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Abstract. Let S be a numerical semigroup and let (Z,≤S) be the (locally finite) poset induced

by S on the set of integers Z defined by x ≤S y if and only if y−x ∈ S for all integers x and y.

In this paper, we investigate the Möbius function associated to (Z,≤S) when S is an arithmetic

semigroup.
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1. Introduction

The Möbius function is an important concept associated to (locally finite) posets. Möbius

function can be considered as a generalization of the classical Möbius arithmetic function on

the integers (given by the Möbius function of the poset obtained from the positive integers

partially ordered by the divisibility). Möbius function has been extremely useful to investigate

many different problems. For instance, the inclusion-exclusion principle can be retrieved by

considering the set of all subsets of a finite set partially ordered by inclusion. We refer the

reader to [5] for a large number of applications of the Möbius function.

In this paper, we investigate the Möbius function associated to posets arising naturally from

numerical semigroups as follows. Let a1, a2, . . . , an be n ≥ 1 relatively prime positive integers

and let S = 〈a1, a2, . . . , an〉 denote the numerical semigroup generated by a1, a2, . . . , an, that is,

S = 〈a1, a2, . . . , an〉 = {x1a1 + x2a2 + · · ·+ xnan | x1, x2, . . . , xn ∈ N} .

Throughout this paper, we consider the structure of the poset induced by S on the set of integers

Z, whose partial order ≤S is defined by

x ≤S y ⇐⇒ y − x ∈ S,

for all integers x and y. This (locally finite) poset will be denoted by (Z,≤S).

We denote by µS the Möbius function associated to (Z,≤S). As far as we are aware, the only

known result concerning µS is an old theorem due to Deddens [1] that determines the value of

µS when S has exactly two generators. Here, we shall introduce and develop a new approach

to investigate µS when S is an arithmetic semigroup, that is, when S = 〈a, a + d, . . . , a + kd〉
for some integers a, d and k ≤ a− 1.

This is a self-contained paper and it is organized as follows. In the next section, we review

some classic notions of the Möbius function and present some results needed for the rest of

the paper. In Section 3, we give a new direct proof of Deddens’ result, shorter than the

original one (based on a recursive case-by-case analysis). In Section 4, we discuss results about

arithmetic semigroups, in particular, we prove the existence of unique representations. The
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latter is a key result that will be used, in Section 5, to give a recursive formula for µS when

S = 〈a, a + d, . . . , a + kd〉. Finally, in Section 6, we propose an explicit formula for µS (based

on the multiplicity function of a multiset) in the case when k = 2 and a is even.

Background information on numerical semigroups can be found in the books [2, 4].

2. Möbius function

Let (P,≤) be a partially ordered set, or poset for short. The strict partial order <P is the

reduction of ≤P given by, a <P b if and only if a ≤P b and a 6= b. For any a and b in the poset

P , the segments between a and b are defined by

[a, b]P = {c ∈ P | a ≤P c ≤P b} , ]a, b]P = {c ∈ P | a <P c ≤P b} ,

[a, b[P = {c ∈ P | a ≤P c <P b} , ]a, b[P = {c ∈ P | a <P c <P b} .

A poset is said to be locally finite if every segment has finite cardinality. In this paper, we only

consider locally finite posets.

Let a and b be elements of the poset P . A chain of length l ≥ 0 between a and b is a

subset of [a, b]P containing a and b, with cardinality l + 1 and totally ordered by <, that is

{a0, a1, . . . , al} ⊂ [a, b]P such that

a = a0 <P a1 <P a2 <P · · · <P al−1 <P al = b.

For any nonnegative integer l, we denote by Cl(a, b) the set of all chains of length l between a

and b. The cardinality of Cl(a, b) is denoted by cl(a, b). This number is always finite because

the poset P is supposed to be locally finite. For instance, the number of chains c2(2, 12), where

the poset is the set N partially ordered by divisibility, is equal to 2. Indeed, there are exactly 2

chains of length 2 between 2 and 12 in [2, 12]N = {2, 4, 6, 12}, which are {2, 4, 12} and {2, 6, 12}.
For any locally finite poset P , the Möbius function µP is the integer-valued function on P ×P

defined by

µP (a, b) =
∑
l≥0

(−1)lcl(a, b), (1)

for all elements a and b of the poset P . One can remark that this sum is always finite because,

for a and b given, there exists a maximal length of a possible chain between a and b since the

segment [a, b]P has finite cardinality.

The concept of Möbius function for a locally finite poset (P,≤) was introduced by Rota in

[5] as the inverse of the zeta function in the incidence algebra of a locally finite poset. Let us

see this with more detail. Consider the set I(P ) of all real-valued functions f : P ×P −→ R for

which f(a, b) = 0 if a6≤P b. The sum + and the multiplication by scalars . are defined as usual

in I(P ). The product of two functions f and g in I(P ) is defined by

(f × g)(a, b) =
∑

c∈[a,b]P

f(a, c)g(c, b),

for all (a, b) ∈ P ×P . Then (I(P ),+, .,×) appears as an associative algebra over R. This is the

incidence algebra of P . The Kronecker delta function δ ∈ I(P ), defined by

δ(a, b) =

{
1 if a = b,

0 otherwise,
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for all (a, b) ∈ P × P , is the identity element of I(P ). The zeta function ζP ∈ I(P ) is defined

by

ζP (a, b) =

{
1 if a ≤P b,
0 otherwise,

for all (a, b) ∈ P × P .

