Theory of matroids and applications : II

J.L. Ram´ırez Alfons´ın

I3M, Université Montpellier 2

CIMPA school: Modern Methods in Combinatorics ECOS 2013,

San Luis, Argentina, August 2, 2013

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 [Theory of matroids and applications : II](#page-47-0)

Let $S = \{e_1, \ldots, e_n\}$ and let $\mathcal{A} = \{A_1, \ldots, A_k\}, A_i \subseteq S, n \geq k$.

J.L. Ramírez Alfonsín a strong a [Theory of matroids and applications : II](#page-0-0)

Let $S = \{e_1, \ldots, e_n\}$ and let $\mathcal{A} = \{A_1, \ldots, A_k\}, A_i \subseteq S, n \geq k$. A transversal of $\mathcal A$ is a subset $\{e_{j_1},\ldots,e_{j_k}\}$ of S such that $e_{j_i}\in\mathcal A_i.$ Let $S = \{e_1, ..., e_n\}$ and let $A = \{A_1, ..., A_k\}, A_i \subseteq S, n \geq k$. A transversal of $\mathcal A$ is a subset $\{e_{j_1},\ldots,e_{j_k}\}$ of S such that $e_{j_i}\in\mathcal A_i.$ A set $X \subseteq S$ is called partial transversal of A if there exists $\{i_1, \ldots, i_l\} \subseteq \{1, \ldots, k\}$ such that X is a transversal of ${A_{i_1}, \ldots, A_{i_l}}.$

Let $G = (S, A; E)$ be a bipartite graph constructed from $S = \{e_1, \ldots, e_n\}$ and $\mathcal{A} = \{A_1, \ldots, A_k\}$ and two vertices $e_i \in S$, $A_j\in\mathcal{A}$ are adjacent if and only if $e_i\in A_j.$

Let $G = (S, A; E)$ be a bipartite graph constructed from $S = \{e_1, \ldots, e_n\}$ and $\mathcal{A} = \{A_1, \ldots, A_k\}$ and two vertices $e_i \in S$, $A_j\in\mathcal{A}$ are adjacent if and only if $e_i\in A_j.$ A matching in a graph is a set of edges without common vertices. Partial transversal A correspond to matchings in $G = (S, A; E)$.

$$
E = \{e_1, \ldots, e_6\} \text{ et } A = \{A_1, A_2, A_3, A_4\} \text{ with } A_1 = \{e_1, e_2, e_6\},
$$

$$
A_2 = \{e_3, e_4, e_5, e_6\}, A_3 = \{e_2, e_3\} \text{ and } A_4 = \{e_2, e_4, e_6\}.
$$

$$
E = \{e_1, \ldots, e_6\} \text{ et } A = \{A_1, A_2, A_3, A_4\} \text{ with } A_1 = \{e_1, e_2, e_6\},
$$

$$
A_2 = \{e_3, e_4, e_5, e_6\}, A_3 = \{e_2, e_3\} \text{ and } A_4 = \{e_2, e_4, e_6\}.
$$

J.L. Ramírez Alfonsín III. II. Announce a component a component a component and the Montpellier 2

 $E = \{e_1, \ldots, e_6\}$ et $\mathcal{A} = \{A_1, A_2, A_3, A_4\}$ with $A_1 = \{e_1, e_2, e_6\}$, $A_2 = \{e_3, e_4, e_5, e_6\}, A_3 = \{e_2, e_3\}$ et $A_4 = \{e_2, e_4, e_6\}.$

$$
\{e_1, e_3, e_2, e_6\}
$$
 is a transversal of A.

 $E = \{e_1, \ldots, e_6\}$ et $\mathcal{A} = \{A_1, A_2, A_3, A_4\}$ with $A_1 = \{e_1, e_2, e_6\}$, $A_2 = \{e_3, e_4, e_5, e_6\}, A_3 = \{e_2, e_3\}$ et $A_4 = \{e_2, e_4, e_6\}.$

 $X = \{e_6, e_4, e_2\}$ is a partial transversal of A since X is a transversal of $\{A_1, A_2, A_3\}$.

[Theory of matroids and applications : II](#page-0-0)

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

Theorem Let $S = \{e_1, \ldots, e_n\}$ and $\mathcal{A} = \{A_1, \ldots, A_k\}, A_i \subseteq S$. Then, the set of partial transversals of A is the set of independents of a matroid.

Theorem Let $S = \{e_1, \ldots, e_n\}$ and $\mathcal{A} = \{A_1, \ldots, A_k\}, A_i \subseteq S$. Then, the set of partial transversals of A is the set of independents of a matroid.

Proof Exercise.

Theorem Let $S = \{e_1, \ldots, e_n\}$ and $\mathcal{A} = \{A_1, \ldots, A_k\}, A_i \subseteq S$. Then, the set of partial transversals of $\mathcal A$ is the set of independents of a matroid.

Proof Exercise.

Such matroid is called transversal matroid.

