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Hilbert’s Third Problem

In a famous lecture delivered at the International Congress of
Mathematics at Paris in 1900, Hilbert posed 23 problems.

Hilbert’s Third Problem Are polyhedra in R3 of same volume
scissors congruent ?

Analogue for d = 2 : Two polygons are equidecomposable if they
can be split into finitely many pieces that only differ by a
combination of a translation and a rotation.

Theorem (Wallace-Bolyai-Gerwien, 1833) Two polygons are
equidecomposable if and only if they have the same area.
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Hilbert’s third problem

For d = 3 : a negative answer to Hilbert’s Third problem was
provided in 1902 by Dehn.

Dehn showed that the regular tetrahedron and the cube of the
same volume were not scissors congruent.

Done by using the Dehn invariant of a polyhedron depending on
edge lengths and edge dihedral angles.
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Hilbert’s third problem for the unimodular group

An integral matrix U is unimodular if it has determinant ±1. An
affine unimodular transformation is defined by x → Ux + b where
U is a unimodular matrix and b is a real vector.

Question (Haase and McAllister, 2008) Is there a decomposition of
P1 in a finite number of polytopes Qi and a set of affine
unimodular transformations Ui such that the union of all Ui (Qi ) is
equal to P2 ?

Motivation : The Ehrahrt polynomial of an integer polytope is
invariant under affine unimodular transformation.
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Ehrhart polynomial

Let P be an integer polytope.

Ehrhart defined a function LP(t) on the integer parameter t
which is the number of integer points inside the dilation tP.

Theorem (Ehrhart).
For every integer polytope P of dimension d ,
LP(t) is a polynomial on t of degree d .

(1,0,0)

(1,1,0)

(0,0,1)

(0,1,0)

LP(t) = 1 + 4 + · · ·+ (t + 1)2

=
t+1∑
i=1

i2

=
1

3
t3 +

3

2
t2 +

13

6
t + 1
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Polytope of Liu and Osserman

{1, 3}-graphs : degree of every vertex is 1 or 3

For each degree -3 vertex v of a {1, 3}-graph G ,
let a, b, and c be the edges incident to v .

S(v) is the system defined on the variables wa, wb, and wc :
wa + wb + wc ≤ 1

wa ≤ wb + wc

wb ≤ wa + wc

wc ≤ wa + wb.

a

bc v

Polytope PG :

solutions of the union of S(v) for all degree -3 vertices v .

Properties of this polytope are related to a work in algebraic
geometry by Mochizuki, 1999.
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Examples : polytopes of cubic graphs on two vertices

   (1/2,0,1/2)

(1/2,1/2,0)

(0,1/2,1/2)

(1/4,1/4,1/2)

(1/2,1/2,0)

1

2

3

w

w

w

w

w

w

1

3

2

1

2

3

w1 + w2 + w3 ≤ 1 w1 + w1 + w3 ≤ 1
w1 ≤ w2 + w3 w3 ≤ w1 + w1

w2 ≤ w1 + w3 w1 ≤ w1 + w3

w3 ≤ w1 + w2 w2 + w2 + w3 ≤ 1
w3 ≤ w2 + w2

w2 ≤ w2 + w3
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w

w

w

w
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1

3

2

1

2
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w1 ≤ w2 + w3 w3 ≤ 2w1

w2 ≤ w1 + w3 w3 ≥ 0
w3 ≤ w1 + w2 2w2 + w3 ≤ 1
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Main result

Theorem (Fernandes, De Pina, Robins, R.A., 2018) Let G1 and G2

be two same-size connected {1, 3}-graphs. Then, PG1
and PG2

are
unimodular equidecomposable.

Corollary The Ehrhart quasi-polynomials of PG1 and PG2 are the
same.
This was a conjecture in the paper by Liu and Osserman (2006).
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be two same-size connected {1, 3}-graphs. Then, PG1
and PG2

are
unimodular equidecomposable.

Corollary The Ehrhart quasi-polynomials of PG1 and PG2 are the
same.
This was a conjecture in the paper by Liu and Osserman (2006).

(1/2,1/2,1)

(1,1,0)

(1,0,1)

(1,1,0)

(0,1,1)
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Binary trees and rotations

Theorem (Culik and Wood, 1982) Any two binary trees with the
same number of vertices can be transformed into one another
through a finite series of rotations.

rotations

left rotation

right rotation

a

b c

rr

c

ba
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Nearest neighbor interchange

NNI : nearest neighbor interchange

NNI
vu u v

u and v adjacent vertices

left rotation

right rotation

a

b c

rr

c

ba

Loops and parallel edges allowed
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J. L. Raḿırez Alfonśın On a scissors congruence phenomenon for some polytopes



First result

Leaf : a degree -1 vertex

An edge is external if it is incident to a leaf, otherwise it is internal.