Rota [5] proved that the zeta function ζP (called the inverse function) is invertible in I(P )

and showed that µP is recursively defined as follows: for all (a, b) ∈ P × P , by

µP (a, a) = 1 and µP (a, b) = −
∑

c∈[a,b[P

µP (a, c) if a <P b. (2)

Let us see that both definitions of µS given by (1) and by (2) are equivalent. For, let a and b

be two elements of the locally finite poset P such that a <P b. Then,

cl(a, b) =
∑

c∈[a,b[P

cl−1(a, c) =
∑

c∈]a,b]P

cl−1(c, b), (3)

for all positive integers l. Indeed, every chain {a0, a1, . . . , al} ∈ Cl(a, b) can be seen like an

extension of a chain of Cl−1(a, al−1) or of Cl−1(a1, b).

Obviously, the identity µS(a, a) = 1 directly comes from (1) since c0(a, a) = 1 and cl(a, a) = 0

for all l ≥ 1. By combining (3) and (1), for all a <P b, we obtain that

µP (a, b) =
∑
l≥0

(−1)lcl(a, b) = c0(a, b) +
∑
l≥1

(−1)l
∑

c∈[a,b[P

cl−1(a, c).

Finally, since a 6= b, it follows that c0(a, b) = 0 and thus

µP (a, b) =
∑

c∈[a,b[P

∑
l≥0

(−1)l+1cl(a, c) = −
∑

c∈[a,b[P

µP (a, c).

Similarly, using the second identity of (3), we can also prove that, whenever a <P b, we have

µP (a, b) = −
∑

c∈]a,b]P

µP (c, b).

Therefore the two definitions of the Möbius function (for a locally finite posets) are the same.

All the results presented in this paper are derived from the recursive formula presented in (2).

2.1. Poset of integers induced by a numerical semigroup. Let S be a numerical semi-

group and (Z,≤S) its associated poset. Observe that (Z,≤S) is a locally finite poset since∣∣∣[x, y](Z,≤S)

∣∣∣ ≤ y−x, for all x, y ∈ Z. It is easy to see that µS can be considered as a univariable

function of Z. Indeed, for all x, y ∈ Z and for all p ≥ 0, we have

cl(x, y) = cl(0, y − x). (4)

The above follows since the set Cl(x, y) is in bijection with Cl(0, y−x). Indeed the map that

assigns the chain {x0, x1, . . . , xl} ∈ Cl(x, y) to the chain {0, x1 − x0, . . . , xl − x0} ∈ Cl(0, y − x)

is clearly a bijection. Thus, by definition of µS and equality (4) we obtain

µS(x, y) = µS(0, y − x)

for all x, y ∈ Z.
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In the sequel of this paper we shall only consider the reduced Möbius function µS : Z −→ Z
defined by

µS(x) = µS(0, x), for all x ∈ Z.

This recursive formula given by (2) can be more easily presented when the locally finite poset

is (Z,≤S).

Proposition 1. Let S be a numerical semigroup and let x ∈ Z \ {0}. Then,

µS(x) = −
∑

y∈S\{0}

µS(x− y) ⇐⇒
∑
y∈S

µS(x− y) = 0.

Proof. From (2), we deduce that

µS(x) = −
∑

y∈[0,x[(Z,≤S)

µS(y) = −
∑
y∈S

x−y∈S\{0}

µS(y) = −
∑

x−y∈S
y∈S\{0}

µS(x− y).

The result follows since, by definition of µS , µS(x− y) = 0 unless x− y ∈ S. �

3. Deddens’ result : new proof

In [1], Deddens proved the following.

Theorem 1. [1] Let a and b be two relatively positive integers and let S = 〈a, b〉. Then, for all

x ∈ Z, we have

µS(x) =


1 if x ≥ 0 and x ≡ 0 or a+ b (mod ab),

−1 if x ≥ 0 and x ≡ a or b (mod ab),

0 otherwise.

Dedden’s proof was based on a recursive argument and a case-by-case analysis. We may give

the following direct proof of Theorem 1.

Proof of Theorem 1. We shall prove that

µS(x) = µS(x− ab) (5)

for every x ∈ Z \ {0, a, b, a + b}. The result then follows since µS(x) = 0 for all x < 0,

µS(0) = 1, µS(a) = µS(b) = −1 and µS(a+ b) = c2(0, a+ b)− c1(0, a+ b) = 2− 1 = 1.