Let $\{T_i\}$ be a set of tasks ordered according to their importance (priority).

Let $\{T_i\}$ be a set of tasks ordered according to their importance (priority). Let ${E_i}$ be a set of agents each able to perform one or more of the these tasks.

- Let $\{T_i\}$ be a set of tasks ordered according to their importance (priority).
- Let ${E_i}$ be a set of agents each able to perform one or more of the these tasks.
- The tasks are all done at the same time (and thus each agent can perform one task at the time).
- Let $\{T_i\}$ be a set of tasks ordered according to their importance (priority).
- Let ${E_i}$ be a set of agents each able to perform one or more of the these tasks.
- The tasks are all done at the same time (and thus each agent can perform one task at the time).
- Problem : Assign the tasks to the agents in an optimal way (maximizing the priorities).

- tasks : $\{t_1, t_2, t_3, t_4\}$.

- tasks : $\{t_1, t_2, t_3, t_4\}$.
- priorities : $w(t_1) = 10, w(t_2) = 3, w(t_3) = 3$ et $w(t_4) = 5$.

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 [Theory of matroids and applications : II](#page-0-0)

- tasks : $\{t_1, t_2, t_3, t_4\}$.
- priorities : $w(t_1) = 10, w(t_2) = 3, w(t_3) = 3$ et $w(t_4) = 5$.
- agents :
- e_1 able to perform tasks t_1 et t_2 ,
- e₂ able to perform tasks t_2 et t_3 ,
- e_3 able to perform tasks t_4 .

- tasks : $\{t_1, t_2, t_3, t_4\}$.
- priorities : $w(t_1) = 10, w(t_2) = 3, w(t_3) = 3$ et $w(t_4) = 5$.
- agents :
- e_1 able to perform tasks t_1 et t_2 ,
- e₂ able to perform tasks t_2 et t_3 ,
- e_3 able to perform tasks t_4 .

- Transversal Matroid $M = (\mathcal{I}, \{t_1, t_2, t_3, t_4\})$ where $\mathcal I$ is given by the set of matchings of the bipartite graph $G = (U, V; E)$ with $U = \{t_1, t_2, t_3, t_4\}, V = \{e_1, e_2, e_3\}.$

- tasks : $\{t_1, t_2, t_3, t_4\}$.
- priorities : $w(t_1) = 10, w(t_2) = 3, w(t_3) = 3$ et $w(t_4) = 5$.
- agents :
- e_1 able to perform tasks t_1 et t_2 ,
- e₂ able to perform tasks t_2 et t_3 .
- e_3 able to perform tasks t_4 .
- Transversal Matroid $M = (\mathcal{I}, \{t_1, t_2, t_3, t_4\})$ where $\mathcal I$ is given by the set of matchings of the bipartite graph $G = (U, V; E)$ with $U = \{t_1, t_2, t_3, t_4\}, V = \{e_1, e_2, e_3\}.$
- By applying the greedy algorithm to M we have $X_0 = \emptyset, X_1 = \{t_1\}, X_2 = \{t_1, t_4\}$ and $X_3 = \{t_1, t_4, t_2\}.$

Let M be a matroid on the ground set E and let β the set of bases of M. Then,

 $\mathcal{B}^* = \{E \setminus B \mid B \in \mathcal{B}\}$

is the set of bases of a matroid on F .

Let M be a matroid on the ground set E and let β the set of bases of M. Then,

 $\mathcal{B}^* = \{E \setminus B \mid B \in \mathcal{B}\}$

is the set of bases of a matroid on F .

The matroid on E having \mathcal{B}^* as set of bases, denoted by M^* , is called the dual of M.

A base of M^* is also called cobase of M .

Duality

We have that

• $r(M^*) = |E| - r_M$ and $M^{**} = M$.

J.L. Ramírez Alfonsín a strong a [Theory of matroids and applications : II](#page-0-0)

Duality

We have that

- $r(M^*) = |E| r_M$ and $M^{**} = M$.
- The set \mathcal{I}^* of independents of M^* is given by

 $\mathcal{I}^* = \{ X \mid X \subset E \text{ such that there exists } B \in \mathcal{B}(M) \text{ with } X \cap B = \emptyset \}.$

Duality

We have that

- $r(M^*) = |E| r_M$ and $M^{**} = M$.
- The set \mathcal{I}^* of independents of M^* is given by

 $\mathcal{I}^* = \{ X \mid X \subset E \text{ such that there exists } B \in \mathcal{B}(M) \text{ with } X \cap B = \emptyset \}.$

• The rank function of M^{*} is given by

$$
r_{M^*}(X)=|X|+r_M(E\backslash X)-r_M,
$$

for $X \subset F$.

Let $G = (V, E)$ be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

Let $G = (V, E)$ be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

Theorem Let $C(G)^*$ be the set of minimal (by inclusion) cocycles of a graph G. Then, $\mathcal{C}(G)^*$ is the set of circuits of a matroid on $E.$ Let $G = (V, E)$ be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

Theorem Let $C(G)^*$ be the set of minimal (by inclusion) cocycles of a graph G. Then, $\mathcal{C}(G)^*$ is the set of circuits of a matroid on $E.$ The matroid obtained on this way is called the matroid of cocycle of G or bond matroid, denoted by $B(G)$.

