Theory of matroids and applications : II

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

CIMPA school: Modern Methods in Combinatorics ECOS 2013,

San Luis, Argentina, August 2, 2013

J.L. Ramírez Alfonsín

Let $S = \{e_1, \ldots, e_n\}$ and let $\mathcal{A} = \{A_1, \ldots, A_k\}, A_i \subseteq S, n \geq k$.

J.L. Ramírez Alfonsín

Theory of matroids and applications : II

I3M, Université Montpellier 2

Let $S = \{e_1, \ldots, e_n\}$ and let $\mathcal{A} = \{A_1, \ldots, A_k\}, A_i \subseteq S, n \ge k$. A transversal of \mathcal{A} is a subset $\{e_{j_1}, \ldots, e_{j_k}\}$ of S such that $e_{j_i} \in A_i$.

Let $S = \{e_1, \ldots, e_n\}$ and let $\mathcal{A} = \{A_1, \ldots, A_k\}, A_i \subseteq S, n \ge k$. A transversal of \mathcal{A} is a subset $\{e_{j_1}, \ldots, e_{j_k}\}$ of S such that $e_{j_i} \in A_i$. A set $X \subseteq S$ is called partial transversal of \mathcal{A} if there exists $\{i_1, \ldots, i_l\} \subseteq \{1, \ldots, k\}$ such that X is a transversal of $\{A_{i_1}, \ldots, A_{i_l}\}$.

J.L. Ramírez Alfonsín

Let G = (S, A; E) be a bipartite graph constructed from $S = \{e_1, \ldots, e_n\}$ and $A = \{A_1, \ldots, A_k\}$ and two vertices $e_i \in S$, $A_i \in A$ are adjacent if and only if $e_i \in A_i$.

Let G = (S, A; E) be a bipartite graph constructed from $S = \{e_1, \ldots, e_n\}$ and $\mathcal{A} = \{A_1, \ldots, A_k\}$ and two vertices $e_i \in S$, $A_j \in \mathcal{A}$ are adjacent if and only if $e_i \in A_j$. A matching in a graph is a set of edges without common vertices. Partial transversal \mathcal{A} correspond to matchings in $G = (S, \mathcal{A}; E)$.

$$E = \{e_1, \dots, e_6\} \text{ et } \mathcal{A} = \{A_1, A_2, A_3, A_4\} \text{ with } A_1 = \{e_1, e_2, e_6\}, A_2 = \{e_3, e_4, e_5, e_6\}, A_3 = \{e_2, e_3\} \text{ and } A_4 = \{e_2, e_4, e_6\}.$$

J.L. Ramírez Alfonsín

$$E = \{e_1, \dots, e_6\} \text{ et } \mathcal{A} = \{A_1, A_2, A_3, A_4\} \text{ with } A_1 = \{e_1, e_2, e_6\}, A_2 = \{e_3, e_4, e_5, e_6\}, A_3 = \{e_2, e_3\} \text{ and } A_4 = \{e_2, e_4, e_6\}.$$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

 $E = \{e_1, \dots, e_6\} \text{ et } \mathcal{A} = \{A_1, A_2, A_3, A_4\} \text{ with } A_1 = \{e_1, e_2, e_6\}, \\ A_2 = \{e_3, e_4, e_5, e_6\}, A_3 = \{e_2, e_3\} \text{ et } A_4 = \{e_2, e_4, e_6\}.$

$$\{e_1, e_3, e_2, e_6\}$$
 is a transversal of \mathcal{A} .

J.L. Ramírez Alfonsín

$$E = \{e_1, \dots, e_6\} \text{ et } \mathcal{A} = \{A_1, A_2, A_3, A_4\} \text{ with } A_1 = \{e_1, e_2, e_6\}, \\ A_2 = \{e_3, e_4, e_5, e_6\}, A_3 = \{e_2, e_3\} \text{ et } A_4 = \{e_2, e_4, e_6\}.$$

 $X = \{e_6, e_4, e_2\}$ is a partial transversal of \mathcal{A} since X is a transversal of $\{A_1, A_2, A_3\}$.

J.L. Ramírez Alfonsín

Theory of matroids and applications : II

I3M, Université Montpellier 2

Theorem Let $S = \{e_1, \ldots, e_n\}$ and $\mathcal{A} = \{A_1, \ldots, A_k\}, A_i \subseteq S$. Then, the set of partial transversals of \mathcal{A} is the set of independents of a matroid. Theorem Let $S = \{e_1, \ldots, e_n\}$ and $\mathcal{A} = \{A_1, \ldots, A_k\}, A_i \subseteq S$. Then, the set of partial transversals of \mathcal{A} is the set of independents of a matroid.

Proof Exercise.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Theorem Let $S = \{e_1, \ldots, e_n\}$ and $\mathcal{A} = \{A_1, \ldots, A_k\}, A_i \subseteq S$. Then, the set of partial transversals of \mathcal{A} is the set of independents of a matroid.

Proof Exercise.

Such matroid is called transversal matroid.

J.L. Ramírez Alfonsín

Let $\{T_i\}$ be a set of tasks ordered according to their importance (priority).