Theorem (Fernandes, De Pina, Robins, R.A., 2018) Let G and G ′

be connected graphs with the same degree sequence and the same
set of external edges. Then,
(a) G can be transformed into G ′ through a series of NNI moves.

(b) One can choose a spanning tree in G and a spanning tree in G ′

and require that all the pivots of the NNI moves are internal edges
of both of these spanning trees.

1

2

3

1

2

3

Extension of a theorem for cubic graphs by Tsukui (1996).
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Cutting an edge

For the proof of the previous theorem...
G : a connected graph that is not a tree.
e : an edge of G that is in a cycle.

The graph obtained from G by cutting e is

e

G G'

the graph G ′ resulting from the splitting of e into two edges,
each connecting one of the ends of e to one of two new leaves.
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+2

+1-3-2+3

-1

+2

+1-3 -2+3

-1

+2

+1 -3 -2+3

-1

+2

+1 -3 -2+3

-1

+2

+1-3 -2+3

-1

+2

+1

-3

-2

+3

-1

NNI

NNI

NNI

NNI

NNI
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Weighted NNIs

G : {1, 3}-graph
e : edge between two degree -3 vertices of G

e

d

c

b

a e

d

c

b

a
G,w G', w'

G ′ : {1, 3}-graph resulting from the NNI above

w : a weight function defined on the edges of G

Let w ′ be defined on the edges of G ′ as w ′f = wf for every f 6= e
and w ′e = we + max{wa +wb,wc +wd}−max{wa +wd ,wb +wc}.

Note that if w has integer values, so does w ′.
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Weighted NNIs

e

d

c

b

a e

d

c

b

a
G,w G', w'

w ′e = we + max{wa + wb,wc + wd} −max{wa + wd ,wb + wc}
w ′f = wf for every f 6= e

Lemma. For every integer t, w ∈ tPG if and only if w ′ ∈ tPG ′ .

Proof : Note that w ′′ = w , so it is enough to check one direction.

We may assume that wa + wb ≥ wc + wd and wa + wd ≥ wb + wc .

Thus w ′e = we + wb − wd .

J. L. Raḿırez Alfonśın On a scissors congruence phenomenon for some polytopes



Weighted NNIs

e

d

c

b

a e

d

c

b

a
G,w G', w'

w ′e = we + max{wa + wb,wc + wd} −max{wa + wd ,wb + wc}
w ′f = wf for every f 6= e

Lemma. For every integer t, w ∈ tPG if and only if w ′ ∈ tPG ′ .

Proof : Note that w ′′ = w , so it is enough to check one direction.

We may assume that wa + wb ≥ wc + wd and wa + wd ≥ wb + wc .

Thus w ′e = we + wb − wd .
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Scketch of the proof of the lemma

e

d

c

b

a e

d

c

b

a
G,w G', w'

Lemma. For every integer t, w ∈ tPG if and only if w ′ ∈ tPG ′ .

Proof : Note that w ′′ = w , so it is enough to check one direction.

We may assume that wa + wb ≥ wc + wd and wa + wd ≥ wb + wc .
Thus w ′e = we + wb − wd .

For example, if we + wa + wb ≤ t, then

w ′e + wb + wc ≤ w ′e + wa + wd

= (we + wb − wd) + wa + wd

= we + wa + wb ≤ t.
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Scissors congruence

We think a weighted NNI as a function ψ(G ,w) : Rm → Rm

Clearly ψ(G ,w) = (G ′,w ′) is piecewise linear, namely, for
w ∈ Rm,w ′f = wf for every f 6= e and

w ′e = we + wb − wd if wa + wb ≥ wc + wd and wa + wd ≥ wb + wc ,
w ′e = we + wa − wc if wa + wb ≥ wc + wd and wa + wd < wb + wc ,
w ′e = we + wc − wa if wa + wb < wc + wd and wa + wd ≥ wb + wc ,
w ′e = we + wd − wb if wa + wb < wc + wd and wa + wd < wb + wc ,

We associate to ψ the hyperplanes wa + wb − wc − wd = 0 and
wa − wb − wc + wd = 0, which are either the same hyperplane (if
a = b or c = d) or two orthogonal hyperplanes.
Moreover, the matrix that gives the linear transformation in each
case is unimodular.
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Scissors congruence