Let us prove then equality (5). Let S = 〈a, b〉 = {maa+mbb | ma,mb ∈ N} and let x ∈
Z \ {0}. By Proposition 1 we already know that

µS(x) = −
∑

y∈S\{0}

µS(x− y) = −
∑

y∈S\{0}
y−a∈S

µS(x− y)−
∑

y∈S\{0}
y−a/∈S

µS(x− y).

Since ∑
y∈S\{0}
y−a∈S

µS(x− y) =
∑
z∈S

µS((x− a)− z) = 0, for x− a 6= 0,

then

µS(x) = −
∑

y∈S\{0}
y−a/∈S

µS(x− y), for x ∈ Z \ {0, a}.
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Moreover since {y ∈ S \ {0} | y − a /∈ S} = {mbb | mb ∈ {1, 2, . . . , a− 1}} then

µS(x) = −
a−1∑
mb=1

µS(x−mbb), for x ∈ Z \ {0, a}. (6)

By applying (6) for x− b ∈ Z \ {0, a}, that is, x ∈ Z \ {b, a+ b} we obtain that

µS(x− b) = −
a∑

mb=2

µS(x−mbb), for x− b ∈ Z \ {0, a}. (7)

By combining (6) and (7), for x ∈ Z \ {0, a, b, a+ b}, we obtain that

µS(x) = −
a−1∑
mb=1

µS(x−mbb) = −µS(x− b)−
a−1∑
mb=2

µS(x−mbb)

=

a∑
mb=2

µS(x−mbb)−
a−1∑
mb=2

µS(x−mbb)

= µS(x− ab)
as desired. ut

4. Arithmetic semigroups : preliminary results

Let S be a numerical semigroup. The Apéry set of S with respect with m ∈ S is defined as

Ap(S;m) = {x ∈ S | x−m /∈ S} .

It is known that Ap(S;m) constitutes a complete set a of residues modm.

Roberts [3] has proved that if S = 〈a, a+ d, . . . , a+ kd〉 with gcd(a, d) = 1 and k ∈ {1, 2, . . . , a−
1} then

Ap(S; a) =

{⌈
i

k

⌉
a+ id

∣∣∣∣ i ∈ {0, 1, . . . , a− 1}
}
. (8)

The following result gives a unique representation of elements in arithmetic semigroups.

Lemma 1. Let x ∈ S = 〈a, a+ d, . . . , a+ kd〉 with 2 ≤ k ≤ a− 1. Then, there exists a unique

triplet (x0, xi, xk) ∈ N× {0, 1} × {0, . . . , dake} such that

x = x0a+ xi(a+ id) + xk(a+ kd)

for some 1 ≤ i ≤ k − 1 with ixi + kxk < a.

Proof. Let x ∈ S and x0, . . . , xk ∈ N such that

x = x0a+ x1(a+ d) + x2(a+ 2d) + · · ·+ xk(a+ kd). (9)

Existence: Let j1 and j2 be two integers such that 0 ≤ j1, j2 ≤ k. We notice that (a+ j1d) +

(a+ j2d) can be expressed as either

(a+ j1d) + (a+ j2d) = a+ (a+ (j1 + j2)d), for 0 ≤ j1 + j2 ≤ k

or

(a+ j1d) + (a+ j2d) = (a+ kd) + (a+ (j1 + j2 − k)d), for k ≤ j1 + j2 ≤ 2k.
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So, by repeatedly adding consecutive terms from the expression of x in (9), we obtain that

there exists a triplet (x0, xi, xk) such that

x = x0a+ xi(a+ id) + xk(a+ kd),

with 1 ≤ i ≤ k−1 and xi ∈ {0, 1}. Moreover, we may suppose that 0 ≤ xk ≤ ba/kc. Otherwise,

we use the following equality(⌊a
k

⌋
+ 1
)

(a+ kd) =
(⌊a
k

⌋
+ 1
)
a+

(⌊a
k

⌋
k + k

)
d

=
(⌊a
k

⌋
+ d+ 1

)
a+

(⌊a
k

⌋
k + k − a

)
d

=
(⌊a
k

⌋
+ d
)
a+

(
a+

(⌊a
k

⌋
k + k − a

)
d
)
,

where 1 ≤ ba/kc k + k − a ≤ k.

Finally, if ixi + kxk ≥ a then we consider the following representation

x = x0a+ xi(a+ id) + xk(a+ kd)

= (x0 + xi + xk) a+ (ixi + kxk) d

= (x0 + xi + xk + d) a+ (ixi + kxk − a) d

= (x0 + xi + xk + d− 1) a+ (a+ (ixi + kxk − a) d) ,

where 0 ≤ ixi+kxk−a ≤ ixi+k ba/kc−a ≤ k−1 + ba/kc k−a ≤ k−1. Obtaining the desired

decomposition.

