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Tutte Polynomial

The Tutte polynomial of a matroid M is the generating function
defined as follows

t(M; x , y) =
∑
X⊆E

(x − 1)r(E)−r(X )(y − 1)|X |−r(X ).

Let U2,3 be the matroid of rank 2 on 3 elements with
B(U2,3) = {{1, 2}, {1, 3}, {2, 3}}

t(U2,3; x , y) =
∑

X⊆E , |X |=0

(x − 1)2−0(y − 1)0−0 +
∑

X⊆E , |X |=1

(x − 1)2−1(y − 1)1−1

+
∑

X⊆E , |X |=2

(x − 1)2−2(y − 1)2−2 +
∑

X⊆E , |X |=3

(x − 1)2−2(y − 1)3−2

= (x − 1)2 + 3(x − 1) + 3(1) + y − 1
= x2 − 2x + 1 + 3x − 3 + 3 + y − 1 = x2 + x + y .
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Tutte Polynomial

A loop of a matroid M is a circuit of cardinality one.
An isthmus of M is an element that is contained in all the bases.

The Tutte polynomial can be expressed recursively as follows

t(M; x , y) =


t(M \ e; x , y) + t(M/e; x , y) if e 6= isthmus, loop,
x · t(M \ e; x , y) if e is an isthmus,
y · t(M/e; x , y) if e is a loop.
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Acyclic Orientations

Let G = (V ,E ) be a connected graph. An orientation of G is an
orientation of the edges of G .

We say that the orientation is acyclic if the oriented graph do not
contain an oriented cycle (i.e., a cycle where all its edges are
oriented clockwise or anti-clockwise).

Theorem The number of acyclic orientations of G is equals to

t(M(G ); 2, 0).
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Acyclic Orientations

Example : There are 6 acyclic orientations of C3

Notice that M(C3) is isomorphic to U2,3.

Since t(U2,3; x , y) = x2 + x + y then the number of acyclic
orientations of C3 is t(U2,3; 2, 0) = 22 + 2 + 0 = 6.
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Chromatic Polynomial

Let G = (V ,E ) be a graph and let λ be a positive integer.

A λ-coloring of G is a map φ : V −→ {1, . . . , λ}.

The coloring is called good if for any edge {u, v} ∈ E (G ),
φ(u) 6= φ(v).

J.L. Raḿırez Alfonśın IMAG, Université de Montpellier
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Chromatic Polynomial

Let χ(G , λ) be the number of good λ-colorings of G .

Theorem χ(G , λ) is a polynomial on λ. Moreover

χ(G , λ) =
∑
X⊆E

(−1)|X |λω(G [X ])

where ω(G [X ]) denote the number of connected components of
the subgraph generated by X .

Proof (idea) By using the inclusion-exclusion formula.
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Chromatic Polynomial

The chromatic polynomial has been introduced by Birkhoff as a
tool to attack the 4-color problem.

Indeed, if for a planar graph G we have χ(G , 4) > 0 then G admits
a good 4-coloring.

Theorem If G is a graph with ω(G ) connected components. Then,

χ(G , λ) = λω(G)(−1)|V (G)|−ω(G)t(M(G ); 1− λ, 0).

Example : χ(K3, 3) = 31(−1)3−1t(K3; 1− 3, 0)

= 3 · 1 · t(U2,3;−2, 0) = 3((−2)2 − 2 + 0) = 6.
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Ehrhart Polynomial

The theory of Ehrhart focuses in counting the number of points
with integer coordinates lying in a polytope.

A polytope is called integer if all its vertices have integer
coordinates.
Ehrhart studied the function iP that counts the number of integer
points in the polytope P dilated by a factor of t

iP : N −→ N∗
t 7→ |tP ∩ Zd |
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Ehrhart Polynomial

Theorem (Ehrhart) iP is a polynomial on t of degree d ,

iP(t) = cd t
d + cd−1t

d−1 + · · ·+ c1t + c0.

• cd is equals to Vol(P) (the volume of P),

• cd−1 is equals to Vol(∂(P)/2) where ∂(P) is the surface of P,

• c0 = 1 is the Euler’s characteristic of P.

All others coefficients remain a mystery ! !
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Ehrhart Polynomial

The Minkowski’s sum of two sets A and B of Rd is

A + B = {a + b | a ∈ A, b ∈ B}.

Let A = {v1, . . . , vk} be a finite set of elements of Rd .

A zonotope generated by A, denoted by Z (A), is a polytope
formed by the Minkowski’s sum of line segments

Z (A) = {α1 + · · ·+ αk |αi ∈ [−vi , vi ]}.
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Ehrhart Polynomial
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Ehrhart Polynomial

Permutahedron
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Ehrhart Polynomial

A matroid is regular if it is representable over any field.

