{1, 2\}, b = \{1, 3\}$ et $c = \{2, 3\}$ in the graph correspond to the linear dependency $y_b - y_a = y_c$.

J.L. Ramírez Alfonsín

A base of a matroid is a maximal independent set. We denote by ${\cal B}$ the set of all bases of a matroid.

J.L. Ramírez Alfonsín

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid. Lemma The bases of a matroid have the same cardinality.

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid. Lemma The bases of a matroid have the same cardinality. Proof : exercices.

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid. Lemma The bases of a matroid have the same cardinality. Proof : exercices. The family \mathcal{B} verifies the following conditions : (B1) $\mathcal{B} \neq \emptyset$, (B2) (exchange propety) $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$ then there exist $y \in B_2 \setminus B_1$ such that $(B_1 \setminus x) \cup y \in \mathcal{B}$.

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid. Lemma The bases of a matroid have the same cardinality. Proof : exercices. The family \mathcal{B} verifies the following conditions : (B1) $\mathcal{B} \neq \emptyset$, (B2) (exchange propety) $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$ then there exist $y \in B_2 \setminus B_1$ such that $(B_1 \setminus x) \cup y \in \mathcal{B}$.

If \mathcal{I} is the family of subsets contained in a set of \mathcal{B} then $(\mathcal{E}, \mathcal{I})$ is a matroid.

Proof of (B2) : Let B_1, B_2 two bases. Then $B_1 \setminus x \in \mathcal{I}$ with $|B_1 \setminus x| < |B_2|$.

J.L. Ramírez Alfonsín

Proof of (B2) : Let B_1, B_2 two bases. Then $B_1 \setminus x \in \mathcal{I}$ with $|B_1 \setminus x| < |B_2|$. So, by (13), there exists $y \in B_2 \setminus (B_1 \setminus x)$ such that $(B_1 \setminus x) \cup y \in \mathcal{I}$.

Proof of (B2): Let B_1, B_2 two bases. Then $B_1 \setminus x \in \mathcal{I}$ with $|B_1 \setminus x| < |B_2|$. So, by (13), there exists $y \in B_2 \setminus (B_1 \setminus x)$ such that $(B_1 \setminus x) \cup y \in \mathcal{I}$. Since $B_1 \setminus x \cup y \in \mathcal{I}$ then it is contained in a maximal independent set B'.

Proof of (B2): Let B_1, B_2 two bases. Then $B_1 \setminus x \in \mathcal{I}$ with $|B_1 \setminus x| < |B_2|$. So, by (13), there exists $y \in B_2 \setminus (B_1 \setminus x)$ such that $(B_1 \setminus x) \cup y \in \mathcal{I}$. Since $B_1 \setminus x \cup y \in \mathcal{I}$ then it is contained in a maximal independent set B'. Since $|B'| = |B_1|$ and $|B_1| = |(B_1 \setminus x) \cup y|$ (because $y \in B_2 \setminus (B_1 \setminus x)$) then $(B_1 \setminus x) \cup y = B'$.

Proof of (B2): Let B_1, B_2 two bases. Then $B_1 \setminus x \in \mathcal{I}$ with $|B_1 \setminus x| < |B_2|$. So, by (13), there exists $y \in B_2 \setminus (B_1 \setminus x)$ such that $(B_1 \setminus x) \cup y \in \mathcal{I}$. Since $B_1 \setminus x \cup y \in \mathcal{I}$ then it is contained in a maximal independent set B'. Since $|B'| = |B_1|$ and $|B_1| = |(B_1 \setminus x) \cup y|$ (because $y \in B_2 \setminus (B_1 \setminus x)$) then $(B_1 \setminus x) \cup y = B'$. Therefor, $(B_1 \setminus x) \cup y$ is a base.

Theorem \mathcal{B} is the set of basis of a matroid if and only if it verifies (*B*1) and (*B*2).

J.L. Ramírez Alfonsín

Theorem \mathcal{B} is the set of basis of a matroid if and only if it verifies (*B*1) and (*B*2).

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

I3M, Université Montpellier 2

I3M, Université Montpellier 2

I3M, Université Montpellier 2

I3M, Université Montpellier 2

I3M, Université Montpellier 2

Rank

The rank of a set $X \subseteq E$ is defined by

 $r_M(X) = \max\{|Y| : Y \subseteq X, Y \in \mathcal{I}\}.$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

The rank of a set $X \subseteq E$ is defined by

$$r_{\mathcal{M}}(X) = \max\{|Y| : Y \subseteq X, Y \in \mathcal{I}\}.$$

 $r = r_M$ is the rank function of a matroid (E, \mathcal{I}) (where $\mathcal{I} = \{I \subseteq E : r(I) = |I|\}$) if and only if r verifies the following conditions :

$$\begin{array}{ll} (R1) & 0 \leq r(X) \leq |X|, \text{ for all } X \subseteq E, \\ (R2) & r(X) \leq r(Y), \text{ for all } X \subseteq Y, \\ (R3) & (\textit{sub-modulairity}) \ r(X \cup Y) + r(X \cap Y) \leq r(X) + r(Y) \text{ for all } \\ & X, Y \subset E. \end{array}$$

Proof (necessity) : Let $r(X) = \max\{|Y||Y \subseteq X, Y \in \mathcal{I}\}$. Properties (*R*1) and (*R*2) trivial.

