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Jugs of wine problem

There are three jugs with integral capacities, B,M and S
respectively with B = M + S and M ≥ S ≥ 1. Any jug
may be poured into any other jug until either the first
one is empty or the second is full. Initially jug B is full
and the other two are empty.

We want to divide the wine equally, so that 1
2B gallons

are in jugs B and M and jug S is empty, and we want to
do so with a few pourings as possible

The origine of this puzzle can be traced back at least as far as
Tartaglia (16th century)
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Jugs of wine problem

Theorem (McDiarmid, R.A., 1994) It is possible to share equally if
and only if B is divisible by 2r where r = gcd(M,S). If this is the
case the least number of pourings is 1

r B − 1.

Moreover, we proposed an algorithm to achieve the unique optimal
sequence of pourings.

Example : B = 8, M = 5 and S = 3
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Colin’s wise words

"Once you have 
a result try to
take advantage

of it as much as 
you can "

J.L. Raḿırez Alfonśın IMAG, Université de Montpellier

From jugs of wine to the Möbius function of semigroup posets



Stamp problem (Ian Stewart)
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Stamp problem

Given n stamps of values a1, . . . , an , what is the largest integer
from which any amount can be achieved by sticking the right
combination of stamps on an (big enough) envelope ?

Example : Two stamps of 4¢ and 5¢
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The Diophantine Frobenius problem

Let a1, . . . , an positive integers. We say that an integer s is
representable by a1, . . . , an if there exist integers xi ≥ 0 such that

s =
n∑

i=1

xiai .

Let us suppose that gcd(a1, . . . , an) = 1. The so-called diophantine
Frobenius problem ask to find the largest integer no representable
by a1, . . . , an (such a number is denoted by g(a1, . . . , an) and is
called Frobenius number).

Example : a1 = 3, a2 = 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · · Then g(3, 8) = 13.
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Theorem g(a1, . . . , an) exists and is finite.

Theorem (Sylvester, 1883)
g(a1, a2) = a1a2 − a1 − a2

Theorem (Kannan, 1992) There exists a
polinomial time algorithm that determine
g(a1, . . . , an) when n ≥ 2 is fixed

Theorem (R.A., 1996) Computing
g(a1, . . . , an) is NP-hard
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Others...

• Frobenius number of Fibonacci semigroups
• Gaps in semigroups
• Numerical semigroups : Apéry set and Hilbert series
• A tiling problem and the Frobenius number
• Two-generator semigroups and Fermat and Marsenne numbers
• On the number of numerical semigroups of prime power genus
• Möbius function of poset associated to semigroup
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Basic Posets

Let (P,≤) be a locally finite poset, i.e,

the set P is partially ordered by ≤, and

for every a, b ∈ P the set {c ∈ P | a ≤ c ≤ b} is finite.

A chain of length l ≥ 0 between a, b ∈ P is

{a = a0 < a1 < · · · < al = b} ⊂ P.

We denote by cl(a, b) the number of chains of length l between a
and b.

The Möbius function µP is the function

µP : P × P −→ Z

µP(a, b) =
∑
l≥0

(−1)lcl(a, b).
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Basic Posets

Consider the poset (N, | ) of nonnegative integers ordered by
divisibility, i.e., a | b ⇐⇒ a divides b. Let us compute µN(2, 36).

We observe that {c ∈ N; 2 | c | 36} = {2, 4, 6, 12, 18, 36}.
Chains of

length 1 → {2, 36}

length 2


{2, 4, 36}
{2, 6, 36}
{2, 12, 36}
{2, 18, 36}

length 3


{2, 4, 12, 36}
{2, 6, 12, 26}
{2, 6, 18, 36}

2

64

12 18

36

µN(2, 36) = −c1(2, 36) + c2(2, 36)− c3(2, 36) = −1 + 4− 3 = 0.
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Möbius classical arithmetic function

Given n ∈ N the Möbius arithmetic function µ(n) is defined as

µ(n) =


1 if n = 1
(−1)k if n = p1 · · · pk with pi distincts primes
0 otherwise (i.e; n admits at least one square

factor bigger than one)

Example: µ(2) = µ(7) = −1, µ(4) = µ(8) = 0, µ(6) = µ(10) = 1

The inverse of the Riemann function ζ, s ∈ C,Re(s) > 0

ζ−1(s) =

(
+∞∑
n=1

1
ns

)−1

=
∏

p−prime(1− p−1) =
+∞∑
n=1

µ(n)
n2 .
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Möbius classical arithmetic function

