Theory of matroids and applications : IV

J.L. Ram´ırez Alfons´ın

I3M, Université Montpellier 2

CIMPA school: Modern Methods in Combinatorics ECOS 2013,

San Luis, Argentina, August 2, 2013

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 [Theory of matroids and applications : IV](#page-58-0)

Let M be a matroid on the set E and let $A \subset E$. Then, ${X \subset E \setminus A \mid X \text{ is independent in } M}$

is a set of independent of a matroid on $E \backslash A$.

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 [Theory of matroids and applications : IV](#page-0-0)

Let M be a matroid on the set E and let $A \subset E$. Then, ${X \subset E \backslash A \mid X \text{ is independent in } M}$

is a set of independent of a matroid on $E \backslash A$. This matroid is obtained from M by deleting the elements of A and it is denoted by $M\setminus A$.

Let M be a matroid on the set E and let $A \subset E$. Then,

 $\{X \subset E \backslash A \mid X \text{ is independent in } M\}$

is a set of independent of a matroid on $E\setminus A$.

This matroid is obtained from M by deleting the elements of A and it is denoted by $M\setminus A$.

Proposition

(i) The circuits of $M \setminus A$ are the circuits of M contained in $E \setminus A$. (*ii*) For $X \subset E \setminus A$ we have $r_{M \setminus A}(X) = r_M(X)$.

Let M be a matroid on the set E and let $A \subset E$. Let $M|_A = \{X \subseteq A | X \in \mathcal{I}(M)\}\$ and $X \subseteq E \setminus A$. Then,

 ${X \subseteq E\setminus A}$ there exists a base B of $M|_A$ such that $X \cup B \in \mathcal{I}(M)$

is the set of independents of a matroid in $E \setminus A$.

J.L. Ramírez Alfonsín III. Alfonsín II. Alfonsín II. Alfonsín II. Alfonsín II. Alfonsín II. Alfonsín II. Alfonsín [Theory of matroids and applications : IV](#page-0-0)

- Let M be a matroid on the set E and let $A \subset E$. Let $M|_A = \{X \subseteq A | X \in \mathcal{I}(M)\}\$ and $X \subseteq E \setminus A$. Then,
- ${X \subseteq E\setminus A}$ there exists a base B of $M|_A$ such that $X \cup B \in \mathcal{I}(M)$
- is the set of independents of a matroid in $E \setminus A$.
- This matroid is obtained from M by contracting the elements of A and it is denoted by M/A .
- Let M be a matroid on the set E and let $A \subset E$. Let $M|_A = \{X \subseteq A | X \in \mathcal{I}(M)\}\$ and $X \subseteq E \setminus A$. Then,
- ${X \subseteq E\setminus A}$ there exists a base B of $M|_A$ such that $X \cup B \in \mathcal{I}(M)$
- is the set of independents of a matroid in $E \setminus A$.
- This matroid is obtained from M by contracting the elements of A and it is denoted by M/A .

Proposition

 (i) The circuits of M/A are the non-empty minimal (by inclusion) sets of the form $C \setminus A$ where C is a circuit of M.

(ii) For $X \subset E \setminus A$ we have $r_{M/A}(X) = r_M(X \cup A) - r_M(A)$.

Properties (i) $(M\backslash A)\backslash A' = M\backslash (A\cup A')$ (ii) $(M/A)/A' = M/(A \cup A')$ (iii) $(M\backslash A)/A' = (M/A')\backslash A$

J.L. Ramírez Alfonsín a strong in the Montpellier 2 [Theory of matroids and applications : IV](#page-0-0)

Properties (i) $(M\backslash A)\backslash A' = M\backslash (A\cup A')$ (ii) $(M/A)/A' = M/(A \cup A')$ (iii) $(M\backslash A)/A' = (M/A')\backslash A$

Proof : (i) and (ii) are immediate by using the rank function.

Properties (i) $(M\backslash A)\backslash A' = M\backslash (A\cup A')$ (ii) $(M/A)/A' = M/(A \cup A')$ (iii) $(M\backslash A)/A' = (M/A')\backslash A$ Proof : (i) and (ii) are immediate by using the rank function. For (iii), we show that $r_{(M/A)\setminus A'} = r_{(M\setminus A')/A}$. Let $X \subset E \setminus (A \cup A')$, then

$$
r_{(M/A)\setminus A'}(X) = r_{(M/A)}(X) = r_M(X \cup A) - r_M(A)
$$

= $r_{M\setminus A'}(X \cup A) - r_M(A) = r_{(M\setminus A')/A}$.

