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Institut Montpelliérain Alexander Grothendieck,
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Duality

Let M be a matroid on the ground set E and let B the set of bases
of M. Then,

B∗ = {E\B | B ∈ B}

is the set of bases of a matroid on E .

The matroid on E having B∗ as set of bases, denoted by M∗, is
called the dual of M.

A base of M∗ is also called cobase of M.
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Theory of matroids and applications : II



Duality

We have that

• r(M∗) = |E | − rM and M∗∗ = M.

• The set I∗ of independents of M∗ is given by

I∗ = {X | X ⊂ E such that there exists B ∈ B(M) with X∩B = ∅}.

• The rank function of M∗ is given by

rM∗(X ) = |X |+ rM(E\X )− rM ,

for X ⊂ E .
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Cocycle Matroid

Let G = (V ,E ) be a graph. A cocycle (or cut) of G is the set of
edges joining the two parts of a partition of the set of vertices of
the graph.

Theorem Let C(G )∗ be the set of minimal (by inclusion) cocycles
of a graph G . Then, C(G )∗ is the set of circuits of a matroid on E .

The matroid obtained on this way is called the matroid of cocycle
of G or bond matroid, denoted by B(G ).
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Bond Matroid

Theorem M∗(G ) = B(G ) and M(G ) = B∗(G ).

1 3

4

2

B(M(G )) = {{4, 1, 3}, {4, 1, 2}, {4, 2, 3}}
B(M∗(G )) = {{2}, {3}, {1}}
I(M∗(G )) = {∅, {1}, {2}, {3}}
The dependents of M∗(G ) are P({1, 2, 3, 4}) \ {∅, {1}, {2}, {3}}
C(M∗(G )) = {{4}, {1, 2}, {1, 3}, {2, 3}} that are precisely the
cocycles of G .
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Planarity

Theorem If G is planar then M∗(G ) = M(G ∗).

1 2

3
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Planarity

Theorem If G is planar then M∗(G ) = M(G ∗).

1 2
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Remark The dual of a graphic matroid is not necessarly graphic.
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Duality - representable matroid

Theorem The dual of a F-representable matroid is F-representable.

Proof. The matrix representing M can always be written as

(Ir | A)

where Ir is the identity r × r and A is a matrix of size r × (n − r).

(Exercise) M∗ can be obtained from the set of columns of the
matrix

(−tA | In−r )

where In−r is the identity (n− r)× (n− r) and tA is the transpose
of A.
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Duality - representable matroid

The matroid M∗ is also called the orthogonal matroid of M since
the duality for representable matroids is a generalization of the
notion of orthogonality in vector spaces.

Let V be a subspace of Fn where n = |E |. We recall that the
orthogonal space V⊥ is defined from the canonical scalar product
〈u, v〉 =

∑
e∈E u(e)v(e) by

V⊥ = {v ∈ Fn | 〈u, v〉 = 0 for any u ∈ V }.

The orthogonal space of the space generated by the columns of
(I | A) is given by the space generated by the columns of
(−tA | In−r ).
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Operation : deletion

Let M be a matroid on the set E and let A ⊂ E . Then,

{X ⊂ E\A | X is independent in M}

is a set of independent of a matroid on E\A.

This matroid is obtained from M by deleting the elements of A
and it is denoted by M\A.

Proposition
(i) The circuits of M \ A are the circuits of M contained in E \ A.

(ii) For X ⊂ E \ A we have rM\A(X ) = rM(X ).
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Operation : contraction

Let M be a matroid on the set E and let A ⊂ E .
Let M|A = {X ⊆ A|X ∈ I(M)} and X ⊆ E \ A. Then,

{X ⊆ E\A| there exists a base B of M|A such that X∪B ∈ I(M)}

is the set of independents of a matroid in E \ A.

This matroid is obtained from M by contracting the elements of A
and it is denoted by M/A.

Proposition
(i) The circuits of M/A are the non-empty minimal (by inclusion)
sets of the form C \ A where C is a circuit of M.