Uniqueness: Let us suppose that there exist two triplets of non-negative integers (x0, xi, xk)

and (y0, yj , yk) such that

x0a+ xi(a+ id) + xk(a+ kd) = y0a+ yj(a+ jd) + yk(a+ kd),

with 1 ≤ i, j ≤ k − 1, xi, yj ∈ {0, 1}, ixi + kxk < a and jyj + kyk < a. It follows that

(ixi + kxk)d ≡ (jyj + kyk)d (mod a),

and since gcd(a, d) = 1 then

ixi + xkk ≡ jyj + kyk (mod a)

Moreover, since ixi + kxk < a and jyj + kyk < a, then

ixi + kxk = jyj + kyk or equivalently ixi − jyj = k(yk − xk).

We have four cases.

Case 1) if xi = 0 and yj = 1 then −j would be a multiple of k which is impossible since

−1 ≥ −j ≥ −k

Case 2) if xi = 1 and yj = 0 then i would be a multiple of k which is impossible since

1 ≤ i ≤ k

Case 3) if xi = yj = 1 then i− j would be a multiple of k but since −k + 2 ≤ i− j ≤ k − 2

then i− j = 0 implying that xk = yk and thus x0 = y0.

Case 4) if xi = yj = 0 then k(xk−yk) = 0 and since k ≥ 1 then xk = yk and thus x0 = y0. �
6



Let (x0, xi, xk) ∈ N× {0, 1} × {0, . . . , ba/kc} with 1 ≤ i ≤ k − 1 and ixi + kxk < a. We shall

denote by [x0, xi, xk] the element in S given by the representation of Lemma 1.

5. Recursive formula

We shall now present a recursive formula for µS when S = 〈a, a+ d, . . . , a+ kd〉. The fol-

lowing key remark led us to guess such recursion. If x = maa + mdd such that ma ≥ 0 and

0 ≤ md ≤ a− 1 then,

x ∈ S ⇐⇒ ma ≥
⌈md

k

⌉
.

Theorem 2. Let S = 〈a, a+ d, . . . , a+ kd〉 with gcd(a, d) = 1 and let a = qk+r with 0 ≤ r < k.

Let x ∈ Z \ {0, a, a+ kd, a+ (a+ kd)}, then

µS(x) =



µS(x− q(a+ kd)) +
k−1∑
i=1

µS(x− (a+ id)− q(a+ kd))

−µS(x− (a+ id)) if r = 0,

µS(x− (q + 1)(a+ kd)) +
k−1∑
i=r

µS(x− (a+ id)− q(a+ kd))

−
k−1∑
i=1

µS(x− (a+ id)) if r = 1,

µS(x− (q + 1)(a+ kd)) +
r−1∑
i=1

µS(x− (a+ id)− (q + 1)(a+ kd))

+
k−1∑
i=r

µS(x− (a+ id)− q(a+ kd))−
k−1∑
i=1

µS(x− (a+ id)) if r ≥ 2.

Proof. Let x ∈ Z \ {0}. As for the proof of Theorem 1, we have

µS(x) = −
∑

y∈S\{0}

µS(x− y)

= −
∑

y∈S\{0}
y−a∈S

µS(x− y)−
∑

y∈S\{0}
y−a/∈S

µS(x− y)

= −
∑
z∈S

µS((x− a)− z)−
∑

y∈S\{0}
y−a/∈S

µS(x− y)

= −
∑

y∈S\{0}
y−a/∈S

µS(x− y) if x− a 6= 0.

Let us now determine the set

{y ∈ S \ {0} | y − a /∈ S} = Ap(S; a) \ {0}.

For, we consider the set Ap(S; a) given by (8) in function of the unique representation of

Lemma 1. We have three cases.

Case a) If r = 0 then

Ap(S, a) \ {0} = {yk(a+ kd) | yk ∈ {1, . . . , q − 1}}⋃{
(a+ id) + yk(a+ kd)

∣∣∣∣∣ yk ∈ {0, . . . , q − 1}
i ∈ {1, . . . , k − 1}

}
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Case b) If r = 1 then

Ap(S, a) \ {0} = {yk(a+ kd) | yk ∈ {1, . . . , q}}⋃{
(a+ id) + yk(a+ kd)

∣∣∣∣∣ yk ∈ {0, . . . , q − 1}
i ∈ {r, . . . , k − 1}

}
Case c) If r ≥ 2 then

Ap(S, a) \ {0} = {yk(a+ kd) | yk ∈ {1, . . . , q}}⋃{
(a+ id) + yk(a+ kd)

∣∣∣∣∣ yk ∈ {0, . . . , q}
i ∈ {1, . . . , r − 1}

}
⋃{

(a+ id) + yk(a+ kd)

∣∣∣∣∣ yk ∈ {0, . . . , q − 1}
i ∈ {r, . . . , k − 1}

}
Suppose that r = 0, i.e. a = qk. For x ∈ Z \ {0, a}, we have

µS(x) = −
q−1∑
yk=1

µS(x− yk(a+ kd))−
k−1∑
i=1

q−1∑
yk=0

µS(x− (a+ id)− yk(a+ kd)). (10)

By applying (10) to x− (a+ kd) ∈ Z \ {0, a}, that is, x ∈ Z \ {a+ kd, a+ (a+ kd)} we obtain

µS(x− (a+ kd)) = −
q∑

yk=2

µS(x− yk(a+ kd))−
k−1∑
i=1

q∑
yk=1

µS(x− (a+ id)− yk(a+ kd)). (11)

By combining (10) and (11) for x ∈ Z \ {0, a, a+ kd, a+ (a+ kd)}, we obtain

µS(x) = µS(x− q(a+ kd)) +
k−1∑
i=1

µS(x− (a+ id)− q(a+ kd))− µS(x− (a+ id)).