J.L. Ramírez Alfonsín a strongar a

The operations deletion and contraction are duals, that is,

 $(M\backslash A)^*=(M^*)/A$ and $(M/A)^*=(M^*)\backslash A$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 [Theory of matroids and applications : IV](#page-0-0)

The operations deletion and contraction are duals, that is,

 $(M\backslash A)^*=(M^*)/A$ and $(M/A)^*=(M^*)\backslash A$

and thus,

 $M/A = (M^* \setminus A)^*$

The operations deletion and contraction are duals, that is,

 $(M\backslash A)^*=(M^*)/A$ and $(M/A)^*=(M^*)\backslash A$

and thus,

$$
M/A=(M^*\setminus A)^*
$$

A minor of a matroid of M is any matroid obtained by a sequence of deletions and contractions.

The operations deletion and contraction are duals, that is,

$$
(M \setminus A)^* = (M^*)/A \text{ and } (M/A)^* = (M^*) \setminus A
$$

and thus,

$$
M/A = (M^* \setminus A)^*
$$

A minor of a matroid of M is any matroid obtained by a sequence of deletions and contractions.

Question : Is it true that any family of matroids is closed under deletions/contractions operations ?

$$
\mathcal{B}(U_{n,r})=\{X\subset E:|X|=r\}
$$

$$
\mathcal{B}(U_{n,r})=\{X\subset E:|X|=r\}
$$

Proposition Any minor of a uniform matroid is uniform.

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2 [Theory of matroids and applications : IV](#page-0-0)

$$
\mathcal{B}(U_{n,r})=\{X\subset E:|X|=r\}
$$

Proposition Any minor of a uniform matroid is uniform. Proof Deletion : let $T \subseteq E$ with $|T| = t$. Then,

$$
U_{n,r}\backslash T=\left\{\begin{array}{ll}U_{n-t,n-t} & \text{if } n\geq t\geq n-r\\ U_{n-t,r} & \text{if } t< n-r.\end{array}\right.
$$

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2

$$
\mathcal{B}(U_{n,r})=\{X\subset E:|X|=r\}
$$

Proposition Any minor of a uniform matroid is uniform. Proof Deletion : let $T \subseteq E$ with $|T| = t$. Then,

$$
U_{n,r}\setminus T=\left\{\begin{array}{ll}U_{n-t,n-t} & \text{if } n\geq t\geq n-r\\U_{n-t,r} & \text{if } t< n-r.\end{array}\right.
$$

Contraction : it follows by using duality.

Proposition The class of graphic matroids is closed under deletions and contractions.

Minors - graphic matroids

Proposition The class of graphic matroids is closed under deletions and contractions.

Contracting element 6

Proposition The class of representable matroids over a field $\mathbb F$ is closed under deletions and contractions.

Proposition The class of representable matroids over a field $\mathbb F$ is closed under deletions and contractions. Let M be a matroid obtained from the vectors $(\nu_e)_{e\in E}$ of \mathbb{F}^d . Deleting : $M \setminus a$ is the matroid obtained from the vectors $(v_e)_{e \in E\setminus a}$

Proposition The class of representable matroids over a field $\mathbb F$ is closed under deletions and contractions. Let M be a matroid obtained from the vectors $(\nu_e)_{e\in E}$ of \mathbb{F}^d . Deleting : $M \setminus a$ is the matroid obtained from the vectors $(v_e)_{e \in E\setminus a}$ Remark : Lines sums and scalar multiplications do not change the associated matroid. So, if $v_a \neq 0$ then we suppose that v_a is the unit vector.

Proposition The class of representable matroids over a field $\mathbb F$ is closed under deletions and contractions.

Let M be a matroid obtained from the vectors $(\nu_e)_{e\in E}$ of \mathbb{F}^d . Deleting : $M \setminus a$ is the matroid obtained from the vectors $(v_e)_{e \in E\setminus a}$ Remark : Lines sums and scalar multiplications do not change the associated matroid. So, if $v_a \neq 0$ then we suppose that v_a is the unit vector.

Contracting : M/a is the matroid obtained from the vectors $(v'_e)_{e \in E \setminus a}$ where v'_e is the vector obtained from v_e by deleting the non zero entry of v_a .

Proposition The class of representable matroids over a field $\mathbb F$ is closed under deletions and contractions.

Let M be a matroid obtained from the vectors $(\nu_e)_{e\in E}$ of \mathbb{F}^d . Deleting : $M \setminus a$ is the matroid obtained from the vectors $(V_e)_{e\in F\setminus a}$ Remark : Lines sums and scalar multiplications do not change the associated matroid. So, if $v_a \neq 0$ then we suppose that v_a is the unit vector.

Contracting : M/a is the matroid obtained from the vectors $(v'_e)_{e \in E \setminus a}$ where v'_e is the vector obtained from v_e by deleting the non zero entry of v_a .

• If we change the nonzero component we obtain another representation of M/a .

