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Independents

A matroid M is an ordered pair (E , I) where E is a finite set
(E = {1, . . . , n}) and I is a family of subsets of E verifying the
following conditions :

(I1) ∅ ∈ I,

(I2) If I ∈ I and I ′ ⊂ I then I ′ ∈ I,

(I3) If I1, I2 ∈ I and |I1| < |I2| then there exists e ∈ I2\I1 such that
I1 ∪ e ∈ I.

The members in I are called the independents of M. A subset in E
not belonging to I is called dependent.
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Representable Matroids

Theorem (Whitney 1935) Let {e1, . . . , en} a set of columns
(vectors) of a matrix with coefficients in a field F. Let I be the
family of subsets {i1, . . . , im} ⊆ {1, . . . , n} = E such that the
columns {ei1 , . . . , eim} are linearly independent in F. Then, (E , I)
is a matroid.

Proof : (I1) et (I2) are trivial.
(I3)] Let I ′1, I

′
2 ∈ I such that the corresponding columns, say I1 et

I2, are linearly independent with |I1| < |I2|.
By contradiction, suppose that I1 ∪ e is linearly dependent for any
e ∈ I2\I1. Let W the space generated by I1 and I2.
On one hand, dim(W ) ≥ |I2|, on the other hand W is contained in
the space generated by I1.

|I2| ≤ dim(W ) ≤ |I1| < |I2| !!!
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Representable Matroids

Let A be the following matrix with coefficients in R.

A =
1 2 3 4 5(
1 0 0 1 1
0 1 0 0 1

)
{∅, {1}, {2}, {4}, {4}, {5}, {1, 2}, {1, 5}, {2, 4}, {2, 5}, {4, 5}} ⊆ I(M)

A matroid obtained form a matrix A with coefficients in F is
denoted by M(A) and is called representable over F or
F-representable.
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Circuits

A subset X ⊆ E is said to be minimal dependent if any proper
subset of X is independent. A minimal dependent set of matroid
M is called circuit of M.
We denote by C the set of circuits of a matroid.

C is the set of circuits of a matrid on E if and only if C verifies the
following properties :

(C1) ∅ 6∈ C,

(C2) C1,C2 ∈ C and C1 ⊆ C2 then C1 = C2,

(C3) (elimination property) If C1,C2 ∈ C,C1 6= C2 and e ∈ C1 ∩ C2

then there exists C3 ∈ C such that C3 ⊆ {C1 ∪ C2}\{e}.
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Graphic Matroid

Let G = (V ,E ) be a graph. A cycle in G is a closed walk without
repeated vertices.

Theorem The set of cycles in a graph G = (V ,E ) is the set of
circuits of a matroid on E .

This matroid is denoted by M(G ) and called graphic.

Proof : Verify (C1), (C2) and (C3).

A subset of edges I ⊂ {e1, . . . , en} of G is independent if the
graph induced by I does not contain a cycle.
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Graphic Matroid

3e e

e

e

e

2
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It can be checked that M(G ) is isomorphic to M(A) (under the

bijection ei → i).

A =
1 2 3 4 5(
1 0 0 1 1
0 1 0 0 1

)
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Graphic Matroid

Theorem A graphic matroid is always representable over R.

Proof (idea) Let G = (V ,E ) be an oriented graph and let
{xi , i ∈ V } be the canonical base of R|V |.

Exercice : Verify that the graph G = (V ,E ) gives the same
matroid that the one given by the set of vectors ye = xi − xj where
e = (i , j) ∈ E .
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Graphic Matroid

G

a b

c d

1

2 3 4 A =

ya yb yc yd
1 1 0 0
−1 0 1 0

0 −1 −1 1
0 0 0 −1



M(G ) is isomorphic to M(A) (a→ ya, b → yb, c → yc , d → yd).

The cycle formed by the edges a = {1, 2}, b = {1, 3} et c = {2, 3}
in the graph correspond to the linear dependency yb − ya = yc .
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Bases

A base of a matroid is a maximal independent set. We denote by B
the set of all bases of a matroid.

Lemma The bases of a matroid have the same cardinality.

Proof : exercices.

The family B verifies the following conditions :

(B1) B 6= ∅,
(B2) (exchange propety) B1,B2 ∈ B and x ∈ B1\B2 then there

exist y ∈ B2\B1 such that (B1\x) ∪ y ∈ B.

If I is the family of subsets contained in a set of B then (E , I) is a
matroid.
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Bases

Proof of (B2) : Let B1,B2 two bases. Then B1\x ∈ I with
|B1\x | < |B2|.

So, by (I3), there exists y ∈ B2\(B1\x) such that (B1\x) ∪ y ∈ I.

Since B1\x ∪ y ∈ I then it is contained in a maximal independent
set B ′.
Since |B ′| = |B1| and |B1| = |(B1\x) ∪ y | (because
y ∈ B2\(B1\x)) then (B1\x) ∪ y = B ′.

