Complete Kneser Transversals

J. L. Ramírez Alfonsín

Université de Montpellier

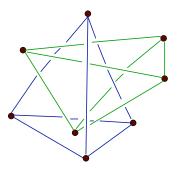
joint work with J. Chappelon, L. Martinez, L. Montejano, L.P. Montejano

イロン イヨン イヨン イヨン

Introduction

Kneser hypergraphs Rado's central point theorem Complete Kneser transversals Radon partitions Stability and instability Some computational results

Let us consider 8 points in \mathbb{R}^3 general position.

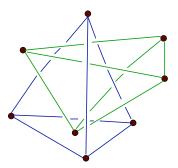


・ロト ・回 ト ・ヨト ・ヨト

Introduction Kneser hypergraphs Rado's central point theorem

Complete Kneser transversals Radon partitions Stability and instability Some computational results

Let us consider 8 points in \mathbb{R}^3 general position.



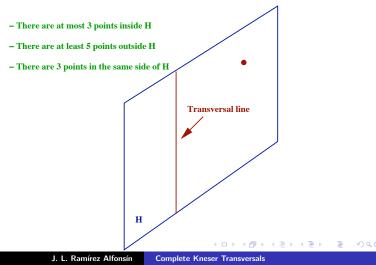
Question : Is there a transversal line to all tetrahedra?

イロン イヨン イヨン イヨン

Introduction

Kneser hypergraphs Rado's central point theorem Complete Kneser transversals Radon partitions Stability and instability Some computational results

NEVER



Question : Let A be a set of 6 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

・ロト ・回ト ・ヨト ・ヨト

Question : Let A be a set of 6 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

イロト イヨト イヨト イヨト

Question : Let A be a set of 6 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let $x \in A$. Let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.

Question : Let A be a set of 6 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let $x \in A$. Let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.

By Helly, T_2 there exists a point y in the intersection of all tetrahedra in T_2 .

Question : Let A be a set of 6 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let $x \in A$. Let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.

By Helly, T_2 there exists a point y in the intersection of all tetrahedra in T_2 .

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 6 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let $x \in A$. Let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.

By Helly, T_2 there exists a point y in the intersection of all tetrahedra in T_2 .

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

Introduction

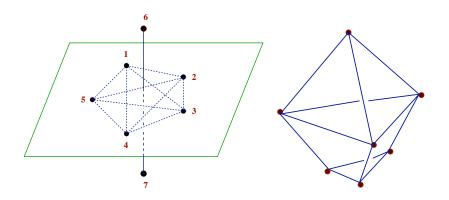
Kneser hypergraphs Rado's central point theorem Complete Kneser transversals Radon partitions Stability and instability Some computational results

Sometimes NO

・ロン ・四と ・ヨン ・ヨン

æ

Sometimes YES



Kneser Transversal

Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$.

 $m(k, d, \lambda) \stackrel{\text{def}}{=}$ the maximum positive integer *n* such that every set X of *n* points (not necessarily in general position) in \mathbb{R}^d has the property that the convex hull of all *k*-set of X have a transversal $(d - \lambda)$ -plane (called Kneser Transversal).

Kneser Transversal

Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$.

 $m(k, d, \lambda) \stackrel{\text{def}}{=}$ the maximum positive integer *n* such that every set X of *n* points (not necessarily in general position) in \mathbb{R}^d has the property that the convex hull of all *k*-set of X have a transversal $(d - \lambda)$ -plane (called Kneser Transversal).

 $M(k, d, \lambda) \stackrel{\text{def}}{=}$ the minimum positive integer *n* such that for every set of *n* points in general position in \mathbb{R}^d the convex hull of the *k*-sets does not have a transversal $(d - \lambda)$ -plane.

・ロン ・回と ・ヨン ・ヨン

Introduction

Kneser hypergraphs Rado's central point theorem Complete Kneser transversals Radon partitions Stability and instability Some computational results

• $m(k, d, \lambda) < M(k, d, \lambda)$.

・ロン ・回 と ・ ヨン ・ モン

- $m(k, d, \lambda) < M(k, d, \lambda)$.
- m(4,3,2) = 6 and M(4,3,2) = 8.