The cases when r ≥ 1 are similar to Case a (and it is left to the reader as an exercise). �

6. Case 〈2q, 2q + d, 2q + 2d〉

The multiplicity function of a multiset A of N is the function

mA : N −→ N

which assigns to each element x ∈ N its multiplicity, that is, the number of times that x appears

in the multiset A.

Let a = 2q and d ∈ N∗ such that gcd(a, d) = gcd(q, d) = 1. For each i ∈ {−1, 0, 1}, we

consider the following multisets.

Ai = {m(q + d) + i | m ∈ N} ,

Bi = {m(q + d)− nd+ i | m ∈ N \ {0, 1}, n ∈ {1, 2, . . . , bm/2c}} ,

Ci = Ai
⋃
Bi.

As we mentioned above, given a triple (x0, x1, x2) ∈ N × {0, 1} × {0, . . . , q − 1}, we denote

by [x0, x1, x2] the element in S given by the representation in Lemma 1. In the sequel of this

section, we shall consider this representation for all x0 ∈ Z, i.e.,

[x0, x1, x2] = x0a+ x1(a+ d) + x2(a+ 2d)
8



for all (x0, x1, x2) ∈ Z× {0, 1} × {0, . . . , q − 1}. In this case, it is clear that

if (x0, x1, x2) ∈ Z× {0, 1} × {0, . . . , q − 1} then [x0, x1, x2] ∈ S ⇐⇒ x0 ∈ N.

The latter will be used in the proofs below.

Theorem 3. Let S =< 2q, 2q + d, 2q + 2d >. Let (x0, x1, x2) ∈ Z × {0, 1} × {0, . . . , q − 1}.
Then,

µS([x0, x1, x2]) =

{
(−1)x1

(
mA0 −mA1 + 2mB0 −mB−1 −mB1

)
(x0) if x2 = 0,

(−1)x1
(
2mC0 −mC−1 −mC1

)
(x0 − x2) if x2 ≥ 1.

We notice that if x0−x2 is a constant then we should have the same value for µS([x0, 0, x2]).

The latter is illustrated by the first values of µS([x0, 0, x2]), listed in Table 1 given at the end

of the section, for the case when a = 22 and d = 5. Indeed, we can see appearing diagonals

(corresponding to x0 − x2 constant) with the same value.

Before proving Theorem 3, we need two lemmas and the following refinement of Theorem 2

when k = 2 and a even.

Proposition 2. Let (x0, x1, x2) ∈ Z × {0, 1} × {0, . . . , q − 1} with (x0, x2) /∈ {0, 1} × {0, 1}.
Then,

µS ([x0, x1, 0]) = µS ([x0 − (q + d), x1, 0])

+µS ([x0 − (q + d)− 1, x1, q − 1])

−µS ([x0 − 2(q + d)− 1, x1, q − 1])

and

µS ([x0, x1, x2]) = µS ([x0 − (q + d), x1, x2])

+µS ([x0 − 1, x1, x2 − 1])

−µS ([x0 − (q + d)− 1, x1, x2 − 1])

when x2 ≥ 1.

Proof. From Theorem 2, we have

µS ([x0, x1, x2]) = µS ([x0, x1, x2]− [q + d, 0, 0]) + µS ([x0, x1, x2]− [q + d, 1, 0])

−µS ([x0, x1, x2]− [0, 1, 0]) .

(12)

Notice that q(a+ 2d) = (q + d)a and a+ (a+ 2d) = 2(a+ d).

Case a) If x1 = 0 and x2 = 0 then, from (12) we obtain

µS ([x0, 0, 0]) = µS ([x0, 0, 0]− [q + d, 0, 0]) + µS ([x0, 0, 0]− [q + d, 1, 0])

−µS ([x0, 0, 0]− [0, 1, 0]) .

= µS ([x0 − (q + d), 0, 0]) + µS ([x0 − 2(q + d)− 1, 1, q − 1])

−µS ([x0 − (q + d)− 1, 1, q − 1]) .

(13)
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By applying the recursive equality (12) to µS ([x0 − (q + d)− 1, 1, q − 1]), we obtain

µS ([x0 − (q + d)− 1, 1, q − 1]) = µS ([x0 − 2(q + d)− 1, 1, q − 1])

+µS ([x0 − 2(q + d)− 1, 0, q − 1])

−µS ([x0 − (q + d)− 1, 0, q − 1]) .

