Theory of matroids and applications : II

J.L. Ramírez Alfonsín¹

Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, France

Universidade de São Paulo, Departamento da Ciência de Computação

São Paulo, Brasil, August, 2015

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

^{1.} Supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo, grant 2015/10323-7.

Let M be a matroid on the ground set E and let \mathcal{B} the set of bases of M. Then,

 $\mathcal{B}^* = \{ E \setminus B \mid B \in \mathcal{B} \}$

is the set of bases of a matroid on E.

Let M be a matroid on the ground set E and let \mathcal{B} the set of bases of M. Then,

 $\mathcal{B}^* = \{ E \setminus B \mid B \in \mathcal{B} \}$

is the set of bases of a matroid on E.

The matroid on *E* having \mathcal{B}^* as set of bases, denoted by M^* , is called the dual of *M*.

A base of M^* is also called cobase of M.

Duality

We have that

• $r(M^*) = |E| - r_M$ and $M^{**} = M$.

J.L. Ramírez Alfonsín

Duality

We have that

- $r(M^*) = |E| r_M$ and $M^{**} = M$.
- The set \mathcal{I}^* of independents of M^* is given by

 $\mathcal{I}^* = \{X \mid X \subset E \text{ such that there exists } B \in \mathcal{B}(M) \text{ with } X \cap B = \emptyset\}.$

Duality

We have that

- $r(M^*) = |E| r_M$ and $M^{**} = M$.
- The set \mathcal{I}^* of independents of M^* is given by

 $\mathcal{I}^* = \{X \mid X \subset E \text{ such that there exists } B \in \mathcal{B}(M) \text{ with } X \cap B = \emptyset\}.$

• The rank function of M^* is given by

 $r_{M^*}(X) = |X| + r_M(E \setminus X) - r_M,$

for $X \subset E$.

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Let G = (V, E) be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

Let G = (V, E) be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

Theorem Let $\mathcal{C}(G)^*$ be the set of minimal (by inclusion) cocycles of a graph G. Then, $\mathcal{C}(G)^*$ is the set of circuits of a matroid on E.

Let G = (V, E) be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

Theorem Let $\mathcal{C}(G)^*$ be the set of minimal (by inclusion) cocycles of a graph G. Then, $\mathcal{C}(G)^*$ is the set of circuits of a matroid on E. The matroid obtained on this way is called the matroid of cocycle of G or bond matroid, denoted by B(G).

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

J.L. Ramírez Alfonsín

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

 $\mathcal{B}(M(G)) = \{\{4,1,3\},\{4,1,2\},\{4,2,3\}\}$

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

 $\mathcal{B}(\mathcal{M}(G)) = \{\{4,1,3\},\{4,1,2\},\{4,2,3\}\}$ $\mathcal{B}(\mathcal{M}^*(G)) = \{\{2\},\{3\},\{1\}\}$

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.


```
 \begin{split} \mathcal{B}(\mathcal{M}(G)) &= \{\{4,1,3\},\{4,1,2\},\{4,2,3\}\} \\ \mathcal{B}(\mathcal{M}^*(G)) &= \{\{2\},\{3\},\{1\}\} \\ \mathcal{I}(\mathcal{M}^*(G)) &= \{\emptyset,\{1\},\{2\},\{3\}\} \end{split}
```

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

$$\begin{split} \mathcal{B}(\mathcal{M}(G)) &= \{\{4,1,3\},\{4,1,2\},\{4,2,3\}\}\\ \mathcal{B}(\mathcal{M}^*(G)) &= \{\{2\},\{3\},\{1\}\}\\ \mathcal{I}(\mathcal{M}^*(G)) &= \{\emptyset,\{1\},\{2\},\{3\}\}\\ \text{The dependents of } \mathcal{M}^*(G) \text{ are } \mathcal{P}(\{1,2,3,4\}) \setminus \{\emptyset,\{1\},\{2\},\{3\}\} \end{split}$$

J.L. Ramírez Alfonsín

Theorem $M^*(G) = B(G)$ and $M(G) = B^*(G)$.