(ii) For X ⊂ E \ A we have rM/A(X ) = rM(X ∪ A)− rM(A).
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Operations : deletion and contraction

Properties
(i) (M\A)\A′ = M\(A ∪ A′)
(ii) (M/A)/A′ = M/(A ∪ A′)
(iii) (M\A)/A′ = (M/A′)\A

Proof : (i) and (ii) are immediate by using the rank function.
For (iii), we show that r(M/A)\A′ = r(M\A′)/A. Let
X ⊂ E \ (A ∪ A′), then

r(M/A)\A′(X ) = r(M/A)(X ) = rM(X ∪ A)− rM(A)
= rM\A′(X ∪ A)− rM(A) = r(M\A′)/A.
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Operations : deletion and contraction

The operations deletion and contraction are duals, that is,

(M\A)∗ = (M∗)/A and (M/A)∗ = (M∗)\A

and thus,

M/A = (M∗ \ A)∗

A minor of a matroid of M is any matroid obtained by a sequence
of deletions and contractions.

Question : Is it true that any family of matroids is closed under
deletions/contractions operations ?
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Theory of matroids and applications : II



Operations : deletion and contraction

The operations deletion and contraction are duals, that is,

(M\A)∗ = (M∗)/A and (M/A)∗ = (M∗)\A

and thus,

M/A = (M∗ \ A)∗

A minor of a matroid of M is any matroid obtained by a sequence
of deletions and contractions.

Question : Is it true that any family of matroids is closed under
deletions/contractions operations ?
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Minors - uniform matroids

The uniform matroid (denoted by Un,r ) is the matroid on E with
|E | = n elements where

B(Un,r ) = {X ⊂ E : |X | = r}

Proposition Any minor of a uniform matroid is uniform.

Proof Deletion : let T ⊆ E with |T | = t. Then,

Un,r\T =

{
Un−t,n−t if n ≥ t ≥ n − r
Un−t,r if t < n − r .

Contraction : it follows by using duality.
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Minors - graphic matroids

Proposition The class of graphic matroids is closed under deletions
and contractions.

(b)
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(a)

Contracting element 6
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Minors - representable matroids

Proposition The class of representable matroids over a field F is
closed under deletions and contractions.

Let M be a matroid obtained from the vectors (ve)e∈E of Fd .
Deleting : M \ a is the matroid obtained from the vectors
(ve)e∈E\a
Remark : Lines sums and scalar multiplications do not change the
associated matroid. So, if va 6= 0 then we suppose that va is the
unit vector.
Contracting : M/a is the matroid obtained from the vectors
(v ′e)e∈E\a where v ′e is the vector obtained from ve by deleting the
non zero entry of va.
• If we change the nonzero component we obtain another
representation of M/a.
• If va = 0 then a is a loop of M and thus M/a = M \ a.
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Minors - representable matroids
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Minors - transversal matroids

The class of transversal matroids is NOT closed under deletions
and contractions.

The matroid M(G ) is transversal (with A1 = {1, 2, 7},
A2 = {3, 4, 7},A3 = {5, 6, 7}). However, M(G/7) is not
transversal.
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Excluded Minors

For any field F, there exists a list of excluded minors, that is,
nonrepresentable matroids over F but any of its proper minors is
representable over F.

Determining the list of excluded minors over F gives a
characterization of the matroids representables over F.

For F = GF (2) = Z2 = Z/2Z (binary matroids) : the list has only
one matroid U2,4 (3 pages proof)

B(U2,4) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
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Excluded Minors

For F = GF (3) = Z3 = Z/3Z (ternary matroids) : the list has 4
matroids F7 F ∗7 , U2,5 U3,5 (10 pages proof)

For F = GF (4) : the list has 8 matroids explicitly given (50 pages
proof)

Theorem A matroid is graphic if and only if has neither
U2,4,F7,F

∗
7 ,M

∗(K5) = B(K5) nor M∗(K3,3) = B(K3,3) as minors.