イロン イヨン イヨン イヨン

- $m(k, d, \lambda) < M(k, d, \lambda)$.
- m(4,3,2) = 6 and M(4,3,2) = 8.

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

$$M(k, d, \lambda) = \left\{ egin{array}{ll} d+2(k-\lambda)+1 & ext{if } k \geq \lambda, \ k+(d-\lambda)+1 & ext{if } k \leq \lambda. \end{array}
ight.$$

・ロン ・回と ・ヨン・

Kneser hypergraphs

A hypergraph H is a pair (V, \mathcal{H}) where V (vertices) is a finite set and \mathcal{H} (hyperedges) is a collection of subsets of V.

イロト イヨト イヨト イヨト

3

Kneser hypergraphs

A hypergraph H is a pair (V, \mathcal{H}) where V (vertices) is a finite set and \mathcal{H} (hyperedges) is a collection of subsets of V.

The Kneser hypergraph $K^{\lambda+1}(n, k)$ is the hypergraph (V, \mathcal{H}) where V is the collection of all k-elements subsets of a *n*-set and $\mathcal{H} = \{(S_1, \ldots, S_{\rho}) | 2 \le \rho \le \lambda + 1, S_1 \cap \cdots \cap S_{\rho} = \emptyset\}.$

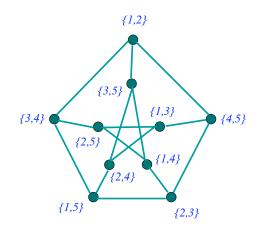
Kneser hypergraphs

A hypergraph H is a pair (V, \mathcal{H}) where V (vertices) is a finite set and \mathcal{H} (hyperedges) is a collection of subsets of V.

The Kneser hypergraph $K^{\lambda+1}(n, k)$ is the hypergraph (V, \mathcal{H}) where V is the collection of all k-elements subsets of a *n*-set and $\mathcal{H} = \{(S_1, \ldots, S_{\rho}) | 2 \le \rho \le \lambda + 1, S_1 \cap \cdots \cap S_{\rho} = \emptyset\}.$

Remark Kneser graphs are obtained when $\lambda = 1$.

Kneser hypergraph when n = 5, k = 2 and $\lambda = 1$ (Petersen graph)



イロン 不同と 不同と 不同と

A coloring of a hypergraph H is a function that assigns colors to the vertices such that no hyperedge of H is *monochromatic*.

イロト イポト イヨト イヨト

A coloring of a hypergraph H is a function that assigns colors to the vertices such that no hyperedge of H is *monochromatic*.

A collection of vertices $\{S_1, \ldots, S_\rho\}$ of $K^{\lambda+1}(n, k)$ are in the same color class if and only if either

a)
$$ho \leq \lambda + 1$$
 and $\mathit{S}_1 \cap \dots \cap \mathit{S}_{
ho}
eq \emptyset$ or

b) $\rho > \lambda + 1$ and any $(\lambda + 1)$ -subfamily $\{S_{i_1}, \ldots, S_{i_{\lambda+1}}\}$ of $\{S_1, \ldots, S_{\rho}\}$ is such that $S_{i_1} \cap \cdots \cap S_{i_{\lambda+1}} \neq \emptyset$.

Proposition (Arocha, Bracho, Montejano, R.A., 2011) If $\chi(K^{\lambda+1}(n,k)) \leq d - \lambda + 1$ then $n \leq m(k, d, \lambda)$.

・ロト ・回ト ・ヨト ・ヨト

Proposition (Arocha, Bracho, Montejano, R.A., 2011) If $\chi(\mathcal{K}^{\lambda+1}(n,k)) \leq d - \lambda + 1$ then $n \leq m(k, d, \lambda)$. Theorem (Arocha, Bracho, Montejano, R.A., 2011) $\chi(\mathcal{K}^{\lambda+1}(n,k)) \leq n - k - \lceil \frac{k}{\lambda} \rceil + 2$.

イロト イヨト イヨト イヨト

Proposition (Arocha, Bracho, Montejano, R.A., 2011) If $\chi(K^{\lambda+1}(n,k)) \leq d - \lambda + 1$ then $n \leq m(k, d, \lambda)$. Theorem (Arocha, Bracho, Montejano, R.A., 2011) $\chi(K^{\lambda+1}(n,k)) \leq n - k - \lceil \frac{k}{\lambda} \rceil + 2$. Corollary (Arocha, Bracho, Montejano, R.A., 2011) $d - \lambda + k + \lceil \frac{k}{\lambda} \rceil - 1 \leq m(k, d, \lambda)$.