(14)

Finally, by combining equations (13) and (14) we have

µS ([x0, 0, 0]) = µS ([x0 − (q + d), 0, 0])

+µS ([x0 − (q + d)− 1, 0, q − 1])

−µS ([x0 − 2(q + d)− 1, 0, q − 1]) .

Case b) If x1 = 0 and x2 ≥ 1 then, from (12) we obtain

µS ([x0, 0, x2]) = µS ([x0, 0, x2]− x[q + d, 0, 0]) + µS ([x0, 0, x2]− [q + d, 1, 0])

−µS ([x0, 0, x2]− x[0, 1, 0])

= µS ([x0 − (q + d), 0, x2]) + µS ([x0 − (q + d)− 1, 1, x2 − 1])

−µS ([x0 − 1, 1, x2 − 1]) .

(15)

By applying the recursive equality (12) to µS ([x0 − 1, 1, x2 − 1]), we obtain

µS ([x0 − 1, 1, x2 − 1]) = µS ([x0 − (q + d)− 1, 1, x2 − 1])

+µS ([x0 − (q + d)− 1, 0, x2 − 1])

−µS ([x0 − 1, 0, x2 − 1]) .

(16)

Finally, by combining equations (14) and (16) we have

µS ([x0, 0, x2]) = µS ([x0 − (q + d), 0, x2])

+µS ([x0 − 1, 0, x2 − 1])

−µS ([x0 − (q + d)− 1, 0, x2 − 1]) .

This concludes the proof for x1 = 0. The proof for the case x1 = 1 is similar as the above case

and it is left to the reader. �

Lemma 2. Let i ∈ {−1, 0, 1}. For all x ∈ Z \ {i}, mAi(x) = mAi(x− (q + d)).

Proof. By definition of the sets Ai, for any integer x ≤ q + d+ i− 1 such that x 6= i, we have

mAi(x) = mAi(x− (q + d)) = 0.

For any integer x ≥ q + d+ i, we obtain

x ∈ Ai ⇐⇒ there exists m ∈ N with x = m(q + d) + i

⇐⇒ there exists m ∈ N with x− (q + d) = (m− 1)(q + d) + i

⇐⇒ x− (q + d) ∈ Ai.

This completes the proof. �

Lemma 3. Let i ∈ {−1, 0, 1}. For all x ∈ Z, mBi(x) = mCi(x− (2q + d)).
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Proof. By definition of the multisets Bi and Ci, for any integer x ≤ 2q + d+ i− 1, we have

mBi(x) = mCi(x− (2q + d)) = 0.

For any integer x ≥ 2q + d+ i, we obtain

x ∈ Bi ⇐⇒ there exists m ∈ N \ {0, 1}, 1 ≤ n ≤ bm/2c with x = m(q + d)− nd+ i

⇐⇒ there exists m ∈ N \ {0, 1}, 1 ≤ n ≤ bm/2c with x− (2q + d) = (m− 2)(q + d)

−(n− 1)d+ i

⇐⇒ there exists m ∈ N, 0 ≤ n ≤ bm/2c with x− (2q + d) = m(q + d)− nd+ i

⇐⇒ x− (2q + d) ∈ Ci.

This completes the proof. �

We may now prove Theorem 3.

Proof of Theorem 3. By double induction on x0 and x2.

For x0 < 0, since [x0, x1, x2] /∈ S and Ci ∩ (Z \ N) = ∅ for all i ∈ {−1, 0, 1}, it follows that

µS([x0, x1, 0]) = (−1)x1(mA0 −mA1 + 2mB0 −mB−1 −mB1)(x0) = 0,

and

µS([x0, x1, x2]) = (−1)x1(2mC0 −mC−1 −mC1)(x0 − x2) = 0,

for all x2 ∈ {1, . . . , q − 1}.
Now, for x0 ∈ N, we suppose that the theorem is true for all values lesser than x0 and all

x2 ∈ {0, . . . , q − 1}. We distinguish different cases according to the values of x2.

Case a) x2 = 0.

For x0 = 0, since µS([0, 0, 0]) = µS(0) = 1 and µS([0, 1, 0]) = µS(a + d) = −1, it follows, by

definition of the multisets Ai and Bi, that

µS([0, x1, 0]) = (−1)x1 = (−1)x1(mA0 −mA1 + 2mB0 −mB−1 −mB1)(0).

For x0 = 1, since µS([1, 0, 0]) = µS(a) = −1 and µS([1, 1, 0]) = µS(a+ (a+ d)) = c2(0, 2a+ d)−
c1(0, 2a+ d) = 2− 1 = 1, it follows, by definition of the multisets Ai and Bi, that

µS([1, x1, 0]) = (−1)x1+1 = (−1)x1(mA0 −mA1 + 2mB0 −mB−1 −mB1)(1).