Theorem A matroid is cographic if and only if has neither
U2,4,F7,F

∗
7 ,M(K5) nor M(K3,3) as minors.
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Regular Matroids

A matroid is called regular if it is representable over ALL fileds.

A matrix is totally unimodular if all its coefficients are 0, 1,−1 and
the determinant of any square sub-matrix is equals to 0, 1 or −1.

Theorem Regular matroids are equivalent to totally unimodular
matrices.

Theorem A matroid is regular if and only if has neither U2,4, F7 nor
F ∗7 as minors.

Example : Graphic matroids are regulars.
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Theory of matroids and applications : II



Regular Matroids

A matroid is called regular if it is representable over ALL fileds.

A matrix is totally unimodular if all its coefficients are 0, 1,−1 and
the determinant of any square sub-matrix is equals to 0, 1 or −1.

Theorem Regular matroids are equivalent to totally unimodular
matrices.

Theorem A matroid is regular if and only if has neither U2,4, F7 nor
F ∗7 as minors.

Example : Graphic matroids are regulars.
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Regular Matroids

Theorem (Seymour) A matroid M is regular if and only if it can be
built with graphic, cographic and R10 matroids.

• R10 is the matroid of the linear dependencies over Z2 of the 10
vectors of Z5

2 having 3 components equal to one and 2 equal to
zero.

• M is built with bricks (graphic, cographic and R10) via 3
operations :

1-sum : direct sum of two matroids

2-sum : patching two matroids on one common element

3-sum : patching two binary matroids on 3 common elements
forming a 3-circuit in each matroid.
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Regular Matroids - Applications

Seymour’s characterization gives a polynomial time algorithm that
determines if a matrix is totally unimodular.

Theorem (Heller) The linear programming

maximize ctx

such that Ax ≤ b, x ≥ 0

admit an integer solution x for any integer vector b if and only if A
is totally unimodular.

Remark Most of the combinatorial optimization problems can be
realized as a unimodular linear programming.
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Regular Matroids - Applications

The Minkowski’s sum of two sets A and B of Rd is
A + B = {a + b | a ∈ A, b ∈ B}.

Let A = {v1, . . . , vk} be a finite set of elements of Rd .

A zonotope, generated by A and denoted by Z (A), is a polytope
formed by the Minkowski’s sum of line segments

Z (A) = {α1 + · · ·+ αk |αi ∈ [−vi , vi ]}.
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Regular Matroids - Applications
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Regular Matroids - Applications

Permutahedron
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Regular Matroids - Applications

Theorem (Voronöı - end of the 19th century) There exist exactly 5
types of zonotopes of R3 tiling the space by translations.

Theorem (McMullen) A zonotope tile the space if and only if its
2-faces have all 4 or 6 edges.
• This property is equivalent to say that the matroid associated to
the vectors vi is binary
• Since M is also representable then it is regular. Indeed, a binary
matroid is regular if and only if it is representable over at least one
field of characteristic different of 2.
Theorem A zonotope tiles the space by translations if and only if
the associated matroid is regular.
Voronöı’s result : there exist exactly 5 regular matroids of rank 3.
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Theory of matroids and applications : II



Regular Matroids - Applications
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Non Representable Matroids

There exists matroids that are not representable in ANY field.

Example (classic) : the rank 3 matroid on 9 elements obtained
from the Non-Pappus configuration
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Theory of matroids and applications : II



Direct sum

Let M be a matroid on E = E1 + E2.

We say that M is the direct sum of M(E1) and M(E2) if it verifies
one of the following equivalent properties :

• rM(E ) = rM1(E1) + rM2(E2).

• If X ⊂ E1 et Y ⊂ E2 are independent in M the X ∪ Y is also
independent.

• for any circuit C of M we have C ⊂ E1 or C ⊂ E1.
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Connectivity

We say that M is connected if it it is a non trivial direct sum.

Proposition A matroid is connected if and only if any two distinct
elements are contained in a circuit.

Theorem Let G be a graph without loops and isolate vertices. If
|V (G )| ≥ 3 then M(G ) is connected if and only if G is
2-connected.
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