J.L. Ramírez Alfonsín

Let $\{T_i\}$ be a set of tasks ordered according to their importance (priority). Let $\{E_i\}$ be a set of agents each able to perform one or more of the these tasks.

- Let $\{T_i\}$ be a set of tasks ordered according to their importance (priority).
- Let $\{E_i\}$ be a set of agents each able to perform one or more of the these tasks.
- The tasks are all done at the same time (and thus each agent can perform one task at the time).

- Let $\{T_i\}$ be a set of tasks ordered according to their importance (priority).
- Let $\{E_i\}$ be a set of agents each able to perform one or more of the these tasks.
- The tasks are all done at the same time (and thus each agent can perform one task at the time).
- Problem : Assign the tasks to the agents in an optimal way (maximizing the priorities).

- tasks : $\{t_1, t_2, t_3, t_4\}$.

J.L. Ramírez Alfonsín

- tasks : $\{t_1, t_2, t_3, t_4\}$.
- priorities : $w(t_1) = 10, w(t_2) = 3, w(t_3) = 3$ et $w(t_4) = 5$.

J.L. Ramírez Alfonsín

- tasks : $\{t_1, t_2, t_3, t_4\}$.
- priorities : $w(t_1) = 10, w(t_2) = 3, w(t_3) = 3$ et $w(t_4) = 5$.
- agents :
- e_1 able to perform tasks t_1 et t_2 ,
- e_2 able to perform tasks t_2 et t_3 ,
- e_3 able to perform tasks t_4 .

- tasks : $\{t_1, t_2, t_3, t_4\}$.
- priorities : $w(t_1) = 10, w(t_2) = 3, w(t_3) = 3$ et $w(t_4) = 5$.
- agents :
- e_1 able to perform tasks t_1 et t_2 ,
- e_2 able to perform tasks t_2 et t_3 ,
- e_3 able to perform tasks t_4 .

- Transversal Matroid $M = (\mathcal{I}, \{t_1, t_2, t_3, t_4\})$ where \mathcal{I} is given by the set of matchings of the bipartite graph G = (U, V; E) with $U = \{t_1, t_2, t_3, t_4\}, V = \{e_1, e_2, e_3\}.$

- tasks : $\{t_1, t_2, t_3, t_4\}$.
- priorities : $w(t_1) = 10, w(t_2) = 3, w(t_3) = 3$ et $w(t_4) = 5$.
- agents :
- e_1 able to perform tasks t_1 et t_2 ,
- e_2 able to perform tasks t_2 et t_3 ,
- e_3 able to perform tasks t_4 .
- Transversal Matroid $M = (\mathcal{I}, \{t_1, t_2, t_3, t_4\})$ where \mathcal{I} is given by the set of matchings of the bipartite graph G = (U, V; E) with $U = \{t_1, t_2, t_3, t_4\}, V = \{e_1, e_2, e_3\}.$
- By applying the greedy algorithm to M we have $X_0 = \emptyset, X_1 = \{t_1\}, X_2 = \{t_1, t_4\}$ and $X_3 = \{t_1, t_4, t_2\}$.

Let M be a matroid on the ground set E and let \mathcal{B} the set of bases of M. Then,

 $\mathcal{B}^* = \{ E \setminus B \mid B \in \mathcal{B} \}$

is the set of bases of a matroid on E.

Let M be a matroid on the ground set E and let \mathcal{B} the set of bases of M. Then,

 $\mathcal{B}^* = \{ E \setminus B \mid B \in \mathcal{B} \}$

is the set of bases of a matroid on E.

The matroid on *E* having \mathcal{B}^* as set of bases, denoted by M^* , is called the dual of *M*.

A base of M^* is also called cobase of M.

Duality

We have that

• $r(M^*) = |E| - r_M$ and $M^{**} = M$.

J.L. Ramírez Alfonsín

Duality

We have that

- $r(M^*) = |E| r_M$ and $M^{**} = M$.
- The set \mathcal{I}^* of independents of M^* is given by

 $\mathcal{I}^* = \{X \mid X \subset E \text{ such that there exists } B \in \mathcal{B}(M) \text{ with } X \cap B = \emptyset\}.$

Duality

We have that

- $r(M^*) = |E| r_M$ and $M^{**} = M$.
- The set \mathcal{I}^* of independents of M^* is given by

 $\mathcal{I}^* = \{X \mid X \subset E \text{ such that there exists } B \in \mathcal{B}(M) \text{ with } X \cap B = \emptyset\}.$

• The rank function of M^* is given by

 $r_{M^*}(X) = |X| + r_M(E \setminus X) - r_M,$

for $X \subset E$.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Let G = (V, E) be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

Let G = (V, E) be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

Theorem Let $\mathcal{C}(G)^*$ be the set of minimal (by inclusion) cocycles of a graph G. Then, $\mathcal{C}(G)^*$ is the set of circuits of a matroid on E.

Let G = (V, E) be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

Theorem Let $\mathcal{C}(G)^*$ be the set of minimal (by inclusion) cocycles of a graph G. Then, $\mathcal{C}(G)^*$ is the set of circuits of a matroid on E. The matroid obtained on this way is called the matroid of cocycle of G or bond matroid, denoted by B(G).