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

 $\mathcal{B}(M(G)) = \{\{4, 1, 3\}, \{4, 1, 2\}, \{4, 2, 3\}\}\$

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

 $\mathcal{B}(M(G)) = \{\{4, 1, 3\}, \{4, 1, 2\}, \{4, 2, 3\}\}\$ $\mathcal{B}(M^*(G)) = \{\{2\},\{3\},\{1\}\}\$

J.L. Ramírez Alfonsín a strong in the Montpellier 2

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.


```
\mathcal{B}(M(G)) = \{\{4, 1, 3\}, \{4, 1, 2\}, \{4, 2, 3\}\}\\mathcal{B}(M^*(G)) = \{\{2\},\{3\},\{1\}\}\\mathcal{I}(M^*(G)) = \{ \emptyset, \{1\}, \{2\}, \{3\} \}
```
J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

 $\mathcal{B}(M(G)) = \{\{4, 1, 3\}, \{4, 1, 2\}, \{4, 2, 3\}\}\$ $\mathcal{B}(M^*(G)) = \{\{2\},\{3\},\{1\}\}\$ $\mathcal{I}(M^*(G)) = \{ \emptyset, \{1\}, \{2\}, \{3\} \}$ The dependents of $M^*(G)$ are $\mathcal{P}(\{1, 2, 3, 4\}) \setminus \{\emptyset, \{1\}, \{2\}, \{3\}\}\$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

 $\mathcal{B}(M(G)) = \{\{4, 1, 3\}, \{4, 1, 2\}, \{4, 2, 3\}\}\$ $\mathcal{B}(M^*(G)) = \{\{2\},\{3\},\{1\}\}\$ $\mathcal{I}(M^*(G)) = \{ \emptyset, \{1\}, \{2\}, \{3\} \}$ The dependents of $M^*(G)$ are $\mathcal{P}(\{1, 2, 3, 4\}) \setminus \{\emptyset, \{1\}, \{2\}, \{3\}\}\$ $\mathcal{C}(M^*(G)) = \{\{4\}, \{1,2\}, \{1,3\}, \{2,3\}\}$ that are precisely the cocycles of G.

Theorem If G is planar then $M^*(G) = M(G^*)$.

Theorem If G is planar then $M^*(G) = M(G^*)$.

J.L. Ramírez Alfonsín i a statem a sta

Theorem If G is planar then $M^*(G) = M(G^*)$.

J.L. Ramírez Alfonsín i a statem a sta

Theorem If G is planar then $M^*(G) = M(G^*)$.

J.L. Ramírez Alfonsín i a statem a sta

Theorem If G is planar then $M^*(G) = M(G^*)$.

Remark The dual of a graphic matroid is not necessarly graphic.

Theorem The dual of a $\mathbb F$ -representable matroid is $\mathbb F$ -representable.

J.L. Ramírez Alfonsín a strong a [Theory of matroids and applications : II](#page-0-0)

Theorem The dual of a $\mathbb F$ -representable matroid is $\mathbb F$ -representable. Proof. The matrix representing M can always be written as $(I_r | A)$

where I_r is the identity $r \times r$ and A is a matrix of size $r \times (n-r)$.

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 [Theory of matroids and applications : II](#page-0-0)

Theorem The dual of a $\mathbb F$ -representable matroid is $\mathbb F$ -representable. Proof. The matrix representing M can always be written as

 $(I_r | A)$

where I_r is the identity $r \times r$ and A is a matrix of size $r \times (n-r)$. (Exercise) M^* can be obtained from the set of columns of the matrix

 $\left(-\frac{t}{A} \mid I_{n-r}\right)$

where I_{n-r} is the identity $(n-r)\times (n-r)$ and tA is the transpose of A.

The matroid M^* is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.

The matroid M^* is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.

Let V be a subspace of \mathbb{F}^n where $n = |E|$. We recall that the orthogonal space V^\perp is defined from the canonical scalar product $\langle u, v \rangle = \sum_{e \in E} u(e) v(e)$ by

 $V^{\perp} = \{v \in \mathbb{F}^n \mid \langle u, v \rangle = 0 \text{ for any } u \in V\}.$

The matroid M^* is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.

Let V be a subspace of \mathbb{F}^n where $n = |E|$. We recall that the orthogonal space V^\perp is defined from the canonical scalar product $\langle u, v \rangle = \sum_{e \in E} u(e) v(e)$ by

 $V^{\perp} = \{v \in \mathbb{F}^n \mid \langle u, v \rangle = 0 \text{ for any } u \in V\}.$

The orthogonal space of the space generated by the columns of $(I | A)$ is given by the space generated by the columns of $(-tA \mid I_{n-r}).$