Proposition The class of representable matroids over a field $\mathbb F$ is closed under deletions and contractions.

Let M be a matroid obtained from the vectors $(\nu_e)_{e\in E}$ of \mathbb{F}^d . Deleting : $M \setminus a$ is the matroid obtained from the vectors $(V_e)_{e\in F\setminus a}$

Remark : Lines sums and scalar multiplications do not change the associated matroid. So, if $v_a \neq 0$ then we suppose that v_a is the unit vector.

Contracting : M/a is the matroid obtained from the vectors $(v'_e)_{e \in E \setminus a}$ where v'_e is the vector obtained from v_e by deleting the non zero entry of v_a .

• If we change the nonzero component we obtain another representation of M/a .

• If $v_a = \overline{0}$ then a is a loop of M and thus $M/a = M \setminus a$.

Minors - transversal matroids

The class of transversal matroids is NOT closed under deletions and contractions.

J.L. Ramírez Alfonsín a strong a [Theory of matroids and applications : IV](#page-0-0)

Minors - transversal matroids

The class of transversal matroids is NOT closed under deletions and contractions.

The matroid $M(G)$ is transversal (with $A_1 = \{1, 2, 7\}$, $A_2 = \{3, 4, 7\}, A_3 = \{5, 6, 7\}$. However, $M(G/7)$ is not transversal.

For any field $\mathbb F$, there exists a list of excluded minors, that is, nonrepresentable matroids over F but any of its proper minors is representable over F.

For any field $\mathbb F$, there exists a list of excluded minors, that is, nonrepresentable matroids over $\mathbb F$ but any of its proper minors is representable over \mathbb{F} .

Determining the list of excluded minors over $\mathbb F$ gives a characterization of the matroids representables over \mathbb{F} .

- For any field $\mathbb F$, there exists a list of excluded minors, that is, nonrepresentable matroids over $\mathbb F$ but any of its proper minors is representable over \mathbb{F} .
- Determining the list of excluded minors over $\mathbb F$ gives a characterization of the matroids representables over F.

For $\mathbb{F} = GF(2) = \mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ (binary matroids) : the list has only one matroid $U_{2,4}$ (3 pages proof)

 $\mathcal{B}(U_{2,4}) = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}\$

For $\mathbb{F} = GF(4)$: the list has 8 matroids explicitly given (50 pages) proof)

For $\mathbb{F} = GF(4)$: the list has 8 matroids explicitly given (50 pages) proof)

Theorem A matroid is graphic if and only if has neither $U_{2,4}, F_{7}, F_{7}^{*}, M^{*}(K_{5}) = B(K_{5})$ nor $M^{*}(K_{3,3}) = B(K_{3,3})$ as minors.

For $\mathbb{F} = GF(4)$: the list has 8 matroids explicitly given (50 pages) proof)

Theorem A matroid is graphic if and only if has neither $U_{2,4}, F_{7}, F_{7}^{*}, M^{*}(K_{5}) = B(K_{5})$ nor $M^{*}(K_{3,3}) = B(K_{3,3})$ as minors. Theorem A matroid is cographic if and only if has neither $U_{2,4}, F_{7}, F_{7}^{*}, M(K_{5})$ nor $M(K_{3,3})$ as minors.

A matroid is called regular if it is representable over ALL fileds.

J.L. Ramírez Alfonsín a strong a [Theory of matroids and applications : IV](#page-0-0)

A matroid is called regular if it is representable over ALL fileds. A matrix is totally unimodular if all its coefficients are $0, 1, -1$ and the determinant of any square sub-matrix is equals to $0, 1$ or -1 .

A matroid is called regular if it is representable over ALL fileds. A matrix is totally unimodular if all its coefficients are $0, 1, -1$ and the determinant of any square sub-matrix is equals to $0, 1$ or -1 . Theorem Regular matroids are equivalent to totally unimodular matrices.

- A matroid is called regular if it is representable over ALL fileds.
- A matrix is totally unimodular if all its coefficients are $0, 1, -1$ and the determinant of any square sub-matrix is equals to $0, 1$ or -1 .
- Theorem Regular matroids are equivalent to totally unimodular matrices.
- Theorem A matroid is regular if and only if has neither $U_{2,4}$, F_7 nor F_7^* as minors.

- A matroid is called regular if it is representable over ALL fileds.
- A matrix is totally unimodular if all its coefficients are $0, 1, -1$ and the determinant of any square sub-matrix is equals to $0, 1$ or -1 .
- Theorem Regular matroids are equivalent to totally unimodular matrices.
- Theorem A matroid is regular if and only if has neither $U_{2,4}$, F_7 nor F_7^* as minors.
- Example : Graphic matroids are regulars.

Theorem (Seymour) A matroid M is regular if and only if it can be built with graphic, cographic and R_{10} matroids.