J.L. Ramírez Alfonsín

Proof (necessity) : Let $r(X) = \max\{|Y||Y \subseteq X, Y \in \mathcal{I}\}$. Properties (*R*1) and (*R*2) trivial. For (*R*3), let $B_{X\cap Y}$ be a base of $X \cap Y$. Then, $B_{X\cap Y}$ is a maximal independent in $\mathcal{M}|_{(X\cap Y)}$ and thus $B_{X\cap Y}$ is contained in a base $B_{X\cup Y}$ of $\mathcal{M}|_{(X\cup Y)}$.

Proof (necessity) : Let $r(X) = \max\{|Y||Y \subseteq X, Y \in \mathcal{I}\}$. Properties (*R*1) and (*R*2) trivial. For (*R*3), let $B_{X\cap Y}$ be a base of $X \cap Y$. Then, $B_{X\cap Y}$ is a maximal independent in $\mathcal{M}|_{(X\cap Y)}$ and thus $B_{X\cap Y}$ is contained in a base $B_{X\cup Y}$ of $\mathcal{M}|_{(X\cup Y)}$. We have that $B_{X\cup Y} \cap X$ is an independent set of $\mathcal{M}|_X$ and $|B_{X\cup Y} \cap X| \leq r(X)$ $B_{X\cup Y} \cap Y$ is an independent set of $\mathcal{M}|_Y$ and $|B_{X\cup Y} \cap Y| \leq r(Y)$

Proof (necessity) : Let $r(X) = \max\{|Y||Y \subseteq X, Y \in \mathcal{I}\}$. Properties (*R*1) and (*R*2) trivial. For (*R*3), let $B_{X\cap Y}$ be a base of $X \cap Y$. Then, $B_{X\cap Y}$ is a maximal independent in $\mathcal{M}|_{(X\cap Y)}$ and thus $B_{X\cap Y}$ is contained in a base $B_{X\cup Y}$ of $\mathcal{M}|_{(X\cup Y)}$. We have that $B_{X\cup Y} \cap X$ is an independent set of $\mathcal{M}|_X$ and $|B_{X\cup Y} \cap X| \leq r(X)$ $B_{X\cup Y} \cap Y$ is an independent set of $\mathcal{M}|_Y$ and $|B_{X\cup Y} \cap Y| \leq r(Y)$ By using the fact that $|A| + |B| = |A \cup B| + |A \cap B|$ we obtain $r(X) + r(Y) \geq |B_{X\cup Y} \cap X| + |B_{X\cup Y} \cap Y|$

Proof (necessity) : Let $r(X) = \max\{|Y||Y \subseteq X, Y \in \mathcal{I}\}$. Properties (*R*1) and (*R*2) trivial. For (*R*3), let $B_{X\cap Y}$ be a base of $X \cap Y$. Then, $B_{X\cap Y}$ is a maximal independent in $\mathcal{M}|_{(X\cap Y)}$ and thus $B_{X\cap Y}$ is contained in a base $B_{X\cup Y}$ of $\mathcal{M}|_{(X\cup Y)}$. We have that $B_{X\cup Y} \cap X$ is an independent set of $\mathcal{M}|_X$ and $|B_{X\cup Y} \cap X| \leq r(X)$ $B_{X\cup Y} \cap Y$ is an independent set of $\mathcal{M}|_Y$ and $|B_{X\cup Y} \cap Y| \leq r(Y)$ By using the fact that $|A| + |B| = |A \cup B| + |A \cap B|$ we obtain $r(X) + r(Y) \geq |B_{X\cup Y} \cap X| + |B_{X\cup Y} \cap Y|$ $= |(B_{X\cup Y} \cap X) \cup (B_{X\cup Y} \cap Y)| + |(B_{X\cup Y} \cap X) \cap (B_{X\cup Y} \cap Y)|$

