MATROID BASE POLYTOPE DECOMPOSITION II : SEQUENCES OF HYPERPLANE SPLITS

VANESSA CHATELAIN AND JORGE LUIS RAMÍREZ ALFONSÍN

Abstract. This is a continuation of an early paper [Adv. Appl. Math. 47(2011), 158- 172] about matroid base polytope decomposition. We will present sufficient conditions on a matroid M so its base polytope $P(M)$ has a *sequence* of *hyperplane* splits. These yield to decompositions of $P(M)$ with two or more pieces for infinitely many matroids M. We also present necessary conditions on the Euclidean representation of rank three matroids M for the existence of decompositions of $P(M)$ into 2 or 3 pieces. Finally, we prove that $P(M_1 \oplus M_2)$ has a sequence of hyperplane splits if either $P(M_1)$ or $P(M_2)$ also has a sequence of hyperplane splits.

Keywords: Matroid base polytope, polytope decomposition MSC 2010: 05B35,52B40

1. INTRODUCTION

This paper is a continuation of the paper [3] by the two present authors. For general background in matroid theory we refer the reader to [12, 15]. A matroid $M = (E, \mathcal{B})$ of rank $r = r(M)$ is a finite set $E = \{1, \ldots, n\}$ together with a nonempty collection $\mathcal{B} = \mathcal{B}(M)$ of r-subsets of E (called the bases of M) satisfying the following basis exchange axiom:

if $B_1, B_2 \in \mathcal{B}$ and $e \in B_1 \setminus B_2$, then there exists $f \in B_2 \setminus B_1$ such that $(B_1 - e) + f \in \mathcal{B}$.

We denote by $\mathcal{I}(M)$ the family of *independent* sets of M (consisting of all subsets of bases of M). For a matroid $M = (E, \mathcal{B})$, the matroid base polytope $P(M)$ of M is defined as the convex hull of the incidence vectors of bases of M , that is,

$$
P(M) := \text{conv}\left\{\sum_{i \in B} e_i : B \text{ a base of } M\right\},\
$$

where e_i is the ith standard basis vector in \mathbb{R}^n . $P(M)$ is a polytope of dimension at most $n-1$.

A matroid base polytope decomposition of $P(M)$ is a decomposition

$$
P(M) = \bigcup_{i=1}^{t} P(M_i)
$$

The second author was supported by the ANR TEOMATRO grant ANR-10-BLAN 0207.

where each $P(M_i)$ is a matroid base polytope for some matroid M_i and, for each $1 \leq$ $i \neq j \leq t$, the intersection $P(M_i) \cap P(M_j)$ is a face of both $P(M_i)$ and $P(M_j)$. It is known that nonempty faces of matroid base polytope are matroid base polytopes [5, Theorem 2]. So, the common face $P(M_i) \cap P(M_j)$ (whose vertices correspond to elements of $\mathcal{B}(M_i) \cap \mathcal{B}(M_j)$ must also be a matroid base polytope. $P(M)$ is said to be *decomposable* if it admits a matroid base polytope decomposition with $t \geq 2$ and *indecomposable* otherwise. A decomposition is called *hyperplane split* when $t = 2$.

Matroid base polytope decomposition were introduced by Lafforgue [9, 10] and have appeared in many different contexts : quasisymmetric functions [1, 2, 4, 11], compactification of the moduli space of hyperplane arrangements [6, 8], tropical linear spaces [13, 14], etc. In [3], we have studied the existence (and nonexistence) of such decompositions. Among other results, we presented sufficient conditions on a matroid M so $P(M)$ admits a hyperplane split. This yielded us to *different* hyperplane splits for infinitely many matroids. A natural question is the following one: given a matroid base polytope $P(M)$, is it possible to find a sequence of hyperplane splits providing a decomposition of $P(M)$? In other words, is there a hyperplane split of $P(M)$ such that one of the two obtained pieces has a hyperplane split such that, in turn, one of the two new obtained pieces has a hyperplane split, and so on, giving a decomposition of $P(M)$?

In [7, Section 1.3], Kapranov showed that all decompositions of a (appropriately parametrized) rank-2 matroid can be achieved by a sequence of hyperplane splits. However, this is not the case in general. Billera, Jia and Reiner [2] provided a decomposition into three indecomposable pieces of $P(W)$ where W is the rank three matroid on $\{1, \ldots, 6\}$ with $\mathcal{B}(W) = \binom{[6]}{3}$ ${6 \choose 3} \setminus \{1, 2, 3\}, \{1, 4, 5\}, \{3, 5, 6\}\}.$ They proved that this decomposition cannot be obtained via hyperplane splits. However, we notice that $P(W)$ may admits other decompositions into three pieces that can be obtained via hyperplane splits; this is illustrated in Example 3.