Suppose now that x0 ≥ 2. From Proposition 2, we have

µS([x0, x1, 0]) = µS([x0−(q+d), x1, 0])+µS([x0−(q+d)−1, x1, q−1])−µS((x0−2(q+d), x1, q−1]).

By induction hypothesis, we have

µS([x0 − (q + d), x1, 0]) = (−1)x1
(
mA0 −mA1 + 2mB0 −mB−1 −mB1

)
(x0 − (q + d)),

µS([x0 − (q + d)− 1, x1, q − 1]) = (−1)x1
(
2mC0 −mC−1 −mC1

)
(x0 − (2q + d))

and

µS([x0 − 2(q + d)− 1, x1, q − 1]) = (−1)x1
(
2mC0 −mC−1 −mC1

)
(x0 − (3q + 2d)).

By Lemma 2, since x0 ≥ 2, we already know that

mA0(x0 − (q + d)) = mA0(x0) and mA1(x0 − (q + d)) = mA1(x0).

Moreover, by Lemma 3, we have

mCi(x0 − (2q + d)) = mBi(x0) and mCi(x0 − (3q + 2d)) = mBi(x0 − (q + d)),
11



for all i ∈ {−1, 0, 1}. Therefore,

µS([x0, x1, 0]) = (−1)x1 [(mA0 −mA1) (x0 − (q + d))

+
(
2mB0 −mB−1 −mB1

)
(x0 − (q + d))

+
(
2mC0 −mC−1 −mC1

)
(x0 − (2q + d))

−
(
2mC0 −mC−1 −mC1

)
(x0 − (3q + 2d))

]
= (−1)x1 [(mA0 −mA1) (x0)

+
(
2mB0 −mB−1 −mB1

)
(x0 − (q + d))

+
(
2mB0 −mB−1 −mB1

)
(x0)

−
(
2mB0 −mB−1 −mB1

)
(x0 − (q + d))

]
= (−1)x1

(
mA0 −mA1 + 2mB0 −mB−1 −mB1

)
(x0).

Case b) x2 = 1.

For x0 = 0, since µS([0, 0, 1]) = µS(a + 2d) = −1 and µS([0, 1, 1]) = µS((a + d) + (a + 2d)) =

c2(0, 2a+ 3d)− c1(0, 2a+ 3d) = 2− 1 = 1, it follows, by definition of the multisets Ci, that

µS([0, x1, 1]) = (−1)x1+1 = (−1)x1(2mC0 −mC−1 −mC1)(−1).

For x0 = 1, since µS([1, 0, 1]) = µS(a + (a + 2d)) = c2(0, 2a + 2d) − c1(0, 2a + 2d) = 3 − 1 = 2

and µS([1, 1, 1]) = µS(a+ (a+d) + (a+ 2d)) = −c3(0, 3a+ 3d) + c2(0, 3a+ 3d)− c1(0, 3a+ 3d) =

−7 + 10− 1 = 2, it follows, by definition of the multisets Ci, that

µS([1, x1, 1]) = (−1)x12 = (−1)x1(2mC0 −mC−1 −mC1)(0).

Suppose now that x0 ≥ 2. From Proposition 2, we have

µS([x0,+x1, 1]) = µS([x0 − (q + d), x1, 1]) + µS([x0 − 1, x1, 0])− µS([x0 − (q + d)− 1, x1, 0]).

By using Lemmas 2 and 3 and the induction hypothesis, we have

µS([x0 − (q + d), x1, 1]) = (−1)x1
(
2mC0 −mC−1 −mC1

)
(x0 − (q + d)− 1),

µS([x0 − 1, x1, 0]) = (−1)x1
(
mA0 −mA1 + 2mB0 −mB−1 −mB1

)
(x0 − 1)

and

µS([x0 − (q + d)− 1, x1, 0) = (−1)x1
(
mA0 −mA1 + 2mB0 −mB−1 −mB1

)
(x0 − (q + d)− 1).

First, since the multiset difference Ci \Bi is equal to Ai for all i ∈ {−1, 0, 1}, it follows that

mCi −mBi = mAi .

Therefore,

µS([x0, x1, 1]) = (−1)x1 [(mA0 −mA1) (x0 − 1)− (mA0 −mA1) (x0 − (q + d)− 1)

+
(
2mC0 −mC−1 −mC1

)
(x0 − (q + d)− 1)

−
(
2mB0 −mB−1 −mB1

)
(x0 − (q + d)− 1)

+
(
2mB0 −mB−1 −mB1

)
(x0 − 1)

]
= (−1)x1 [(mA0 −mA1) (x0 − 1)− (mA0 −mA1) (x0 − (q + d)− 1)

+
(
2mA0 −mA−1 −mA1

)
(x0 − (q + d)− 1)

+
(
2mB0 −mB−1 −mB1

)
(x0 − 1)

]
= (−1)x1

[
(mA0 −mA1) (x0 − 1) +

(
mA0 −mA−1

)
(x0 − (q + d)− 1)

+
(
2mB0 −mB−1 −mB1

)
(x0 − 1)

]
.
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Moreover, by Lemma 2, since x0 ≥ 2, we know that

mA0(x0 − (q + d)− 1) = mA0(x0 − 1) and mA−1(x0 − (q + d)− 1) = mA−1(x0 − 1).