イロン イヨン イヨン イヨン

3

Proposition (Arocha, Bracho, Montejano, R.A., 2011) If $\chi(K^{\lambda+1}(n,k)) \leq d - \lambda + 1$ then $n \leq m(k, d, \lambda)$. Theorem (Arocha, Bracho, Montejano, R.A., 2011) $\chi(K^{\lambda+1}(n,k)) \leq n - k - \lceil \frac{k}{\lambda} \rceil + 2$. Corollary (Arocha, Bracho, Montejano, R.A., 2011) $d - \lambda + k + \lceil \frac{k}{\lambda} \rceil - 1 \leq m(k, d, \lambda)$.

Corollary (Arocha, Bracho, Montejano, R.A., 2011)

$$\chi(\mathsf{K}^{\lambda+1}(n,k)) > \begin{cases} n-2k+\lambda & \text{if } k \geq \lambda, \\ n-2k & \text{if } k \leq \lambda. \end{cases}$$

イロン イヨン イヨン イヨン

Proposition (Arocha, Bracho, Montejano, R.A., 2011) If $\chi(K^{\lambda+1}(n,k)) \leq d - \lambda + 1$ then $n \leq m(k, d, \lambda)$. Theorem (Arocha, Bracho, Montejano, R.A., 2011) $\chi(K^{\lambda+1}(n,k)) \leq n - k - \lceil \frac{k}{\lambda} \rceil + 2$. Corollary (Arocha, Bracho, Montejano, R.A., 2011) $d - \lambda + k + \lceil \frac{k}{\lambda} \rceil - 1 \leq m(k, d, \lambda)$.

Corollary (Arocha, Bracho, Montejano, R.A., 2011)

$$\chi(\mathcal{K}^{\lambda+1}(n,k)) > \begin{cases} n-2k+\lambda & \text{if } k \geq \lambda, \\ n-2k & \text{if } k \leq \lambda. \end{cases}$$

Theorem (Lovász) $\chi(K^2(n,k)) = n - 2k + 2$.

・ロト ・回ト ・ヨト ・ヨト

Conjecture $m(k, d, \lambda) = d - \lambda + k + \lfloor \frac{k}{\lambda} \rfloor - 1$.

・ロン ・回 と ・ヨン ・ヨン

Conjecture $m(k, d, \lambda) = d - \lambda + k + \lceil \frac{k}{\lambda} \rceil - 1$. Theorem (Arocha, Bracho, Montejano, R.A., 2011) The conjecture is true if either a) $d = \lambda$ or b) $\lambda = 1$ or c) $k \le \lambda$ or d) $\lambda = k - 1$ or e) k = 2, 3.

イロト イヨト イヨト イヨト

2

Rado's central point theorem

Rado's theorem If X is a bounded measurable set in \mathbb{R}^d then there exists a point $x \in \mathbb{R}^d$ such that

$$measure(P \cap X) \geq rac{measure(X)}{d+1}$$

for each half-space P that contains x.

Rado's central point theorem

Rado's theorem If X is a bounded measurable set in \mathbb{R}^d then there exists a point $x \in \mathbb{R}^d$ such that

$$\mathit{measure}(\mathit{P} \cap \mathit{X}) \geq rac{\mathit{measure}(\mathit{X})}{d+1}$$

for each half-space P that contains x.

A generalization of the discrete version of Rado's result.

Theorem (Arocha, Bracho, Montejano, R.A. 2011) Let X be a finite set of n points in \mathbb{R}^d . Then, there is a $(d - \lambda)$ -plane L such that any closed half-space H through L contains at least $\lfloor \frac{n-d+2\lambda}{\lambda+1} \rfloor + (d-\lambda)$ points of X.

Complete Kneser transversal

Complete Kneser transversal

Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$.