For (N, | ) we have that for all a, b ∈ N

µN(a, b) =


(−1)r if b/a is a product of r distinct primes

0 otherwise

µN(2, 36) = 0 because 36/2 = 18 = 2 · 32

J.L. Raḿırez Alfonśın IMAG, Université de Montpellier
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Semigroup poset

Let S := 〈a1, . . . , an〉 ⊂ Nm denote the subsemigroup of Nm

generated by a1, . . . , an ∈ Nm, i.e.,

S := 〈a1, . . . , an〉 = {x1a1 + · · ·+ xnan | x1, . . . , xn ∈ N}.

The semigroup S induces an partial order ≤S on Nm given by

x ≤S y ⇐⇒ y − x ∈ S.

We denote by µS the Möbius function associated to (Nm,≤S).

It is easy to check that µS(x , y) = 0 if y − x /∈ Nm, or
µS(x , y) = µS(0, y − x) otherwise. Hence we shall only consider
the reduced Möbius function µS : Nm −→ Z defined by

µS(x) := µS(0, x) for all x ∈ Nm.

J.L. Raḿırez Alfonśın IMAG, Université de Montpellier
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Known results about µS

Theorem (Deddens, 1979) For S = 〈a, b〉 ⊂ N where a, b ∈ Z+ are

relatively prime:

µS(x) =


1 if x ≡ 0 or a + b (mod ab)
−1 if x ≡ a or b (mod ab)

0 otherwise

Theorem (Chappelon and R.A., 2013)

• recursive formula for µS when S = 〈a, a + d , . . . , a + kd〉 ⊂ N
for some a, k, d ∈ Z+.

• semi-explicit formula for S = 〈a, a + d , a + 2d〉 ⊂ N where
a, d ∈ Z+, gcd{a, a + d , a + 2d} = 1 and a is even.

Our approach was by a thorough study of the intrinsic properties of
each semigroup.
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Hilbert series of a semigroup

For every b = (b1, . . . , bm) ∈ Nm, we denote tb := tb1
1 · · · tbmm . Let

S ⊂ Nm be a semigroup, the Hilbert series of S is

HS(t) :=
∑
b∈S

tb ∈ Z[[t1, . . . , tm]]

Example 1: For S = 〈2, 3〉 ⊂ N, we have that S = {0, 2, 3, 4, 5 . . .}

HS(t) = 1 + t2 + t3 + t4 + t5 + · · ·

t2HS(t) = t2 + t4 + t5 + · · ·

Then, (1− t2)HS(t) = 1 + t3, and

HS(t) =
1 + t3

1− t2

J.L. Raḿırez Alfonśın IMAG, Université de Montpellier
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Hilbert series of a semigroup

For every b = (b1, . . . , bm) ∈ Nm, we denote tb := tb1
1 · · · tbmm . Let

S ⊂ Nm be a semigroup, the Hilbert series of S is

HS(t) :=
∑
b∈S

tb ∈ Z[[t1, . . . , tm]]
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Example 2: Consider {e1, . . . , em} the canonical basis of Nm, i.e.,
e1 = (1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1) ∈ Nm.
For S = Nm, we have that

HS(t) =
∑

b∈Nm tb =
∑

(b1,...,bm)∈Nm tb1
1 · · · tbmm

= (1 + t1 + t2
1 + · · · ) · · · (1 + tm + t2

m + · · · ) =

= 1
(1−t1)···(1−tm) .
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Möbius function via Hilbert series

Assume that

HS(t) =

∑
b∈∆ fb tb

(1− tc1) · · · (1− tck )

for some finite set ∆ ⊂ Nm and some c1, . . . , ck ∈ Nm.

Theorem 1 (Chappelon, Garcia, Montejano, R.A., 2015)∑
b∈∆

fb µS(x − b) = 0

for all x /∈ {
∑

i∈A ci |A ⊂ {1, . . . , k}}.
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Example: S = 〈2, 3〉
We know that,

HS(t) =
1 + t3

1− t2
.

By Theorem 1 we have that

µS(x) + µS(x − 3) = 0

for all x /∈ {0, 2}.