Therefore, (B1\x) ∪ y is a base.
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Theory of matroids and applications : I



Bases

Theorem B is the set of basis of a matroid if and only if it verifies
(B1) and (B2).
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Bases

x
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Rank

The rank of a set X ⊆ E is defined by

rM(X ) = max{|Y | : Y ⊆ X ,Y ∈ I}.

r = rM is the rank function of a matroid (E , I) (where

I = {I ⊆ E : r(I ) = |I |}) if and only if r verifies the following
conditions :

(R1) 0 ≤ r(X ) ≤ |X |, for all X ⊆ E ,

(R2) r(X ) ≤ r(Y ), for all X ⊆ Y ,

(R3) (sub-modulairity) r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X ) + r(Y ) for all
X ,Y ⊂ E .
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Rank

Let M be a graphic matroid obtained from G

a b

c d

1

2 3 4

It can be verified that :
rM({a, b, c}) = rM({c , d}) = rM({a, d}) = 2 et
r(M(G )) = rM({a, b, c , d}) = 3 .
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Greedy Algorithm

Let I be a set of subsets of E verifying (I1) and (I2). Let
w : E → R, and let w(X ) =

∑
x∈X w(x),X ⊆ E ,w(∅) = 0.

An optimization problem consist of finding a maximal set B of I
with maximal weight (or minimal).

Greedy algorithm for (I,w)

X0 = ∅
j = 0
While e ∈ E\Xj : Xj ∪ {e} ∈ I do

Choose an element ej+1 of maximal weight
Xj+1 ← Xj ∪ {ej+1}
j ← j + 1

BG ← Xj

Return BG
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Greedy Algorithm

Theorem (I,E ) is a matroid if and only if the following conditions
are verified :

(I1) ∅ ∈ I,

(I2) I ∈ I, I ′ ⊆ I ⇒ I ′ ∈ I,

(G ) For any function w : E → R, the greedy algorithm gives a
maximal set of I of maximal weight.
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Application 1 : Spanning tree of minimal weight

We want to construct a network (of minimal cost) connecting the
9 cities.
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Application 1 : Spanning tree of minimal weight

We want to construct a network (of minimal cost) connecting the
9 cities.

Theorem (Caley) There exist nn−2 labeled trees on n vertices.
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Application 1 : Spanning tree of minimal weight

Theorem (Kruskal) Given a complete graph with weights on the
edges there exist a polynomial time algorithm that finds a spanning
tree of minimal weight.

Indeed, the greedy algorithm returns a base (maximal independent)
of minimal weight by considering the graphic matroid associated to
a complete graph and w(e), e ∈ E (G ) is the the weight of each
edge.
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Transversal Matroid

Let S = {e1, . . . , en} and let A = {A1, . . . ,Ak},Ai ⊆ S , n ≥ k .

A transversal of A is a subset {ej1 , . . . , ejk} of S such that eji ∈ Ai .

A set X ⊆ S is called partial transversal of A if there exists
{i1, . . . , il} ⊆ {1, . . . , k} such that X is a transversal of
{Ai1 , . . . ,Ail}.
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Transversal Matroid

Let G = (S ,A;E ) be a bipartite graph constructed from
S = {e1, . . . , en} and A = {A1, . . . ,Ak} and two vertices ei ∈ S ,
Aj ∈ A are adjacent if and only if ei ∈ Aj .

A matching in a graph is a set of edges without common vertices.

Partial transversal A correspond to matchings in G = (S ,A;E ).
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Transversal Matroid

E = {e1, . . . , e6} et A = {A1,A2,A3,A4} with A1 = {e1, e2, e6},
A2 = {e3, e4, e5, e6}, A3 = {e2, e3} and A4 = {e2, e4, e6}.
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Theory of matroids and applications : I



Transversal Matroid

E = {e1, . . . , e6} et A = {A1,A2,A3,A4} with A1 = {e1, e2, e6},
A2 = {e3, e4, e5, e6}, A3 = {e2, e3} and A4 = {e2, e4, e6}.

e

e

e

e

e

e

A

A

A

A

1

2

3

4

5

6

1

2

3

4
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Transversal Matroid

E = {e1, . . . , e6} et A = {A1,A2,A3,A4} with A1 = {e1, e2, e6},
A2 = {e3, e4, e5, e6}, A3 = {e2, e3} et A4 = {e2, e4, e6}.
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{e1, e3, e2, e6} is a transversal of A.
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Transversal Matroid

E = {e1, . . . , e6} et A = {A1,A2,A3,A4} with A1 = {e1, e2, e6},
A2 = {e3, e4, e5, e6}, A3 = {e2, e3} et A4 = {e2, e4, e6}.
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X = {e6, e4, e2} is a partial transversal of A since X is a
transversal of {A1,A2,A3}.
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Transversal Matroid

Theorem Let S = {e1, . . . , en} and A = {A1, . . . ,Ak},Ai ⊆ S .
Then, the set of partial transversals of A is the set of independents
of a matroid.

Proof Exercise.

Such matroid is called transversal matroid.
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Application 2 : Assignment problem

Let {Ti} be a set of tasks ordered according to their importance
(priority).

Let {Ei} be a set of agents each able to perform one or more of
the these tasks.

The tasks are all done at the same time (and thus each agent can
perform one task at the time).

Problem : Assign the tasks to the agents in an optimal way
(maximizing the priorities).
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Application 2 : Assignment problem

- tasks : {t1, t2, t3, t4}.

- priorities : w(t1) = 10,w(t2) = 3,w(t3) = 3 et w(t4) = 5.
- agents :
e1 able to perform tasks t1 et t2,
e2 able to perform tasks t2 et t3,
e3 able to perform tasks t4.

- Transversal Matroid M = (I, {t1, t2, t3, t4}) where I is given by
the set of matchings of the bipartite graph G = (U,V ;E ) with
U = {t1, t2, t3, t4}, V = {e1, e2, e3}.
- By applying the greedy algorithm to M we have
X0 = ∅,X1 = {t1},X2 = {t1, t4} and X3 = {t1, t4, t2}.
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