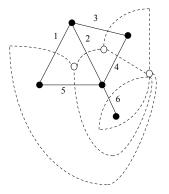
$$\begin{split} \mathcal{B}(\mathcal{M}(G)) &= \{\{4,1,3\},\{4,1,2\},\{4,2,3\}\} \\ \mathcal{B}(\mathcal{M}^*(G)) &= \{\{2\},\{3\},\{1\}\} \\ \mathcal{I}(\mathcal{M}^*(G)) &= \{\emptyset,\{1\},\{2\},\{3\}\} \\ \text{The dependents of } \mathcal{M}^*(G) \text{ are } \mathcal{P}(\{1,2,3,4\}) \setminus \{\emptyset,\{1\},\{2\},\{3\}\} \\ \mathcal{C}(\mathcal{M}^*(G)) &= \{\{4\},\{1,2\},\{1,3\},\{2,3\}\} \text{ that are precisely the cocycles of } G. \end{split}$$

J.L. Ramírez Alfonsín

Theorem If G is planar then $M^*(G) = M(G^*)$.

J.L. Ramírez Alfonsín

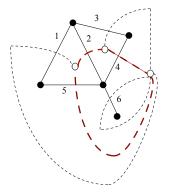
Theorem If G is planar then $M^*(G) = M(G^*)$.



J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

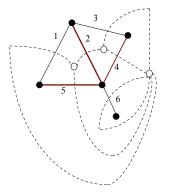
Theorem If G is planar then $M^*(G) = M(G^*)$.



J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

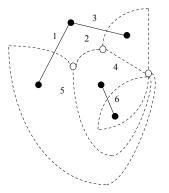
Theorem If G is planar then $M^*(G) = M(G^*)$.



J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Theorem If G is planar then $M^*(G) = M(G^*)$.



Remark The dual of a graphic matroid is not necessarly graphic.

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Theorem The dual of a $\mathbb F\text{-representable}$ matroid is $\mathbb F\text{-representable}.$

J.L. Ramírez Alfonsín

Theorem The dual of a \mathbb{F} -representable matroid is \mathbb{F} -representable. Proof. The matrix representing M can always be written as

 $(I_r \mid A)$

where I_r is the identity $r \times r$ and A is a matrix of size $r \times (n - r)$.

J.L. Ramírez Alfonsín Theory of matroids and applications : II IMAG, Université de Montpellier

Theorem The dual of a \mathbb{F} -representable matroid is \mathbb{F} -representable. Proof. The matrix representing M can always be written as

 $(I_r \mid A)$

where I_r is the identity $r \times r$ and A is a matrix of size $r \times (n-r)$. (Exercise) M^* can be obtained from the set of columns of the matrix

 $(-^{t}A \mid I_{n-r})$

where I_{n-r} is the identity $(n-r) \times (n-r)$ and ${}^{t}A$ is the transpose of A.

J.L. Ramírez Alfonsín

The matroid M^* is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.

The matroid M^* is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.

Let V be a subspace of \mathbb{F}^n where n = |E|. We recall that the orthogonal space V^{\perp} is defined from the canonical scalar product $\langle u, v \rangle = \sum_{e \in E} u(e)v(e)$ by

 $V^{\perp} = \{ v \in \mathbb{F}^n \mid \langle u, v \rangle = 0 \text{ for any } u \in V \}.$

J.L. Ramírez Alfonsín

The matroid M^* is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.

Let V be a subspace of \mathbb{F}^n where n = |E|. We recall that the orthogonal space V^{\perp} is defined from the canonical scalar product $\langle u, v \rangle = \sum_{e \in E} u(e)v(e)$ by

$$V^{\perp} = \{ v \in \mathbb{F}^n \mid \langle u, v \rangle = 0 \text{ for any } u \in V \}.$$

The orthogonal space of the space generated by the columns of $(I \mid A)$ is given by the space generated by the columns of $(-^{t}A \mid I_{n-r})$.

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Let M be a matroid on the set E and let $A \subset E$. Then, $\{X \subset E \setminus A \mid X \text{ is independent in } M\}$

is a set of independent of a matroid on $E \setminus A$.