・ロン ・回 と ・ヨン ・ヨン

Complete Kneser transversal

Let $k, d, \lambda \ge 1$ be integers with $d \ge \lambda$. $m^*(k, d, \lambda) \stackrel{\text{def}}{=}$ the maximum positive integer *n* such that every set X of *n* points (not necessarily in general position) in \mathbb{R}^d has the property that the convex hull of all *k*-set of X have a transversal $(d - \lambda)$ -plane containing $(d - \lambda) + 1$ points of X (called Complete Kneser Transversal).

Complete Kneser transversal

Let $k, d, \lambda \ge 1$ be integers with $d \ge \lambda$.

 $m^*(k, d, \lambda) \stackrel{\text{def}}{=}$ the maximum positive integer *n* such that every set *X* of *n* points (not necessarily in general position) in \mathbb{R}^d has the property that the convex hull of all *k*-set of *X* have a transversal $(d - \lambda)$ -plane containing $(d - \lambda) + 1$ points of *X* (called Complete Kneser Transversal).

We clearly have that

$m^*(k, d, \lambda) \leq m(k, d, \lambda)$

Proposition $m^*(k, d, k) = d$.

・ロン ・四 と ・ ヨ と ・ モ と

Proposition $m^*(k, d, k) = d$. Proof (easy) : For any set of d or less points in \mathbb{R}^d choose any set T with d - k + 1 points. Then, aff(T) is a complete Kneser transversal since T have non-empty intersection with any k-set.

Proposition $m^*(k, d, k) = d$.

Proof (easy): For any set of d or less points in \mathbb{R}^d choose any set T with d - k + 1 points. Then, aff(T) is a complete Kneser transversal since T have non-empty intersection with any k-set.

On the other hand, if we choose d + 1 affinely independent points in \mathbb{R}^d then any (d - k + 1)-set T will leave k points in its complement, and thus aff(T) cannot be a complete Kneser transversal.

・ロト ・回ト ・ヨト

Proposition $m^*(k, d, k) = d$.

Proof (easy): For any set of d or less points in \mathbb{R}^d choose any set T with d - k + 1 points. Then, aff(T) is a complete Kneser transversal since T have non-empty intersection with any k-set.

On the other hand, if we choose d + 1 affinely independent points in \mathbb{R}^d then any (d - k + 1)-set T will leave k points in its complement, and thus aff(T) cannot be a complete Kneser transversal.

• We assume $k \ge \lambda + 1$.

Proposition $m^*(k, d, k) = d$.

Proof (easy): For any set of d or less points in \mathbb{R}^d choose any set T with d - k + 1 points. Then, aff(T) is a complete Kneser transversal since T have non-empty intersection with any k-set.

On the other hand, if we choose d + 1 affinely independent points in \mathbb{R}^d then any (d - k + 1)-set T will leave k points in its complement, and thus aff(T) cannot be a complete Kneser transversal.

• We assume $k \ge \lambda + 1$.

• It turns out that the function m^* has two different behaviours :

$$lpha(d,\lambda) = rac{\lambda-1}{\lceilrac{d}{2}
ceil} \ge 1$$

 $lpha(d,\lambda) = rac{\lambda-1}{\lceilrac{d}{2}
ceil} < 1$

Radon's theorem Let X be a set of d + 2 points in \mathbb{R}^d in general position. Then, there exists a unique partition $X = X_1 \cup X_2$ such that $conv(X_1) \cap conv(X_2) \neq \emptyset$.

Radon's theorem Let X be a set of d + 2 points in \mathbb{R}^d in general position. Then, there exists a unique partition $X = X_1 \cup X_2$ such that $conv(X_1) \cap conv(X_2) \neq \emptyset$.

Lemma Let X be any set of d + 2 distinct points in \mathbb{R}^d and let $\lfloor \frac{d+2}{2} \rfloor \leq t \leq d+1$. Then, X can be partitioned into disjoint sets S and T such that |T| = t and $conv(S) \cap aff(T) \neq \emptyset$.

Theorem If $\alpha(d, \lambda) < 1$ then $d - \lambda + 1 + k \leq m^*(k, d, \lambda)$.

J. L. Ramírez Alfonsín Complete Kneser Transversals

・ロン ・回 と ・ヨン ・ヨン

Theorem If $\alpha(d, \lambda) < 1$ then $d - \lambda + 1 + k \le m^*(k, d, \lambda)$. Proof : Let X be a collection of $d - \lambda + 1 + k$ points in \mathbb{R}^d .