We think a weighted NNI as a function ψ(G ,w) : Rm → Rm

Clearly ψ(G ,w) = (G ′,w ′) is piecewise linear, namely, for
w ∈ Rm,w ′f = wf for every f 6= e and

w ′e = we + wb − wd if wa + wb ≥ wc + wd and wa + wd ≥ wb + wc ,
w ′e = we + wa − wc if wa + wb ≥ wc + wd and wa + wd < wb + wc ,
w ′e = we + wc − wa if wa + wb < wc + wd and wa + wd ≥ wb + wc ,
w ′e = we + wd − wb if wa + wb < wc + wd and wa + wd < wb + wc ,

We associate to ψ the hyperplanes wa + wb − wc − wd = 0 and
wa − wb − wc + wd = 0, which are either the same hyperplane (if
a = b or c = d) or two orthogonal hyperplanes.
Moreover, the matrix that gives the linear transformation in each
case is unimodular.
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Scissors congruence

(1/2,0,1/2)

(1/2,1/2,0)

(0,1/2,1/2)

(1/4,1/4,1/2)

(1/2,1/2,0)

1

2

3

w

w

w

w

w

w

1

2

3 3

2

1

w ′3 = w3 + max{w1 + w2,w1 + w2} −max{2w1, 2w2}
= w3 + w1 + w2 − 2 max{w1,w2}

=

{
w3 − w1 + w2 if w1 ≥ w2

w3 + w1 − w2 if w1 ≤ w2
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Scissors congruence

(1/2,0,1/2)

(1/2,1/2,0)

(0,1/2,1/2)

(1/4,1/4,1/2)

(1/2,1/2,0)

1

2

3

w

w

w

w

w

w

1

2

3 3

2

1

w ′3 =

{
w3 + w1 − w2 if w1 ≤ w2

w3 − w1 + w2 if w1 ≥ w2

Uw1≤w2 =

 −1 0 −0
0 1 0
1 −1 1

 Uw1≥w2 =

 1 −0 −0
0 1 0
−1 1 1


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Scissors congruence

(1/2,0,1/2)

(1/2,1/2,0)

(0,1/2,1/2)

(1/4,1/4,1/2)

(1/2,1/2,0)

1

2

3

w

w

w

w

w

w

1

2

3 3

2

1

w ′3 =

{
w3 + w1 − w2 if w1 ≤ w2

w3 − w1 + w2 if w1 ≥ w2

Uw1≤w2 =

 −1 0 −0
0 1 0
1 −1 1

 Uw1≥w2 =

 1 −0 −0
0 1 0
−1 1 1


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Scissors congruence

(0,1/2,0)
(1/2,0,0)

(1/2,0,1/2)

(1/2,0,0)

(1/4,1/2,1/4)

(0,0,1/2)

(1/2,0,1/2)

(1/2,1/2,0)

(0,1/2,1/2)

(1/4,1/4,1/2)

(1/2,1/2,0)

w

w

w

1

3

2

NNI on (1,3,2)

1

2

3

NNN on (1,2,3)

1

2

3
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Tiavint́ıo ! !
(Thanks in Mixteca)
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Ehrhart polynomials

G Ehrhart polynomial PG

1
24 t

3 + 1
4 t

2 +

{
5
6 t + 1, if t is even
11
24 t + 1

4 , if t is odd

1
240 t

5 + 1
24 t

4 +

{
5

24 t
3 + 7

12 t
2 + 11

10 t + 1, if t is even
1
6 t

3 + 1
3 t

2 + 79
240 t + 1

8 , if t is odd

17
40320 t

7 + 17
2880 t

6 +
{

59
1440

t5 + 25
144

t4 + 179
360

t3 + 173
180

t2 + 93
70

t + 1, if t is even

103
2880

t5 + 35
288

t4 + 1439
5760

t3 + 893
2880

t2 + 791
3360

t + 1
16

, if t is odd

31
725760 t

9 + 31
40320 t

8 +
{

829
120960

t7 + 37
960

t6 + 653
4320

t5 + 103
240

t4 + 20413
22680

t3 + 1723
1260

t2 + 193
126

t + 1, if t is even

43
6912

t7 + 19
640

t6 + 3181
34560

t5 + 123
640

t4 + 39205
145152

t3 + 9923
40320

t2 + 379
2880

t + 1
32

, if t is odd
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