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Let *M* be a matroid on the set *E* and let $A \subset E$. Then,

 ${X \subset E \setminus A \mid X \text{ is independent in } M}$

is a set of independent of a matroid on $E \setminus A$. This matroid is obtained from M by deleting the elements of A and it is denoted by $M \setminus A$. Let *M* be a matroid on the set *E* and let $A \subset E$. Then,

 $\{X \subset E \setminus A \mid X \text{ is independent in } M\}$

is a set of independent of a matroid on $E \setminus A$.

This matroid is obtained from M by deleting the elements of A and it is denoted by $M \setminus A$.

Proposition

(*i*) The circuits of $M \setminus A$ are the circuits of M contained in $E \setminus A$. (*ii*) For $X \subset E \setminus A$ we have $r_{M \setminus A}(X) = r_M(X)$. Let *M* be a matroid on the set *E* and let $A \subset E$. Let $M|_A = \{X \subseteq A | X \in \mathcal{I}(M)\}$ and $X \subseteq E \setminus A$. Then,

 $\{X \subseteq E \setminus A | \text{ there exists a base } B \text{ of } M|_A \text{ such that } X \cup B \in \mathcal{I}(M) \}$

is the set of independents of a matroid in $E \setminus A$.

J.L. Ramírez Alfonsín Theory of matroids and applications : II

- Let *M* be a matroid on the set *E* and let $A \subset E$. Let $M|_A = \{X \subseteq A | X \in \mathcal{I}(M)\}$ and $X \subseteq E \setminus A$. Then,
- $\{X \subseteq E \setminus A | \text{ there exists a base } B \text{ of } M|_A \text{ such that } X \cup B \in \mathcal{I}(M) \}$
- is the set of independents of a matroid in $E \setminus A$.
- This matroid is obtained from M by contracting the elements of A and it is denoted by M/A.

- Let *M* be a matroid on the set *E* and let $A \subset E$. Let $M|_A = \{X \subseteq A | X \in \mathcal{I}(M)\}$ and $X \subseteq E \setminus A$. Then,
- $\{X \subseteq E \setminus A | \text{ there exists a base } B \text{ of } M|_A \text{ such that } X \cup B \in \mathcal{I}(M) \}$
- is the set of independents of a matroid in $E \setminus A$.
- This matroid is obtained from M by contracting the elements of A and it is denoted by M/A.

Proposition

(*i*) The circuits of M/A are the non-empty minimal (by inclusion) sets of the form $C \setminus A$ where C is a circuit of M.

(ii) For $X \subset E \setminus A$ we have $r_{M/A}(X) = r_M(X \cup A) - r_M(A)$.

Operations : deletion and contraction

Properties (i) $(M \setminus A) \setminus A' = M \setminus (A \cup A')$ (ii) $(M/A)/A' = M/(A \cup A')$ (iii) $(M \setminus A)/A' = (M/A') \setminus A$

J.L. Ramírez Alfonsín

Theory of matroids and applications : II

IMAG, Université de Montpellier

Operations : deletion and contraction

Properties (i) $(M \setminus A) \setminus A' = M \setminus (A \cup A')$ (ii) $(M/A)/A' = M/(A \cup A')$ (iii) $(M \setminus A)/A' = (M/A') \setminus A$

Proof : (i) and (ii) are immediate by using the rank function.

J.L. Ramírez Alfonsín Theory of matroids and applications : II IMAG, Université de Montpellier

Operations : deletion and contraction

Properties (i) $(M \setminus A) \setminus A' = M \setminus (A \cup A')$ (ii) $(M/A)/A' = M/(A \cup A')$ (iii) $(M \setminus A)/A' = (M/A') \setminus A$ Proof : (i) and (ii) are immediate by using the rank function. For (iii), we show that $r_{(M/A) \setminus A'} = r_{(M \setminus A')/A}$. Let $X \subset E \setminus (A \cup A')$, then

$$r_{(M/A)\setminus A'}(X) = r_{(M/A)}(X) = r_M(X \cup A) - r_M(A)$$

= $r_{M\setminus A'}(X \cup A) - r_M(A) = r_{(M\setminus A')/A}$

J.L. Ramírez Alfonsín

Operations : deletion and contraction

The operations deletion and contraction are duals, that is,

 $(M \backslash A)^* = (M^*) / A$ and $(M / A)^* = (M^*) \backslash A$

J.L. Ramírez Alfonsín

Operations : deletion and contraction

The operations deletion and contraction are duals, that is,

 $(M \setminus A)^* = (M^*)/A$ and $(M/A)^* = (M^*) \setminus A$

and thus,

 $M/A = (M^* \setminus A)^*$

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Operations : deletion and contraction