Finally, in this case, we obtain

µS([x0, x1, 1]) = (−1)x1
[
(mA0 −mA1) (x0 − 1) +

(
mA0 −mA−1

)
(x0 − (q + d)− 1)

+
(
2mB0 −mB−1 −mB1

)
(x0 − 1)

]
.

= (−1)x1
[(

2mA0 −mA−1 −mA1

)
(x0 − 1) +

(
2mB0 −mB−1 −mB1

)
(x0 − 1)

]
= (−1)x1

(
2mC0 −mC−1 −mC1

)
(x0 − 1).

Case c) x2 ≥ 2.

From Proposition 2, we have

µS([x0, x1, x2]) = µS([x0−(q+d), x1, x2])+µS([x0−1, x1, x2−1])−µS([x0−(q+d)−1, x1, x2−1]).

By induction, we have

µS([x0 − (q + d), x1x2]) = (−1)x1
(
2mC0 −mC−1 −mC1

)
(x0 − x2 − (q + d)),

µS([x0 − 1, x1, x2 − 1]) = (−1)x1
(
2mC0 −mC−1 −mC1

)
(x0 − x2)

and

µS([x0 − (q + d)− 1, x1, x2 − 1]) = (−1)x1
(
2mC0 −mC−1 −mC1

)
(x0 − x2 − (q + d)).

Therefore,

µS([x0, x1, x2]) = (−1)x1
[(

2mC0 −mC−1 −mC1

)
(x0 − x2 − (q + d))

+
(
2mC0 −mC−1 −mC1

)
(x0 − x2)

−
(
2mC0 −mC−1 −mC1

)
(x0 − x2 − (q + d))

]
= (−1)x1

(
2mC0 −mC−1 −mC1

)
(x0 − x2).

This completes the proof of Theorem 3. ut

Table 1: First values of µS([x0, 0, x2]) for q = 11 and d = 5.

HHH
HHx0

x2
0 1 2 3 4 5 6 7 8 9 10

0 1 −1 0 0 0 0 0 0 0 0 0

1 −1 2 −1 0 0 0 0 0 0 0 0

2 0 −1 2 −1 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0 0

0 0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 0 −1 2 −1 0 0

0 0 0 0 0 0 0 −1 2 −1 0

0 0 0 0 0 0 0 0 −1 2 −1
q − 1 0 0 0 0 0 0 0 0 0 −1 2

q 0 0 0 0 0 0 0 0 0 0 −1
q + 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

q + d− 1 0 0 0 0 0 0 0 0 0 0 0

q + d 1 −1 0 0 0 0 0 0 0 0 0

q + d+ 1 −1 2 −1 0 0 0 0 0 0 0 0

Continued on next page
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Table 1 – continued from previous page
HH

HHHx0

x2
0 1 2 3 4 5 6 7 8 9 10

q + d+ 2 0 −1 2 −1 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0 0

0 0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 0 −1 2 −1 0 0

0 0 0 0 0 0 0 −1 2 −1 0

0 0 0 0 0 0 0 0 −1 2 −1
2q + d− 1 −1 0 0 0 0 0 0 0 0 −1 2

2q + d 2 −1 0 0 0 0 0 0 0 0 −1
2q + d+ 1 −1 2 −1 0 0 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0

2q + 2d− 1 0 0 0 −1 2 −1 0 0 0 0 0

2q + 2d 1 −1 0 0 −1 2 −1 0 0 0 0

2q + 2d+ 1 −1 2 −1 0 0 −1 2 −1 0 0 0

2q + 2d+ 2 0 −1 2 −1 0 0 −1 2 −1 0 0

0 0 −1 2 −1 0 0 −1 2 −1 0

0 0 0 −1 2 −1 0 0 −1 2 −1
0 0 0 0 −1 2 −1 0 0 −1 2

0 0 0 0 0 −1 2 −1 0 0 −1
0 0 0 0 0 0 −1 2 −1 0 0

0 0 0 0 0 0 0 −1 2 −1 0

0 0 0 0 0 0 0 0 −1 2 −1
3q + 2d− 1 −1 0 0 0 0 0 0 0 0 −1 2

3q + 2d 2 −1 0 0 0 0 0 0 0 0 −1
3q + 2d+ 1 −1 2 −1 0 0 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0

3q + 3d− 1 0 0 0 −1 2 −1 0 0 0 0 0

3q + 3d 1 −1 0 0 −1 2 −1 0 0 0 0

3q + 3d+ 1 −1 2 −1 0 0 −1 2 −1 0 0 0

3q + 3d+ 2 0 −1 2 −1 0 0 −1 2 −1 0 0

0 0 −1 2 −1 0 0 −1 2 −1 0

0 0 0 −1 2 −1 0 0 −1 2 −1
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