・ロン ・回と ・ヨン・

Theorem If $\alpha(d, \lambda) < 1$ then $d - \lambda + 1 + k \le m^*(k, d, \lambda)$. Proof : Let X be a collection of $d - \lambda + 1 + k$ points in \mathbb{R}^d . • Since $k \ge \lambda + 1$ then $|X| \ge d + 2$. Let Y be a (d + 2)-subset of X.

イロト イポト イヨト イヨト

Theorem If $\alpha(d, \lambda) < 1$ then $d - \lambda + 1 + k \le m^*(k, d, \lambda)$. Proof : Let X be a collection of $d - \lambda + 1 + k$ points in \mathbb{R}^d . • Since $k \ge \lambda + 1$ then $|X| \ge d + 2$. Let Y be a (d + 2)-subset of X.

• Since $\alpha(d, \lambda) < 1$ then $\lfloor \frac{d+2}{2} \rfloor \leq d - \lambda + 1 \leq d + 1$.

Theorem If $\alpha(d, \lambda) < 1$ then $d - \lambda + 1 + k \le m^*(k, d, \lambda)$. Proof : Let X be a collection of $d - \lambda + 1 + k$ points in \mathbb{R}^d . • Since $k \ge \lambda + 1$ then $|X| \ge d + 2$. Let Y be a (d + 2)-subset of X.

- Since $\alpha(d, \lambda) < 1$ then $\lfloor \frac{d+2}{2} \rfloor \leq d \lambda + 1 \leq d + 1$.
- By Lemma, the set Y can be partitioned into disjoint sets S and T such that $|T| = d \lambda + 1$ and $conv(S) \cap aff(T) \neq \emptyset$.

Theorem If $\alpha(d, \lambda) < 1$ then $d - \lambda + 1 + k \le m^*(k, d, \lambda)$. Proof : Let X be a collection of $d - \lambda + 1 + k$ points in \mathbb{R}^d . • Since $k \ge \lambda + 1$ then $|X| \ge d + 2$. Let Y be a (d + 2)-subset of X.

- Since $\alpha(d, \lambda) < 1$ then $\lfloor \frac{d+2}{2} \rfloor \leq d \lambda + 1 \leq d + 1$.
- By Lemma, the set Y can be partitioned into disjoint sets S and T such that $|T| = d \lambda + 1$ and $conv(S) \cap aff(T) \neq \emptyset$.
- We claim that aff(T) is a complete Kneser transversal for X.

Theorem If $\alpha(d, \lambda) < 1$ then $d - \lambda + 1 + k \le m^*(k, d, \lambda)$. Proof : Let X be a collection of $d - \lambda + 1 + k$ points in \mathbb{R}^d . • Since $k \ge \lambda + 1$ then $|X| \ge d + 2$. Let Y be a (d + 2)-subset of X.

- Since $\alpha(d, \lambda) < 1$ then $\lfloor \frac{d+2}{2} \rfloor \leq d \lambda + 1 \leq d + 1$.
- By Lemma, the set Y can be partitioned into disjoint sets S and T such that $|T| = d \lambda + 1$ and $conv(S) \cap aff(T) \neq \emptyset$.

• We claim that aff(T) is a complete Kneser transversal for X. Since $|X| = d - \lambda + 1 + k$ then there is exactly one k-set not intersected by T. But this k-set contains S for which $conv(S) \cap aff(T) \neq \emptyset$.

Cyclic polytope

The cyclic polytope is the convex hull of a finite set of points in the moment curve in \mathbb{R}^d (defined as the map $\gamma : \mathbb{R} \to \mathbb{R}^d, t \mapsto (t, t^2, \dots, t^d)$).

イロン イヨン イヨン イヨン

Cyclic polytope

The cyclic polytope is the convex hull of a finite set of points in the moment curve in \mathbb{R}^d (defined as the map $\gamma : \mathbb{R} \to \mathbb{R}^d, t \mapsto (t, t^2, \dots, t^d)$).

Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$.

 $\eta(k, d, \lambda) \stackrel{\text{def}}{=}$ the maximum number of vertices that the cyclic polytope in \mathbb{R}^d can have, so that it has a complete Kneser $(d - \lambda)$ -transversal to the convex hull of its *k*-sets of vertices.