The operations deletion and contraction are duals, that is,

$$(M \setminus A)^* = (M^*)/A$$
 and $(M/A)^* = (M^*) \setminus A$

and thus,

$$M/A = (M^* \setminus A)^*$$

A minor of a matroid of M is any matroid obtained by a sequence of deletions and contractions.

IMAG, Université de Montpellier

The operations deletion and contraction are duals, that is,

$$(M \backslash A)^* = (M^*) / A$$
 and $(M / A)^* = (M^*) \backslash A$

and thus,

$$M/A = (M^* \setminus A)^*$$

A minor of a matroid of M is any matroid obtained by a sequence of deletions and contractions.

Question : Is it true that any family of matroids is closed under deletions/contractions operations?

$$\mathcal{B}(U_{n,r}) = \{X \subset E : |X| = r\}$$

$$\mathcal{B}(U_{n,r}) = \{X \subset E : |X| = r\}$$

Proposition Any minor of a uniform matroid is uniform.

J.L. Ramírez Alfonsín Theory of matroids and applications : II

$$\mathcal{B}(U_{n,r}) = \{X \subset E : |X| = r\}$$

Proposition Any minor of a uniform matroid is uniform. Proof <u>Deletion</u> : let $T \subseteq E$ with |T| = t. Then,

$$U_{n,r} \setminus T = \begin{cases} U_{n-t,n-t} & \text{if } n \ge t \ge n-r \\ U_{n-t,r} & \text{if } t < n-r. \end{cases}$$

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

$$\mathcal{B}(U_{n,r}) = \{X \subset E : |X| = r\}$$

Proposition Any minor of a uniform matroid is uniform. Proof <u>Deletion</u> : let $T \subseteq E$ with |T| = t. Then,

$$U_{n,r} \setminus T = \begin{cases} U_{n-t,n-t} & \text{if } n \ge t \ge n-r \\ U_{n-t,r} & \text{if } t < n-r. \end{cases}$$

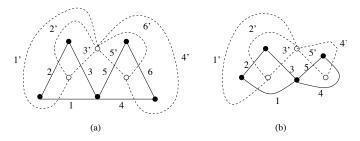
Contraction : it follows by using duality.

J.L. Ramírez Alfonsín

Proposition The class of graphic matroids is closed under deletions and contractions.

Minors - graphic matroids

Proposition The class of graphic matroids is closed under deletions and contractions.



Contracting element 6

Proposition The class of representable matroids over a field $\mathbb F$ is closed under deletions and contractions.

J.L. Ramírez Alfonsín

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions. Let M be a matroid obtained from the vectors $(v_e)_{e \in E}$ of \mathbb{F}^d . Deleting : $M \setminus a$ is the matroid obtained from the vectors $(v_e)_{e \in E \setminus a}$

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions. Let M be a matroid obtained from the vectors $(v_e)_{e \in E}$ of \mathbb{F}^d . Deleting : $M \setminus a$ is the matroid obtained from the vectors $(v_e)_{e \in E \setminus a}$ Remark : Lines sums and scalar multiplications do not change the associated matroid. So, if $v_a \neq \overline{0}$ then we suppose that v_a is the <u>unit vector</u>.

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.

Let M be a matroid obtained from the vectors $(v_e)_{e \in E}$ of \mathbb{F}^d . Deleting : $M \setminus a$ is the matroid obtained from the vectors $(v_e)_{e \in E \setminus a}$ Remark : Lines sums and scalar multiplications do not change the associated matroid. So, if $v_a \neq \overline{0}$ then we suppose that v_a is the <u>unit vector</u>.