Theorem Let M be a regular matroid and let A be one of its
representation matrix. Then, the Ehrhart polynomial associated to
the zonotope Z (A) is given by

iZ(A)(q) = qr(M)t

(
M; 1 +

1

q
, 1

)
.
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Knots
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Knots

Reidemeister moves

I

I !1

!1II

II

III

III !1
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Knots
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Knots
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Knots

Bracket polynomial

For any link diagram D define a Laurent polynomial < D > in one
variable A which obeys the following three rules where U denotes
the unknot :
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Knots

Theorem For any link L the bracket polynomial is independent of
the order in which rules (i)− (iii) are applied to the crossings.
Further, it is invariant under the Reidemeister moves II and III

but it is not invariant under Reidemeister move I ! !

The writhe of an oriented link diagram D is the sum of the signs
at the crossings of D (denoted by ω(D)).
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Knots

(D)=1
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Knots

Theorem For any link L define the Laurent polynomial

fD(A) = (−A3)ω(D) < L >

Then, fD(A) is an invariant of ambient isotopy.

Now, define for any link L

VL(z) = fD(z−1/4)

where D is any diagram representing L. Then VL(z) is the Jones
polynomial of the oriented link L.
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Knots
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Theory of matroids and applications III



Knots

C
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Knots
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Knots
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Knots

A link diagram is alternating if the crossings alternate
under-over-under-over ... as the link is traversed.

A link is alternating if there is an alternating link diagram
representing L.

Theorem (Thistlethwaite 1987) If D is an oriented alternating link
diagram then

VL(z) = (z−1/4)3ω(D)−2t(M(G );−z ,−z−1)

where G is the graph associated to the knot diagram.
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Simplicial complex

Let V = {v1, . . . , vn} be a set of distincts elements. A collection ∆
of subsets of V is called a simplicial complex if for every F ∈ ∆
and G ⊆ F ,G ∈ ∆.

Elements of the simplicial complex ∆ are called faces of ∆.

Maximal faces (under inclusion) are called facets.

If F ∈ ∆ then the dimension of F is dim F = |F | − 1.

The dimension of ∆ is defined to be dim ∆ = max{dim F |F ∈ ∆}.
The complex ∆ is said to be pure if all its facets have the same
dimension.

If {v} ∈ ∆ then we call v a vertex of ∆.
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Theory of matroids and applications III



Simplicial complex

Let V = {v1, . . . , vn} be a set of distincts elements. A collection ∆
of subsets of V is called a simplicial complex if for every F ∈ ∆
and G ⊆ F ,G ∈ ∆.

Elements of the simplicial complex ∆ are called faces of ∆.

Maximal faces (under inclusion) are called facets.

If F ∈ ∆ then the dimension of F is dim F = |F | − 1.

The dimension of ∆ is defined to be dim ∆ = max{dim F |F ∈ ∆}.
The complex ∆ is said to be pure if all its facets have the same
dimension.

If {v} ∈ ∆ then we call v a vertex of ∆.
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The dimension of ∆ is defined to be dim ∆ = max{dim F |F ∈ ∆}.
The complex ∆ is said to be pure if all its facets have the same
dimension.

If {v} ∈ ∆ then we call v a vertex of ∆.
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Simplicial complex

Let d − 1 = dim ∆. The f -vector of ∆ is the vector
f (∆) := (f−1, f0, . . . , fd−1), where fi = |{F ∈ ∆| dim F = i}| is
the number of i-dimensional faces in ∆.

Let ∆ be a simplicial complex with vertex set V .

• The k-skeleton of ∆ is [∆k ] = {F ∈ ∆|dim F ≤ k}.
• If W ⊆ V then the restriction of ∆ to W is
∆|W = {F ∈ ∆|F ⊆W }. If W = V − {v} then we will write
∆−v = ∆|W and call ∆−v the deletion of ∆ with respect to v or
the deletion of v from ∆.

• If W ⊆ V then link∆(W ) = {F ∈ ∆|W ∩ F = ∅,W ∪ F ∈ ∆}.
We call this the link of ∆ with respect to W .

• If v 6∈ V then the cone over ∆ is C∆ = ∆ ∪ {F ∪ {v}|F ∈ ∆}
v is called the apex of C∆.
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Simplicial complex

Observation Since if F ∈ ∆ and G ⊆ F then G ∈ ∆, the complex
∆ is determined completely by those faces that are not contained
in any other face, that is the facets of ∆.

• Typically, we will describe a simplicial complex by listing its
facets.
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Example

Simplicial complexe ∆ of dimension 2
1 2

3

5 4

• ∆ is not pure as it has facets of dimension 1 (12 and 45) and of
dimension 2 (234 and 135).