Cyclic polytope

The cyclic polytope is the convex hull of a finite set of points in the moment curve in \mathbb{R}^d (defined as the map $\gamma : \mathbb{R} \to \mathbb{R}^d, t \mapsto (t, t^2, \dots, t^d)$).

Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$.

 $\eta(k, d, \lambda) \stackrel{\text{def}}{=}$ the maximum number of vertices that the cyclic polytope in \mathbb{R}^d can have, so that it has a complete Kneser $(d - \lambda)$ -transversal to the convex hull of its *k*-sets of vertices.

• $m^*(k, d, \lambda) \leq \eta(k, d, \lambda)$

Theorem If $\alpha(d, \lambda) \ge 1$ then $m^*(k, d, \lambda) = d - \lambda + 1 = \eta(k, d, \lambda)$.

J. L. Ramírez Alfonsín Complete Kneser Transversals

・ロン ・回 と ・ヨン ・ヨン

Theorem If $\alpha(d, \lambda) \ge 1$ then $m^*(k, d, \lambda) = d - \lambda + 1 = \eta(k, d, \lambda)$. Let $\beta(\lambda, j) = \frac{j + \lambda - 1}{2}$ for each j with $j + \lambda$ odd.

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem If $\alpha(d, \lambda) \ge 1$ then $m^*(k, d, \lambda) = d - \lambda + 1 = \eta(k, d, \lambda)$. Let $\beta(\lambda, j) = \frac{j+\lambda-1}{2}$ for each j with $j + \lambda$ odd.

$$z(k, d, \lambda) \stackrel{\text{def}}{=} d - \lambda + 1 + \max_{\substack{j \in \{\lambda+1, \dots, d-\lambda+2\}\\ j+\lambda \text{ is odd}}} \left(\left\lfloor \frac{k-1}{\beta(\lambda, j)} \right\rfloor \right) \cdot j + (k-1)_{mod\beta(\lambda, j)}$$

 $Z(k, d, \lambda) \stackrel{\text{def}}{=} d - \lambda + 1 + \lfloor (2 - \alpha(d, \lambda))(k - 1) \rfloor$

・ロット (四) (日) (日)

Theorem If $\alpha(d, \lambda) \ge 1$ then $m^*(k, d, \lambda) = d - \lambda + 1 = \eta(k, d, \lambda)$. Let $\beta(\lambda, j) = \frac{j+\lambda-1}{2}$ for each j with $j + \lambda$ odd.

$$z(k, d, \lambda) \stackrel{\text{def}}{=} d - \lambda + 1 + \max_{\substack{j \in \{\lambda+1, \dots, d-\lambda+2\}\\ j+\lambda \text{ is odd}}} \left(\left\lfloor \frac{k-1}{\beta(\lambda, j)} \right\rfloor \right) \cdot j + (k-1)_{mod\beta(\lambda, j)}$$
$$Z(k, d, \lambda) \stackrel{\text{def}}{=} d - \lambda + 1 + \lfloor (2 - \alpha(d, \lambda))(k-1) \rfloor$$

Theorem If $\alpha(d, \lambda) < 1$ then $z(k, d, \lambda) \leq \eta(k, d, \lambda) \leq Z(k, d, \lambda)$.

(日) (同) (E) (E) (E)

Asymptotics

Theorem If $\alpha(d,\lambda) < 1$ then $\lim_{k \to \infty} \frac{\eta(k,d,\lambda)}{k} = 2 - \alpha(d,\lambda).$

イロン イヨン イヨン イヨン

Asymptotics

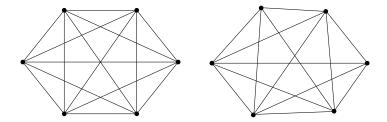
Theorem If $\alpha(d, \lambda) < 1$ then $\lim_{k \to \infty} \frac{\eta(k, d, \lambda)}{k} = 2 - \alpha(d, \lambda)$. Corollary If $\alpha(d, \lambda) < 1$ then $m^*(k, d, 2) < m(k, d, 2)$ for k large enough and $d \ge 3$.