Theorem (Seymour) A matroid M is regular if and only if it can be built with graphic, cographic and R_{10} matroids.

• R_{10} is the matroid of the linear dependencies over \mathbb{Z}_2 of the 10 vectors of \mathbb{Z}_2^5 having 3 components equal to one and 2 equal to zero.

Theorem (Seymour) A matroid M is regular if and only if it can be built with graphic, cographic and R_{10} matroids.

- R_{10} is the matroid of the linear dependencies over \mathbb{Z}_2 of the 10 vectors of \mathbb{Z}_2^5 having 3 components equal to one and 2 equal to zero.
- M is built with bricks (graphic, cographic and R_{10}) via 3 operations :
- 1-sum : direct sum of two matroids
- 2-sum : patching two matroids on one common element

3-sum : patching two binary matroids on 3 common elements forming a 3-circuit in each matroid.

Seymour's characterization gives a polynomial time algorithm that determines if a matrix is totally unimodular.

Seymour's characterization gives a polynomial time algorithm that determines if a matrix is totally unimodular.

Theorem (Heller) The linear programming

maximize $c^t x$

such that $Ax \leq b$, $x \geq 0$

admit an integer solution x for any integer vector b if and only if A is totally unimodular.

Seymour's characterization gives a polynomial time algorithm that determines if a matrix is totally unimodular.

Theorem (Heller) The linear programming

maximize $c^t x$

such that $Ax \leq b$, $x \geq 0$

admit an integer solution x for any integer vector b if and only if A is totally unimodular.

Remark Most of the combinatorial optimization problems can be realized as a unimodular linear programming.

The Minkowski's sum of two sets A and B of \mathbb{R}^d is $A + B = \{a + b \mid a \in A, b \in B\}.$

J.L. Ramírez Alfonsín a strong in the Montpellier 2 [Theory of matroids and applications : IV](#page-0-0)

The Minkowski's sum of two sets A and B of \mathbb{R}^d is $A + B = \{a + b \mid a \in A, b \in B\}.$

Let $A = \{v_1, \ldots, v_k\}$ be a finite set of elements of \mathbb{R}^d .

A zonotope, generated by A and denoted by $Z(A)$, is a polytope formed by the Minkowski's sum of line segments

 $Z(A) = {\alpha_1 + \cdots + \alpha_k | \alpha_i \in [-\mathsf{v}_i, \mathsf{v}_i]}.$

Regular Matroids - Applications

J.L. Ramírez Alfonsín a strong a

Regular Matroids - Applications

Permutahedron

Theorem (Voronoï - end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations.

Theorem (Voronoï - end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations. Theorem (McMullen) A zonotope tile the space if and only if its 2-faces have all 4 or 6 edges.

- Theorem (Voronoï end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations.
- Theorem (McMullen) A zonotope tile the space if and only if its 2-faces have all 4 or 6 edges.
- This property is equivalent to say that the matroid associated to the vectors v_i is binary
- Theorem (Voronoï end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations.
- Theorem (McMullen) A zonotope tile the space if and only if its 2-faces have all 4 or 6 edges.
- This property is equivalent to say that the matroid associated to the vectors v_i is binary
- Since M is also representable then it is regular. Indeed, a binary matroid is regular if and only if it is representable over at least one field of characteristic different of 2.
- Theorem (Voronoï end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations.
- Theorem (McMullen) A zonotope tile the space if and only if its 2-faces have all 4 or 6 edges.
- This property is equivalent to say that the matroid associated to the vectors v_i is binary
- Since M is also representable then it is regular. Indeed, a binary matroid is regular if and only if it is representable over at least one field of characteristic different of 2.
- Theorem A zonotope tiles the space by translations if and only if the associated matroid is regular.
- Theorem (Voronoï end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations.
- Theorem (McMullen) A zonotope tile the space if and only if its 2-faces have all 4 or 6 edges.
- This property is equivalent to say that the matroid associated to the vectors v_i is binary
- Since M is also representable then it is regular. Indeed, a binary matroid is regular if and only if it is representable over at least one field of characteristic different of 2.
- Theorem A zonotope tiles the space by translations if and only if the associated matroid is regular.
- Voronoï's result : there exist exactly 5 regular matroids of rank 3.

Non Representable Matroids

There exists matroids that are not representable in ANY field.

J.L. Ramírez Alfonsín a strong a [Theory of matroids and applications : IV](#page-0-0)

Non Representable Matroids

There exists matroids that are not representable in ANY field. Example (classic) : the rank 3 matroid on 9 elements obtained from the Non-Pappus configuration

J.L. Ramírez Alfonsín a strong a strong a strong a strong a strong a strong and the Montpellier 2