Proof (necessity) : Let $r(X) = \max\{|Y||Y \subseteq X, Y \in \mathcal{I}\}.$ Properties (R1) and (R2) trivial. For (R3), let $B_{X \cap Y}$ be a base of $X \cap Y$. Then, $B_{X \cap Y}$ is a maximal independent in $\mathcal{M}|_{(X \cap Y)}$ and thus $B_{X \cap Y}$ is contained in a base $B_{X\cup Y}$ of $\mathcal{M}|_{(X\cup Y)}$. We have that $B_{X \cup Y} \cap X$ is an independent set of $\mathcal{M}|_X$ and $|B_{X \cup Y} \cap X| < r(X)$ $B_{X \cup Y} \cap Y$ is an independent set of $\mathcal{M}|_Y$ and $|B_{X \cup Y} \cap Y| < r(Y)$ By using the fact that $|A| + |B| = |A \cup B| + |A \cap B|$ we obtain $r(X) + r(Y) > |B_{X \cup Y} \cap X| + |B_{X \cup Y} \cap Y|$ $= |(B_{X \cup Y} \cap X) \cup (B_{X \cup Y} \cap Y)| + |(B_{X \cup Y} \cap X) \cap (B_{X \cup Y} \cap Y)|$ $= |B_{X \cup Y} \cap (X \cup Y)| + |B_{X \cup Y} \cap (X \cap Y)| = |B_{X \cup Y}| + |B_{X \cap Y}|$

Proof (necessity) : Let $r(X) = \max\{|Y||Y \subseteq X, Y \in \mathcal{I}\}.$ Properties (R1) and (R2) trivial. For (R3), let $B_{X \cap Y}$ be a base of $X \cap Y$. Then, $B_{X \cap Y}$ is a maximal independent in $\mathcal{M}|_{(X \cap Y)}$ and thus $B_{X \cap Y}$ is contained in a base $B_{X\cup Y}$ of $\mathcal{M}|_{(X\cup Y)}$. We have that $B_{X \cup Y} \cap X$ is an independent set of $\mathcal{M}|_X$ and $|B_{X \cup Y} \cap X| < r(X)$ $B_{X \cup Y} \cap Y$ is an independent set of $\mathcal{M}|_Y$ and $|B_{X \cup Y} \cap Y| < r(Y)$ By using the fact that $|A| + |B| = |A \cup B| + |A \cap B|$ we obtain $r(X) + r(Y) > |B_{X \cup Y} \cap X| + |B_{X \cup Y} \cap Y|$ $= |(B_{X \cup Y} \cap X) \cup (B_{X \cup Y} \cap Y)| + |(B_{X \cup Y} \cap X) \cap (B_{X \cup Y} \cap Y)|$ $= |B_{X \cup Y} \cap (X \cup Y)| + |B_{X \cup Y} \cap (X \cap Y)| = |B_{X \cup Y}| + |B_{X \cap Y}|$ $= r(X \cup Y) + r(X \cap Y).$

Let M be a graphic matroid obtained from G

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Rank

Let M be a graphic matroid obtained from G

It can be verified that : $r_M(\{a, b, c\}) = r_M(\{c, d\}) = r_M(\{a, d\}) = 2$ et $r(M(G)) = r_M(\{a, b, c, d\}) = 3$.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Greedy Algorithm

Let \mathcal{I} be a set of subsets of E verifying (11) and (12). Let $w : E \to \mathbb{R}$, and let $w(X) = \sum_{x \in X} w(x), X \subseteq E, w(\emptyset) = 0$.

J.L. Ramírez Alfonsín

Greedy Algorithm

Let \mathcal{I} be a set of subsets of E verifying (11) and (12). Let $w : E \to \mathbb{R}$, and let $w(X) = \sum_{x \in X} w(x), X \subseteq E, w(\emptyset) = 0$. An optimization problem consist of finding a maximal set B of \mathcal{I} with maximal weight (or minimal).

> Greedy algorithm for (\mathcal{I}, w) $X_0 = \emptyset$ j = 0 **While** $e \in E \setminus X_j : X_j \cup \{e\} \in \mathcal{I}$ **do** Choose an element e_{j+1} of maximal weight $X_{j+1} \leftarrow X_j \cup \{e_{j+1}\}$ $j \leftarrow j + 1$ $B_G \leftarrow X_j$ Return B_G

Theorem (\mathcal{I}, E) is a matroid if and only if the following conditions are verified :

- (11) $\emptyset \in \mathcal{I}$,
- $(I2) \ I \in \mathcal{I}, I' \subseteq I \Rightarrow I' \in \mathcal{I},$
- (G) For any function $w : E \to \mathbb{R}$, the greedy algorithm gives a maximal set of \mathcal{I} of maximal weight.

We want to construct a network (of minimal cost) connecting the 9 cities.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

We want to construct a network (of minimal cost) connecting the 9 cities.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

We want to construct a network (of minimal cost) connecting the 9 cities.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

We want to construct a network (of minimal cost) connecting the 9 cities.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

We want to construct a network (of minimal cost) connecting the 9 cities.

Theorem (Caley) There exist n^{n-2} labeled trees on *n* vertices.

J.L. Ramírez Alfonsín

Theorem (Kruskal) Given a complete graph with weights on the edges there exist a polynomial time algorithm that finds a spanning tree of minimal weight.

Theorem (Kruskal) Given a complete graph with weights on the edges there exist a polynomial time algorithm that finds a spanning tree of minimal weight.

Indeed, the greedy algorithm returns a base (maximal independent) of minimal weight by considering the graphic matroid associated to a complete graph and w(e), $e \in E(G)$ is the the weight of each edge.