Contracting : M/a is the matroid obtained from the vectors $(v'_e)_{e \in E \setminus a}$ where v'_e is the vector obtained from v_e by deleting the non zero entry of v_a .

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.

Let M be a matroid obtained from the vectors $(v_e)_{e \in E}$ of \mathbb{F}^d . Deleting : $M \setminus a$ is the matroid obtained from the vectors

 $(v_e)_{e \in E \setminus a}$

Remark : Lines sums and scalar multiplications do not change the associated matroid. So, if $v_a \neq \overline{0}$ then we suppose that v_a is the <u>unit vector</u>.

Contracting : M/a is the matroid obtained from the vectors $(v'_e)_{e \in E \setminus a}$ where v'_e is the vector obtained from v_e by deleting the non zero entry of v_a .

• If we change the nonzero component we obtain another representation of M/a.

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.

Let M be a matroid obtained from the vectors $(v_e)_{e \in E}$ of \mathbb{F}^d . Deleting : $M \setminus a$ is the matroid obtained from the vectors

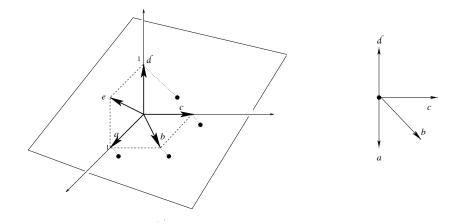
 $(v_e)_{e \in E \setminus a}$

Remark : Lines sums and scalar multiplications do not change the associated matroid. So, if $v_a \neq \overline{0}$ then we suppose that v_a is the <u>unit vector</u>.

Contracting : M/a is the matroid obtained from the vectors $(v'_e)_{e \in E \setminus a}$ where v'_e is the vector obtained from v_e by deleting the non zero entry of v_a .

• If we change the nonzero component we obtain another representation of M/a.

• If $v_a = \overline{0}$ then *a* is a loop of *M* and thus $M/a = M \setminus a$.



J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Minors - transversal matroids

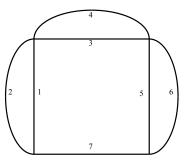
The class of transversal matroids is $\underline{\mathsf{NOT}}$ closed under deletions and contractions.

J.L. Ramírez Alfonsín

Minors - transversal matroids

The class of transversal matroids is $\underline{\mathsf{NOT}}$ closed under deletions and contractions.

The matroid M(G) is transversal (with $A_1 = \{1, 2, 7\}$, $A_2 = \{3, 4, 7\}, A_3 = \{5, 6, 7\}$). However, M(G/7) is not transversal.



J.L. Ramírez Alfonsín

For any field \mathbb{F} , there exists a list of excluded minors, that is, nonrepresentable matroids over \mathbb{F} but any of its proper minors is representable over \mathbb{F} .

For any field \mathbb{F} , there exists a list of excluded minors, that is, nonrepresentable matroids over \mathbb{F} but any of its proper minors is representable over \mathbb{F} .

Determining the list of excluded minors over \mathbb{F} gives a characterization of the matroids representables over \mathbb{F} .

For any field \mathbb{F} , there exists a list of excluded minors, that is, nonrepresentable matroids over \mathbb{F} but any of its proper minors is representable over \mathbb{F} .

Determining the list of excluded minors over \mathbb{F} gives a characterization of the matroids representables over \mathbb{F} .

For $\mathbb{F} = GF(2) = \mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ (binary matroids) : the list has only one matroid $U_{2,4}$ (3 pages proof)

 $\mathcal{B}(U_{2,4}) = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$

J.L. Ramírez Alfonsín

J.L. Ramírez Alfonsín

Theory of matroids and applications : II

IMAG, Université de Montpellier

For $\mathbb{F} = GF(4)$: the list has 8 matroids explicitly given (50 pages proof)

For $\mathbb{F} = GF(4)$: the list has 8 matroids explicitly given (50 pages proof)

Theorem A matroid is graphic if and only if has neither $U_{2,4}, F_7, F_7^*, M^*(K_5) = B(K_5)$ nor $M^*(K_{3,3}) = B(K_{3,3})$ as minors.

