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Transversal Matroid

Let S = {e1, . . . , en} and let A = {A1, . . . ,Ak},Ai ⊆ S , n ≥ k .

A transversal of A is a subset {ej1 , . . . , ejk} of S such that eji ∈ Ai .

A set X ⊆ S is called partial transversal of A if there exists
{i1, . . . , il} ⊆ {1, . . . , k} such that X is a transversal of
{Ai1 , . . . ,Ail}.
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Transversal Matroid

Let G = (S ,A;E ) be a bipartite graph constructed from
S = {e1, . . . , en} and A = {A1, . . . ,Ak} and two vertices ei ∈ S ,
Aj ∈ A are adjacent if and only if ei ∈ Aj .

A matching in a graph is a set of edges without common vertices.

Partial transversal A correspond to matchings in G = (S ,A;E ).
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Transversal Matroid

E = {e1, . . . , e6} et A = {A1,A2,A3,A4} with A1 = {e1, e2, e6},
A2 = {e3, e4, e5, e6}, A3 = {e2, e3} and A4 = {e2, e4, e6}.
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{e1, e3, e2, e6} is a transversal of A.
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Transversal Matroid

E = {e1, . . . , e6} et A = {A1,A2,A3,A4} with A1 = {e1, e2, e6},
A2 = {e3, e4, e5, e6}, A3 = {e2, e3} et A4 = {e2, e4, e6}.
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X = {e6, e4, e2} is a partial transversal of A since X is a
transversal of {A1,A2,A3}.
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Transversal Matroid

Theorem Let S = {e1, . . . , en} and A = {A1, . . . ,Ak},Ai ⊆ S .
Then, the set of partial transversals of A is the set of independents
of a matroid.

Proof Exercise.

Such matroid is called transversal matroid.
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Application 2 : Assignment problem

Let {Ti} be a set of tasks ordered according to their importance
(priority).

Let {Ei} be a set of agents each able to perform one or more of
the these tasks.

The tasks are all done at the same time (and thus each agent can
perform one task at the time).

Problem : Assign the tasks to the agents in an optimal way
(maximizing the priorities).
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Application 2 : Assignment problem

- tasks : {t1, t2, t3, t4}.

- priorities : w(t1) = 10,w(t2) = 3,w(t3) = 3 et w(t4) = 5.
- agents :
e1 able to perform tasks t1 et t2,
e2 able to perform tasks t2 et t3,
e3 able to perform tasks t4.

- Transversal Matroid M = (I, {t1, t2, t3, t4}) where I is given by
the set of matchings of the bipartite graph G = (U,V ;E ) with
U = {t1, t2, t3, t4}, V = {e1, e2, e3}.
- By applying the greedy algorithm to M we have
X0 = ∅,X1 = {t1},X2 = {t1, t4} and X3 = {t1, t4, t2}.
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Duality

Let M be a matroid on the ground set E and let B the set of bases
of M. Then,

B∗ = {E\B | B ∈ B}

is the set of bases of a matroid on E .

The matroid on E having B∗ as set of bases, denoted by M∗, is
called the dual of M.

A base of M∗ is also called cobase of M.
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Duality

We have that

• r(M∗) = |E | − rM and M∗∗ = M.

• The set I∗ of independents of M∗ is given by

I∗ = {X | X ⊂ E such that there exists B ∈ B(M) with X∩B = ∅}.

• The rank function of M∗ is given by

rM∗(X ) = |X |+ rM(E\X )− rM ,

for X ⊂ E .
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Cocycle Matroid

Let G = (V ,E ) be a graph. A cocycle (or cut) of G is the set of
edges joining the two parts of a partition of the set of vertices of
the graph.

Theorem Let C(G )∗ be the set of minimal (by inclusion) cocycles
of a graph G . Then, C(G )∗ is the set of circuits of a matroid on E .

The matroid obtained on this way is called the matroid of cocycle
of G or bond matroid, denoted by B(G ).
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Bond Matroid

Theorem M∗(G ) = B(G ) and M(G ) = B∗(G ).

1 3

4

2

B(M(G )) = {{4, 1, 3}, {4, 1, 2}, {4, 2, 3}}
B(M∗(G )) = {{2}, {3}, {1}}
I(M∗(G )) = {∅, {1}, {2}, {3}}
The dependents of M∗(G ) are P({1, 2, 3, 4}) \ {∅, {1}, {2}, {3}}
C(M∗(G )) = {{4}, {1, 2}, {1, 3}, {2, 3}} that are precisely the
cocycles of G .
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Theory of matroids and applications : II



Bond Matroid

Theorem M∗(G ) = B(G ) and M(G ) = B∗(G ).

1 3

4

2

B(M(G )) = {{4, 1, 3}, {4, 1, 2}, {4, 2, 3}}
B(M∗(G )) = {{2}, {3}, {1}}
I(M∗(G )) = {∅, {1}, {2}, {3}}
The dependents of M∗(G ) are P({1, 2, 3, 4}) \ {∅, {1}, {2}, {3}}
C(M∗(G )) = {{4}, {1, 2}, {1, 3}, {2, 3}} that are precisely the
cocycles of G .
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Planarity

Theorem If G is planar then M∗(G ) = M(G ∗).

1 2

3

4

5
6
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Theory of matroids and applications : II



Planarity

Theorem If G is planar then M∗(G ) = M(G ∗).
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Remark The dual of a graphic matroid is not necessarly graphic.

J.L. Raḿırez Alfonśın I3M, Université Montpellier 2
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Duality - representable matroid

Theorem The dual of a F-representable matroid is F-representable.

Proof. The matrix representing M can always be written as

(Ir | A)

where Ir is the identity r × r and A is a matrix of size r × (n − r).

(Exercise) M∗ can be obtained from the set of columns of the
matrix

(−tA | In−r )

where In−r is the identity (n− r)× (n− r) and tA is the transpose
of A.
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Duality - representable matroid

The matroid M∗ is also called the orthogonal matroid of M since
the duality for representable matroids is a generalization of the
notion of orthogonality in vector spaces.

Let V be a subspace of Fn where n = |E |. We recall that the
orthogonal space V⊥ is defined from the canonical scalar product
〈u, v〉 =

∑
e∈E u(e)v(e) by

V⊥ = {v ∈ Fn | 〈u, v〉 = 0 for any u ∈ V }.

The orthogonal space of the space generated by the columns of
(I | A) is given by the space generated by the columns of
(−tA | In−r ).
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Let V be a subspace of Fn where n = |E |. We recall that the
orthogonal space V⊥ is defined from the canonical scalar product
〈u, v〉 =

∑
e∈E u(e)v(e) by

V⊥ = {v ∈ Fn | 〈u, v〉 = 0 for any u ∈ V }.

The orthogonal space of the space generated by the columns of
(I | A) is given by the space generated by the columns of
(−tA | In−r ).
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Theory of matroids and applications : II