• f (∆) = (1, 5, 8, 2).

• The link∆(3) is the complex with facets 15 and 24, while the
link∆(5) has facets 13 and 4.

• The deletion of 3 has facets 12, 24, 45 and 15. The deletion of 5
has facets 234, 13 and 12.
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Theory of matroids and applications III



Example

Simplicial complexe ∆ of dimension 2
1 2

3

5 4

• ∆ is not pure as it has facets of dimension 1 (12 and 45) and of
dimension 2 (234 and 135).

• f (∆) = (1, 5, 8, 2).

• The link∆(3) is the complex with facets 15 and 24, while the
link∆(5) has facets 13 and 4.

• The deletion of 3 has facets 12, 24, 45 and 15. The deletion of 5
has facets 234, 13 and 12.
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Matroid complex

Recall that axioms (I1), (I2) for the independent set I(M) of a
matroid M on a set V are equivalent to I being an abstract
simplicial complex on V .

The independent sets of M form a simplicial complex, called the
independence complex of M.

Axiom (I3) can be replaced by the following one
(I3)′ for every A ⊂ E the restriction

I|A = {I ∈ I : I ⊂ A}

is a pure simplicial complex. A simplicial complex ∆ over the

vertices V is called matroid complex if axiom (I3)′ is verified.
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Examples

Two 1-dimensional simplicial complexes.

1

2

3

4

5

6

1

2

3

4

5

6

(a) (b)

(a) Matroid complex (this can be checked by verifying that every
A ⊆ {1, . . . , 6}, ∆A is pure).

(b) is not a matroid complex since it admits a restriction that is
not pure, for instance, the facets of ∆1,3,4 are {1} and {3, 4} as
facets so the restriction is not pure.
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Standard constructions

Let ∆ be a matroid complex with vertex set V . Then, the
following complexes are also matroid complexes

• ∆|W for every W ⊆ V .

• C∆, the cone over ∆.

• [∆]k , the k-skeleton of ∆.

• link∆(F ) for every F ∈ ∆.

Remarks : Link and restriction are identical to the contraction and
deletion constructions from matroids.

A matroid complex ∆M is a cone if and only if M has a coloop (or
isthme), which corresponds to the apex defined above.
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Stanley-Reisner ideal

Let k be a field. We can associate to a simplicial complex ∆, a
square free monomial ideal in S = k[x1, . . . , xn],

I∆ =

(
xF =

∏
i∈F

xi |F 6∈ ∆

)
⊆ S .

The ideal I∆ is called the Stanley-Reisner ideal of ∆ and S/I∆ the
Stanley-Reisner ring of ∆.
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Stanley-Reisner ideal

• Hilbert function

hS/I∆(h) = dimk [S/I∆]h

where [S/I∆] is the vector space of degree h homogeneous
polynomial outside of I∆.

• Hilbert series

HS/I∆(t) =
∞∑
i=1

hS/I∆(i)t i =
h0 + h1t + · · ·+ hd t

d

(1− t)d

where d =dim I∆.

h(∆) = (h0, . . . , hd) is known as the h-vector of ∆.
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h-vector of simplicial complexes

Assume that dim ∆ = d − 1.

We may study the h-vector of a simplicial complex of ∆
h(∆) = (h0, . . . , hd) from its f -vector via the relation

d∑
i=0

fi−1t
i (1− t)d−i =

d∑
i=0

hi t
i

In particular, for any j = 0, . . . , d , we have

fj−1 =
j∑

i=0

(d−i
j−1

)
hi

hj =
j∑

i=0
(−1)j−i

(d−i
j−1

)
fi−1.
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h-vector of simplicial complexes

The h-number of a matroid M may be interpreted combinatorially
in terms of certain invariants of M.

Fix a total ordering {v1, < v2 < · · · < vn} on E (M).

Given a bases B, an element vj ∈ B is internally passive in B if
there is some vi ∈ E \ B such that vi < vj and (B \ vj) ∪ vi is a
bases of M.

Dually, vj ∈ E \ B is externally passive in B if there is some vi ∈ B
such that vi < vj and (B \ vi ) ∪ vj is a bases of M.

Remark vj is externally passive in B if it is internally passive in
E \ B in M∗.
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Theory of matroids and applications III



h-vector of simplicial complexes

The h-number of a matroid M may be interpreted combinatorially
in terms of certain invariants of M.

Fix a total ordering {v1, < v2 < · · · < vn} on E (M).

Given a bases B, an element vj ∈ B is internally passive in B if
there is some vi ∈ E \ B such that vi < vj and (B \ vj) ∪ vi is a
bases of M.