・ロン ・回と ・ヨン ・ヨン

Question : Is the existence of a Kneser Transversal invariant of the order type?

・ロン ・回 と ・ヨン ・ヨン

Question : Is the existence of a Kneser Transversal invariant of the order type? **NO**



<ロ> (四) (四) (三) (三) (三)

Stability and instability

A Kneser transversal is said to be stable (resp. instable) if the given set of points can be slightly perturbated (move each point to, not more than $\epsilon > 0$ distance of their original position) such that the new configuration of points admits (if there is any) only complete Kneser transversals (resp. the new configuration of points does not admit a Kneser transversal).

Codimension 2 and 3

Theorem Let $X = \{x_1, x_2, ..., x_n\}$ be a collection of $n = d + 2(k - \lambda)$ points in general position in \mathbb{R}^d . Suppose that *L* is a $(d - \lambda)$ -plane transversal to the convex hulls of all *k*-sets of *X* with $\lambda = 2, 3$ and $k \ge \lambda + 2$ and $d \ge 2(\lambda - 1)$. Then, either

- (1) *L* is a complete Kneser transversal (i.e., it contains $d \lambda + 1$ points of *X*) or
- (2) | L ∩ X |= d − 2(λ − 1) and the other 2(k − 1) points of X are matched in k − 1 pairs in such a way that L intersects the corresponding closed segments determined by them.

TheoremLet $\epsilon > 0$ and let $X = \{x_1, \ldots, x_n\}$ be a finite collection of points in \mathbb{R}^d . Suppose that $n = d + 2(k - \lambda)$, $k - \lambda \ge 2$ and $\lambda = 2, 3$. Then, there exists $X' = \{x'_1, \ldots, x'_n\}$, a collection of points in \mathbb{R}^d in general position such that $|x_i - x'_i| < \epsilon$, for every $i = 1, \ldots, n$, and with the property that every transversal $(d - \lambda)$ -plane to the convex hull of the *k*-sets of X' is complete (i.e., it contains $d - \lambda + 1$ points of X').

TheoremLet $\epsilon > 0$ and let $X = \{x_1, \ldots, x_n\}$ be a finite collection of points in \mathbb{R}^d . Suppose that $n = d + 2(k - \lambda)$, $k - \lambda \ge 2$ and $\lambda = 2, 3$. Then, there exists $X' = \{x'_1, \ldots, x'_n\}$, a collection of points in \mathbb{R}^d in general position such that $|x_i - x'_i| < \epsilon$, for every $i = 1, \ldots, n$, and with the property that every transversal $(d - \lambda)$ -plane to the convex hull of the *k*-sets of X' is complete (i.e., it contains $d - \lambda + 1$ points of X').

Theorem Let $\lambda = 2, 3, k - \lambda \ge 2$ and $d \ge 2(\lambda - 1)$. Then,

 $m(k, d, \lambda) < d + 2(k - \lambda).$

Some computational results

We know that m(4, 3, 2) = 6 and M(4, 3, 2) = 8.

・ロト ・回ト ・ヨト ・ヨト

Some computational results

We know that m(4,3,2) = 6 and M(4,3,2) = 8.

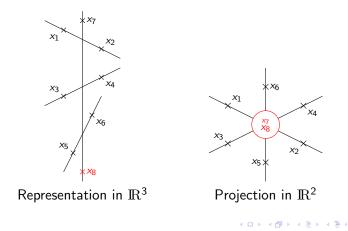
Question What about transversal lines to all tetrahedra in configurations of 7 points in \mathbb{R}^3 ?

イロト イヨト イヨト イヨト

Complete Kneser lines : determined by oriented matroids

イロン イヨン イヨン イヨン

Complete Kneser lines : determined by oriented matroids Kneser lines : a bit more complicated



Theorem Among the 246 different order types of 7 points in general position in \mathbb{R}^3 there are :

A = 124 admitting a complete Kneser line to the tetrahedra

B = 124 admitting a representation for which there is non-complete Kneser line to the tetrahedra

We have $|A \cap B| = 46$, $|A \setminus B| = |B \setminus A| = 78$ and $|\overline{A \cup B}| = 44$. Moreover, for each of the 78 order types of $B \setminus A$ there exists a representation for which there is no Kneser transversal line.