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Tutte Polynomial

The Tutte polynomial of a matroid M is the generating function
defined as follows

t(M; x , y) =
∑
X⊆E

(x − 1)r(E)−r(X )(y − 1)|X |−r(X ).

Let U2,3 be the matroid of rank 2 on 3 elements with
B(U2,3) = {{1, 2}, {1, 3}, {2, 3}}

t(U2,3; x , y) =
∑

X⊆E , |X |=0

(x − 1)2−0(y − 1)0−0 +
∑

X⊆E , |X |=1

(x − 1)2−1(y − 1)1−1

+
∑

X⊆E , |X |=2

(x − 1)2−2(y − 1)2−2 +
∑

X⊆E , |X |=3

(x − 1)2−2(y − 1)3−2

= (x − 1)2 + 3(x − 1) + 3(1) + y − 1
= x2 − 2x + 1 + 3x − 3 + 3 + y − 1 = x2 + x + y .
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Tutte Polynomial

A loop of a matroid M is a circuit of cardinality one.
An isthmus of M is an element that is contained in all the bases.

The Tutte polynomial can be expressed recursively as follows

t(M; x , y) =


t(M \ e; x , y) + t(M/e; x , y) if e 6= isthmus, loop,
x · t(M \ e; x , y) if e is an isthmus,
y · t(M/e; x , y) if e is a loop.
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Acyclic Orientations

Let G = (V ,E ) be a connected graph. An orientation of G is an
orientation of the edges of G .

We say that the orientation is acyclic if the oriented graph do not
contain an oriented cycle (i.e., a cycle where all its edges are
oriented clockwise or anti-clockwise).

Theorem The number of acyclic orientations of G is equals to

t(M(G ); 2, 0).
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Acyclic Orientations

Example : There are 6 acyclic orientations of C3

Notice that M(C3) is isomorphic to U2,3.

Since t(U2,3; x , y) = x2 + x + y then the number of acyclic
orientations of C3 is t(U2,3; 2, 0) = 22 + 2 + 0 = 6.
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Chromatic Polynomial

Let G = (V ,E ) be a graph and let λ be a positive integer.

A λ-coloring of G is a map φ : V −→ {1, . . . , λ}.

The coloring is called good if for any edge {u, v} ∈ E (G ),
φ(u) 6= φ(v).
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Theory of matroids and applications : III



Chromatic Polynomial

Let G = (V ,E ) be a graph and let λ be a positive integer.
A λ-coloring of G is a map φ : V −→ {1, . . . , λ}.

The coloring is called good if for any edge {u, v} ∈ E (G ),
φ(u) 6= φ(v).
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Chromatic Polynomial

Let χ(G , λ) be the number of good λ-colorings of G .

Theorem χ(G , λ) is a polynomial on λ. Moreover

χ(G , λ) =
∑
X⊆E

(−1)|X |λω(G [X ])

where ω(G [X ]) denote the number of connected components of
the subgraph generated by X .

Proof (idea) By using the inclusion-exclusion formula.
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Chromatic Polynomial

The chromatic polynomial has been introduced by Birkhoff as a
tool to attack the 4-color problem.

Indeed, if for a planar graph G we have χ(G , 4) > 0 then G admits
a good 4-coloring.

Theorem If G is a graph with ω(G ) connected components. Then,

χ(G , λ) = λω(G)(−1)|V (G)|−ω(G)t(M(G ); 1− λ, 0).

Exemple : χ(K3, 3) = 31(−1)3−1t(K3; 1− 3, 0)

= 3 · 1 · t(U2,3;−2, 0) = 3((−2)2 − 2 + 0) = 6.
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Ehrhart Polynomial

The theory of Ehrhart focuses in counting the number of points
with integer coordinates lying in a polytope.