Dually, vj ∈ E \ B is externally passive in B if there is some vi ∈ B
such that vi < vj and (B \ vi ) ∪ vj is a bases of M.

Remark vj is externally passive in B if it is internally passive in
E \ B in M∗.
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h-vector of simplicial complexes

Bjorner proved that
d∑

i=0
hj t

j =
∑

B∈B(M)

t ip(B)

where ip(B) counts the number of internally passive elements in B.

Remark This proves that the h-numbers of a matroid complex are
nonnegative.

Alternatively,
d∑

i=0
hj t

j =
∑

B∈B(M∗)

tep(B)

where ep(B) counts the number of externally passive elements in
B.
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h-vector of simplicial complexes

Remarks

• Since the f -numbers (and hence the h-numbers) of a matroid
depend only on its independent sets, then above equations hold for
any ordering of the ground set of M.

• h-vector of a matroid complex ∆M is actually a specialization of
the Tutte polynomial of the corresponding matroid ; precisely we
have T (M; x , 1) = h0x

d + h1x
d1 + · · ·+ hd
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Example

We consider the matroid complex ∆(U2,3)

We have that dim∆ = 1 and f−1 = 1, f0 = 3 and f1 = 3.

Therefore

2∑
i=0

fi−1t
i (1− t)2−i = f−1t

0(1− t)2 + f0t(1− t) + f1t
2(1− t)0

= (1− t)2 + 3t(1− t) + 3t2

= 1− 2t + t2 + 3t − 3t − 3t2 + 3t2

= t2 + t + 1 =
2∑

i=0
hi t

i .

Obtaining that h(∆) = (1, 1, 1).
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Example continuation

Let B(U2,3) = {B1 = {1, 2},B2 = {1, 3},B3 = {2, 3}}.

We can check that

- there is not internally passive element in B1

- 3 is internally passive element of B2

- 2 and 3 are internally passive elements of B3

Thus

2∑
i=0

hi t
i =

∑
B∈B(U2,3)

t ip(B) = 1 + t + t2.
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Example continuation

We have that
T (U3,2; x , y) = x2 + x + y ,

and thus

T (U3,2; t, 1) = t2 + t + 1 =
2∑

i=0

hi t
i .
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Order ideal

An order ideal O is a family of monomials (say of degree at most
r) with the property that if µ ∈ O and ν|µ then ν ∈ O.

Let Oi denote the collection of monomials in O of degree i . Let
Fi (O) := |Oi | and F (O) = (F0(O),F1(O), . . . ,Fr (O)).

We say that O is pure if all its maximal monomials (under
divisibility) have the same degree.

A vector h = (h0, . . . , hd) is a pure O-sequence if there is a pure
ideal O such that h = F (O).
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Example

The pure monomial order ideal (inside k[x , y , z ] with maximal
monomials xy3z and x2z3 is :

X = {xy3z, x2z3;

y3z , xy2z , xy3, xz3, x2z2, y2z , y3, xyz ,
xy2, xz2, z3, x2z , yz , y2, xz , xy , z2, x2, z , y , x , 1}.

Hence the h-vector of X is the pure O-sequence
h = (1, 3, 6, 7, 5, 2).
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Stanley’s conjecture

A longstanding conjecture of Stanley suggest that matroid
h-vectors are highly structured

Conjecture (Stanley, 1976) For any matroid M, h(M) is a pure
O-sequence.

Conjecture hold for several families of matroid complexes
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Example

We consider the matroid complexe ∆ associated to the rank 2
matroid induced by the graph G

1

2

3

4

We have that dim ∆ = 1 and f−1 = 1, f0 = 4 and f1 = 4.
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Example

B(M(G )) = {B1 = {1, 3},B2 = {1, 4},B3 = {2, 3},B4 = {2, 4}}.

- there is not internally passive element in B1

- 4 is internally passive element of B2

- 2 is internally passive element of B3

- 2 and 4 are internally passive elements of B4

Thus,
2∑

i=0
hi t

i =
∑

B∈B(M(G))

t ip(B) = 1 + t + t + t2 = 1 + 2t + t2.

Obtaining the h-vector h(1, 2, 1). Since O = (1, x1, x2, x1x2) is an
order ideal then h(1, 2, 1) is pure O-sequence.
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- 2 is internally passive element of B3

- 2 and 4 are internally passive elements of B4

Thus,
2∑

i=0
hi t

i =
∑

B∈B(M(G))

t ip(B) = 1 + t + t + t2 = 1 + 2t + t2.

Obtaining the h-vector h(1, 2, 1). Since O = (1, x1, x2, x1x2) is an
order ideal then h(1, 2, 1) is pure O-sequence.
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