For $\mathbb{F} = GF(4)$: the list has 8 matroids explicitly given (50 pages proof)

Theorem A matroid is graphic if and only if has neither $U_{2,4}, F_7, F_7^*, M^*(K_5) = B(K_5)$ nor $M^*(K_{3,3}) = B(K_{3,3})$ as minors. Theorem A matroid is cographic if and only if has neither $U_{2,4}, F_7, F_7^*, M(K_5)$ nor $M(K_{3,3})$ as minors.

A matroid is called regular if it is representable over <u>ALL</u> fileds.

J.L. Ramírez Alfonsín

A matroid is called regular if it is representable over <u>ALL</u> fileds. A matrix is totally unimodular if all its coefficients are 0, 1, -1 and the determinant of any square sub-matrix is equals to 0, 1 or -1. A matroid is called regular if it is representable over <u>ALL</u> fileds. A matrix is totally unimodular if all its coefficients are 0, 1, -1 and the determinant of any square sub-matrix is equals to 0, 1 or -1. Theorem Regular matroids are equivalent to totally unimodular matrices.

- A matroid is called regular if it is representable over <u>ALL</u> fileds. A matrix is totally unimodular if all its coefficients are 0, 1, -1 and the determinant of any square sub-matrix is equals to 0, 1 or -1. Theorem Regular matroids are equivalent to totally unimodular matrices.
- Theorem A matroid is regular if and only if has neither $U_{2,4}$, F_7 nor F_7^* as minors.

- A matroid is called regular if it is representable over <u>ALL</u> fileds.
- A matrix is totally unimodular if all its coefficients are 0, 1, -1 and the determinant of any square sub-matrix is equals to 0, 1 or -1. Theorem Regular matroids are equivalent to totally unimodular
- matrices.
- **Theorem** A matroid is regular if and only if has neither $U_{2,4}$, F_7 nor F_7^* as minors.
- Example : Graphic matroids are regulars.

Theorem (Seymour) A matroid M is regular if and only if it can be <u>built</u> with graphic, cographic and R_{10} matroids.

Theorem (Seymour) A matroid M is regular if and only if it can be <u>built</u> with graphic, cographic and R_{10} matroids.

• R_{10} is the matroid of the linear dependencies over \mathbb{Z}_2 of the 10 vectors of \mathbb{Z}_2^5 having 3 components equal to one and 2 equal to zero.

Theorem (Seymour) A matroid M is regular if and only if it can be <u>built</u> with graphic, cographic and R_{10} matroids.

- R_{10} is the matroid of the linear dependencies over \mathbb{Z}_2 of the 10 vectors of \mathbb{Z}_2^5 having 3 components equal to one and 2 equal to zero.
- M is built with bricks (graphic, cographic and R_{10}) via 3 operations :
- 1-sum : direct sum of two matroids
- 2-sum : patching two matroids on one common element
- *3-sum* : patching two binary matroids on 3 common elements forming a 3-circuit in each matroid.

Seymour's characterization gives a polynomial time algorithm that determines if a matrix is totally unimodular.

Seymour's characterization gives a polynomial time algorithm that determines if a matrix is totally unimodular.

Theorem (Heller) The linear programming

maximize $c^t x$

such that $Ax \leq b, x \geq 0$

admit an integer solution x for any integer vector b if and only if A is totally unimodular.

J.L. Ramírez Alfonsín

Seymour's characterization gives a polynomial time algorithm that determines if a matrix is totally unimodular.

Theorem (Heller) The linear programming

maximize $c^t x$

such that $Ax \leq b, x \geq 0$

admit an integer solution x for any integer vector b if and only if A is totally unimodular.

Remark Most of the combinatorial optimization problems can be realized as a unimodular linear programming.

J.L. Ramírez Alfonsín

The Minkowski's sum of two sets A and B of \mathbb{R}^d is $A + B = \{a + b \mid a \in A, b \in B\}.$

J.L. Ramírez Alfonsín

The Minkowski's sum of two sets A and B of \mathbb{R}^d is $A + B = \{a + b \mid a \in A, b \in B\}.$

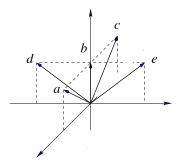
Let $A = \{v_1, \ldots, v_k\}$ be a finite set of elements of \mathbb{R}^d .