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

J.L. Ramírez Alfonsín

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

 $\mathcal{B}(M(G)) = \{\{4,1,3\},\{4,1,2\},\{4,2,3\}\}$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

 $\mathcal{B}(\mathcal{M}(G)) = \{\{4,1,3\},\{4,1,2\},\{4,2,3\}\}$ $\mathcal{B}(\mathcal{M}^*(G)) = \{\{2\},\{3\},\{1\}\}$

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.


```
 \begin{split} \mathcal{B}(\mathcal{M}(G)) &= \{\{4,1,3\},\{4,1,2\},\{4,2,3\}\} \\ \mathcal{B}(\mathcal{M}^*(G)) &= \{\{2\},\{3\},\{1\}\} \\ \mathcal{I}(\mathcal{M}^*(G)) &= \{\emptyset,\{1\},\{2\},\{3\}\} \end{split}
```

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

$$\begin{split} \mathcal{B}(\mathcal{M}(G)) &= \{\{4,1,3\},\{4,1,2\},\{4,2,3\}\}\\ \mathcal{B}(\mathcal{M}^*(G)) &= \{\{2\},\{3\},\{1\}\}\\ \mathcal{I}(\mathcal{M}^*(G)) &= \{\emptyset,\{1\},\{2\},\{3\}\}\\ \text{The dependents of } \mathcal{M}^*(G) \text{ are } \mathcal{P}(\{1,2,3,4\}) \setminus \{\emptyset,\{1\},\{2\},\{3\}\} \end{split}$$

J.L. Ramírez Alfonsín

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

$$\begin{split} \mathcal{B}(\mathcal{M}(G)) &= \{\{4,1,3\},\{4,1,2\},\{4,2,3\}\}\\ \mathcal{B}(\mathcal{M}^*(G)) &= \{\{2\},\{3\},\{1\}\}\\ \mathcal{I}(\mathcal{M}^*(G)) &= \{\emptyset,\{1\},\{2\},\{3\}\}\\ \text{The dependents of } \mathcal{M}^*(G) \text{ are } \mathcal{P}(\{1,2,3,4\}) \setminus \{\emptyset,\{1\},\{2\},\{3\}\}\\ \mathcal{C}(\mathcal{M}^*(G)) &= \{\{4\},\{1,2\},\{1,3\},\{2,3\}\} \text{ that are precisely the cocycles of } G. \end{split}$$

J.L. Ramírez Alfonsín

Theorem If G is planar then $M^*(G) = M(G^*)$.

J.L. Ramírez Alfonsín

Theorem If G is planar then $M^*(G) = M(G^*)$.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Theorem If G is planar then $M^*(G) = M(G^*)$.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Theorem If G is planar then $M^*(G) = M(G^*)$.

J.L. Ramírez Alfonsín

I3M, Université Montpellier 2

Theorem If G is planar then $M^*(G) = M(G^*)$.

Remark The dual of a graphic matroid is not necessarly graphic.

J.L. Ramírez Alfonsín

Theorem The dual of a $\mathbb F\text{-representable}$ matroid is $\mathbb F\text{-representable}.$

J.L. Ramírez Alfonsín

Theorem The dual of a \mathbb{F} -representable matroid is \mathbb{F} -representable. Proof. The matrix representing M can always be written as

 $(I_r \mid A)$

where I_r is the identity $r \times r$ and A is a matrix of size $r \times (n - r)$.

J.L. Ramírez Alfonsín Theory of matroids and applications : II Theorem The dual of a \mathbb{F} -representable matroid is \mathbb{F} -representable. Proof. The matrix representing M can always be written as

 $(I_r \mid A)$

where I_r is the identity $r \times r$ and A is a matrix of size $r \times (n - r)$. (Exercise) M^* can be obtained from the set of columns of the matrix

 $(-^{t}A \mid I_{n-r})$

where I_{n-r} is the identity $(n-r) \times (n-r)$ and ${}^{t}A$ is the transpose of A.

J.L. Ramírez Alfonsín

The matroid M^* is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces. The matroid M^* is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.

Let V be a subspace of \mathbb{F}^n where n = |E|. We recall that the orthogonal space V^{\perp} is defined from the canonical scalar product $\langle u, v \rangle = \sum_{e \in E} u(e)v(e)$ by

 $V^{\perp} = \{ v \in \mathbb{F}^n \mid \langle u, v \rangle = 0 \text{ for any } u \in V \}.$

The matroid M^* is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.

Let V be a subspace of \mathbb{F}^n where n = |E|. We recall that the orthogonal space V^{\perp} is defined from the canonical scalar product $\langle u, v \rangle = \sum_{e \in E} u(e)v(e)$ by

$$V^{\perp} = \{ v \in \mathbb{F}^n \mid \langle u, v \rangle = 0 \text{ for any } u \in V \}.$$

The orthogonal space of the space generated by the columns of $(I \mid A)$ is given by the space generated by the columns of $(-^{t}A \mid I_{n-r})$.

J.L. Ramírez Alfonsín