A polytope is called integer if all its vertices have integer
coordinates.
Ehrhart studied the function iP that counts the number of integer
points in the polytope P dilated by a factor of t

iP : N −→ N∗
t 7→ |tP ∩ Zd |
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Ehrhart Polynomial

Theorem (Ehrhart) iP is a polynomial on t of degree d ,

iP(t) = cd t
d + cd−1t

d−1 + · · ·+ c1t + c0.

• cd is equals to Vol(P) (the volume of P),

• cd−1 is equals to Vol(∂(P)/2) where ∂(P) is the surface of P,

• c0 = 1 is the Euler’s characteristic of P.

All others coefficients remain a mystery ! !
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Theory of matroids and applications : III



Ehrhart Polynomial

Theorem (Ehrhart) iP is a polynomial on t of degree d ,

iP(t) = cd t
d + cd−1t

d−1 + · · ·+ c1t + c0.

• cd is equals to Vol(P) (the volume of P),

• cd−1 is equals to Vol(∂(P)/2) where ∂(P) is the surface of P,

• c0 = 1 is the Euler’s characteristic of P.

All others coefficients remain a mystery ! !
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Ehrhart Polynomial

The Minkowski’s sum of two sets A and B of Rd is

A + B = {a + b | a ∈ A, b ∈ B}.

Let A = {v1, . . . , vk} be a finite set of elements of Rd .

A zonotope generated by A, denoted by Z (A), is a polytope
formed by the Minkowski’s sum of line segments

Z (A) = {α1 + · · ·+ αk |αi ∈ [−vi , vi ]}.
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Theory of matroids and applications : III



Ehrhart Polynomial

The Minkowski’s sum of two sets A and B of Rd is

A + B = {a + b | a ∈ A, b ∈ B}.

Let A = {v1, . . . , vk} be a finite set of elements of Rd .

A zonotope generated by A, denoted by Z (A), is a polytope
formed by the Minkowski’s sum of line segments

Z (A) = {α1 + · · ·+ αk |αi ∈ [−vi , vi ]}.
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Ehrhart Polynomial
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Ehrhart Polynomial

Permutahedron
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Ehrhart Polynomial

A matroid is regular if it is representable over any field.

Theorem Let M be a regular matroid and let A be one of its
representation matrix. Then, the Ehrhart polynomial associated to
the zonotope Z (A) is given by

iZ(A)(q) = qr(M)t

(
M; 1 +

1

q
, 1

)
.
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Knots
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Knots

Reidemeister moves

I

I !1

!1II

II

III

III !1
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Knots
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Knots
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Knots

Bracket polynomial

For any link diagram D define a Laurent polynomial < D > in one
variable A which obeys the following three rules where U denotes
the unknot :
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Knots

Theorem For any link L the bracket polynomial is independent of
the order in which rules (i)− (iii) are applied to the crossings.
Further, it is invariant under the Reidemeister moves II and III

but it is not invariant under Reidemeister move I ! !

The writhe of an oriented link diagram D is the sum of the signs
at the crossings of D (denoted by ω(D)).
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Knots

(D)=1

! !"

!
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Theory of matroids and applications : III



Knots

Theorem For any link L define the Laurent polynomial

fD(A) = (−A3)ω(D) < L >

Then, fD(A) is an invariant of ambient isotopy.

Now, define for any link L

VL(z) = fD(z−1/4)

where D is any diagram representing L. Then VL(z) is the Jones
polynomial of the oriented link L.
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Knots
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Knots
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Knots
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Knots
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Knots

A link diagram is alternating if the crossings alternate
under-over-under-over ... as the link is traversed.

A link is alternating if there is an alternating link diagram
representing L.

Theorem (Thistlethwaite 1987) If D is an oriented alternating link
diagram then

VL(z) = (z−1/4)3ω(D)−2t(M(G );−z ,−z−1)

where G is the graph associated to the knot diagram.
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More applications

• Code theory

• Flow polynomial

• Bicycle space of a graph

• Statistical mechanics

• Arrangements of hyperplanes
...
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