A zonotope, generated by A and denoted by Z(A), is a polytope formed by the Minkowski's sum of line segments

 $Z(A) = \{\alpha_1 + \cdots + \alpha_k | \alpha_i \in [-v_i, v_i]\}.$

J.L. Ramírez Alfonsín

Regular Matroids - Applications

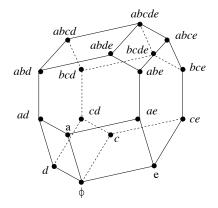


J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Regular Matroids - Applications

Permutahedron



Theorem (Voronoï - end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations.

Theorem (Voronoï - end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations. Theorem (McMullen) A zonotope tile the space if and only if its 2-faces have all 4 or 6 edges.

- Theorem (Voronoï end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations.
- Theorem (McMullen) A zonotope tile the space if and only if its 2-faces have all 4 or 6 edges.
- This property is equivalent to say that the matroid associated to the vectors v_i is binary

- Theorem (Voronoï end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations.
- Theorem (McMullen) A zonotope tile the space if and only if its 2-faces have all 4 or 6 edges.
- This property is equivalent to say that the matroid associated to the vectors v_i is binary
- Since *M* is also representable then it is regular. Indeed, a binary matroid is regular if and only if it is representable over at least one field of characteristic different of 2.

- Theorem (Voronoï end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations.
- Theorem (McMullen) A zonotope tile the space if and only if its 2-faces have all 4 or 6 edges.
- This property is equivalent to say that the matroid associated to the vectors v_i is binary
- Since *M* is also representable then it is regular. Indeed, a binary matroid is regular if and only if it is representable over at least one field of characteristic different of 2.
- Theorem A zonotope tiles the space by translations if and only if the associated matroid is regular.

- Theorem (Voronoï end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations.
- Theorem (McMullen) A zonotope tile the space if and only if its 2-faces have all 4 or 6 edges.
- This property is equivalent to say that the matroid associated to the vectors v_i is binary
- Since *M* is also representable then it is regular. Indeed, a binary matroid is regular if and only if it is representable over at least one field of characteristic different of 2.
- Theorem A zonotope tiles the space by translations if and only if the associated matroid is regular.
- Voronoi's result : there exist exactly 5 regular matroids of rank 3.

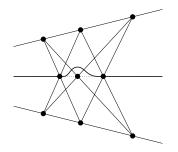
Non Representable Matroids

There exists matroids that are not representable in <u>ANY</u> field.

J.L. Ramírez Alfonsín

Non Representable Matroids

There exists matroids that are not representable in <u>ANY</u> field. Example (classic) : the rank 3 matroid on 9 elements obtained from the Non-Pappus configuration



J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Direct sum

Let *M* be a matroid on $E = E_1 + E_2$.

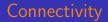
We say that M is the direct sum of $M(E_1)$ and $M(E_2)$ if it verifies one of the following equivalent properties :

•
$$r_M(E) = r_{M_1}(E_1) + r_{M_2}(E_2).$$

• If $X \subset E_1$ et $Y \subset E_2$ are independent in M the $X \cup Y$ is also independent.

• for any circuit C of M we have $C \subset E_1$ or $C \subset E_1$.

J.L. Ramírez Alfonsín



We say that M is connected if it it is a non trivial direct sum.

J.L. Ramírez Alfonsín

Theory of matroids and applications : II

IMAG, Université de Montpellier

We say that M is connected if it it is a non trivial direct sum. Proposition A matroid is connected if and only if any two distinct elements are contained in a circuit.

Connectivity

We say that M is connected if it it is a non trivial direct sum.

Proposition A matroid is connected if and only if any two distinct elements are contained in a circuit.

Theorem Let G be a graph without loops and isolate vertices. If $|V(G)| \ge 3$ then M(G) is connected if and only if G is 2-connected.