We clearly have that µS(0) = 1 and adirect

computation yields µS(2) = −1. Hence,

µS(x) =


1 if x ≡ 0 or 5 (mod 6)
−1 if x ≡ 2 or 3 (mod 6)

0 otherwise.
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Möbius function via Hilbert series

We consider GS the generating function of the Möbius function,
which is

GS(t) :=
∑
b∈Nm

µS(b) tb.

Theorem 2 (Chappelon, Garcia, Montejano, R.A., 2015)

HS(t) GS(t) = 1.
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Example: S = Nm

We denote {e1, . . . , em} the canonical basis of Nm, i.e.,
e1 = (1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1) ∈ Nm. We know that

HNm(t) =
1

(1− t1) · · · (1− tm)

By Theorem 2 we have that

GNm(t) = (1− t1) · · · (1− tm) =
∑

A⊂{1,...,m}

(−1)|A| t
∑

i∈A ei .

Hence,

µNm(x) =


(−1)|A| if x =

∑
i∈A ei for some A ⊂ {1, . . . ,m}

0 otherwise
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Unique Betti element

When S = 〈a1, . . . , an〉 ⊂ N is a semigroup with a unique Betti
element there exist pairwise relatively prime different integers
b1, . . . , bn ≥ 2 such that ai :=

∏
j 6=i bj for all i ∈ {1, . . . , n}.

Theorem Set b :=
∏n

i=1 bi , then

µS(x) =


(−1)|A|

(k+n−2
k

) if x =
∑

i∈A ai + k b
for some A ⊂ {1, . . . , n}, k ∈ N

0 otherwise
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Complete intersection

For every x ∈ Z we denote by α(x) the only integer such that
0 ≤ α(x) ≤ d − 1 and α(x) a1 ≡ x (mod d).

For every x ∈ Z and every B = (b1, . . . , bk) ⊂ (Z+)k , the Sylvester
denumerant dB(x) is the number of non-negative integer solutions
(x1, . . . , xk) ∈ Nk to the equation x =

∑k
i=1 xibi .

S = 〈a1, a2, a3〉 is complete intersection if gcd(ai , aj)ak ∈ 〈ai , aj〉.
Theorem If S = 〈a1, a2, a3〉 is complete intersection with
da1 ∈ 〈a2, a3〉 then
µS(x) = 0 if α(x) ≥ 2, or
µS(x) = (−1)α (dB(x ′)−dB(x ′−a2)−dB(x ′−a3)+dB(x ′−a2−a3))
otherwise, where x ′ := x − α(x) a1 and B := (da1, a2 a3/d).
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Posets - isomorphism

Question Is a given poset P isomorphic to a poset associated to a
semigroup S ?

Observation In such a case, one might be able to calculate µP by
computing µS instead.

Theorem (Chappelon, Garcia, Montejano, R.A., 2015) Let P be a
locally finite poset and let x ∈ P. Then (Px ,≤) is isomorphic to
(S,≤S) for some pointed semigroup S ⊂ Zm if and only if Px is
autoequivalelnt lI (x) is finite and LP = Sat(LP).
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Example 1: poset of multisets

Let D = {d1, . . . , dm} be a finite set and let us consider (P,⊂),
the poset of all multisets of D ordered by inclusion.

For the semigroup S = Nm, we consider the map

ψ : (P,⊂) −→ (Nm,≤Nm)
A 7→ (mA(d1), . . . ,mA(dm)),

where mA(di ) denotes the number of times that di belongs to A.
ψ is an poset isomorphism (an order preserving and order reflecting

bijection). Hence,

µP(A,B) = µNm(ψ(A), ψ(B)),

and we can recover a formula for µP by means of µNm .

µP(A,B) =


(−1)|B\A| if A ⊂ B and B \ A is a set

0 otherwise
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Example 2: divisibility poset

Let p1, . . . , pm be m distinct prime numbers, and consider

Nm := {pα1
1 · · · p

αm
m |α1, . . . , αm ∈ N} ⊂ N.

Let us consider the (Nm, |), i.e., Nm partially ordered by divisibility.

For the semigroup S = Nm, we consider the order isomorphism

ψ : (Nm, |) −→ (Nm,≤Nm)
pα1

1 · · · pαm
m 7→ (α1, . . . , αm).

Hence, µNm(a, b) = µNm(ψ(a), ψ(b)),
and we can recover the formula for µNm by means of µNm .

µNm(a, b) =


(−1)r if b/a is a product of r distinct primes

0 otherwise.
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