A difficulty arising when we apply successive hyperplane splits is that the intersection $P(M_i) \cap P(M_j)$ also must be a matroid base polytope. For instance, consider a first hyperplane split $P(M) = P(M_1) \cup P(M'_1)$ and suppose that $P(M'_1)$ admits a hyperplane splits, say $P(M'_1) = P(M_2) \cup P(M'_2)$. This sequence of 2 hyperplane splits would give the decomposition $P(M) = P(M_1) \cup P(M_2) \cup P(M'_2)$ if $P(M_1) \cap P(M_2)$, $P(M_1) \cap P(M'_2)$ $P(M'_2)$, and $P(M_2) \cap P(M'_2)$ were matroid base polytopes. By definition of hyperplane split, $P(M_2) \cap P(M'_2)$ is the base polytope of a matroid, however the other two intersections might not be matroid base polytopes. Recall that the intersection of two matroids is not necessarily a matroid (for instance, $\mathcal{B}(M_1) = \{ \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\} \}$ and $\mathcal{B}(M_2) = \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\}\}\$ are matroids while $\mathcal{B}(M_1) \cap \mathcal{B}(M_2) =$ $\{\{1,3\},\{2,3\},\{2,4\}\}\$ is not).

In the next section, we give sufficient conditions on M so that $P(M)$ admits a sequence of $t \geq 2$ hyperplane splits. This allows us to provide decompositions of $P(M)$ with $t + 1$ pieces for infinitely many matroids. We say that two decompositions $P(M) = \bigcup_{i=1}^{t} S(i)$ $i=1$ $P(M_i)$ and $P(M) = \bigcup_{i=1}^{t}$ $P(M'_i)$ are equivalent if there exists a permutation σ of $\{1, \ldots, t\}$ such

 $i=1$ that $P(M_i)$ is combinatorially equivalent to $P(M'_{\sigma(i)})$. They are different otherwise. We present a lower bound for the number of different decompositions of $P(U_{n,r})$ into t pieces. In Section 3, we present necessary geometric conditions (on the Euclidean representation) of rank three matroids M for the existence of decompositions of $P(M)$ into 2 or 3 pieces. Finally, in Section 4, we show that the *direct sum* $P(M_1 \oplus M_2)$ has a sequence of hyperplane splits if either $P(M_1)$ or $P(M_2)$ also has a sequence of hyperplane splits.

2. SEQUENCE OF HYPERPLANE SPLITS

Let $M = (E, \mathcal{B})$ be a matroid of rank r and let $A \subseteq E$. We recall that the independent sets of the *restriction* of matroid M to A, denoted by $M|_A$, are given by $\mathcal{I}(M|_A) = \{I \subseteq$ $A: I \in \mathcal{I}(M)$.

Let $t \geq 2$ be an integer with $r \geq t$. Let $E = \bigcup_{i=1}^{t}$ $i=1$ E_i be a *t*-partition of $E = \{1, \ldots, n\}$ and let $r_i = r(M|_{E_i}) > 1$, $i = 1, ..., t$. We say that $\bigcup_{i=1}^{t}$ $i=1$ E_i is a good t-partition if there exist integers $0 < a_i < r_i$ with the following properties :

$$
(P1)\ r = \sum_{i=1}^{\iota} a_i,
$$

(P2) (a) For any j with $1 \leq i \leq t-1$

if $X \in \mathcal{I}(M|_{E_1 \cup \cdots \cup E_j})$ with $|X| \le a_1$ and $Y \in \mathcal{I}(M|_{E_{j+1} \cup \cdots \cup E_t})$ with $|Y| \le a_2$, then $X \cup Y \in \mathcal{I}(M)$.

(b) For any pair j, k with $1 \leq j < k \leq t-1$

Notice that the good 2-partitions provided by $(P2)$ case (a) with $t = 2$ are the good partitions defined in [3]. Good partitions were used to give sufficient conditions for the existence of hyperplane splits. The latter was a consequence of the following two results:

Lemma 1. [3, Lemma 1] Let $M = (E, \mathcal{B})$ be a matroid of rank r and let $E = E_1 \cup E_2$ be a good 2-partition with integers $0 < a_i < r(M|_{E_i})$, $i = 1, 2$. Then,

 $\mathcal{B}(M_1) = \{B \in \mathcal{B}(M) : |B \cap E_1| \leq a_1\}$ and $\mathcal{B}(M_2) = \{B \in \mathcal{B}(M) : |B \cap E_2| \leq a_2\}$ are the collections of bases of matroids.

Theorem 1. [3, Theorem 1] Let $M = (E, \mathcal{B})$ be a matroid of rank r and let $E = E_1 \cup E_2$ be a good 2-partition with integers $0 < a_i < r(M|_{E_i})$, $i = 1, 2$. Then, $P(M) = P(M_1) \cup P(M_2)$ is a hyperplane split, where M_1 and M_2 are the matroids given by Lemma 1.

We shall use these two results as the initial step in our construction of a sequence of $t \geq 2$ hyperplane splits.

Lemma 2. Let $t \geq 2$ be an integer and let $E = \bigcup_{k=1}^{t}$ $i=1$ E_i be a good t-partition with integers $0 < a_i < r(M|_{E_i}), i=1,...,t.$ Let

$$
\mathcal{B}(M_1) = \{ B \in \mathcal{B}(M) : |B \cap E_1| \le a_1 \}
$$

and, for each $j = 1, \ldots, t$, let

$$
\mathcal{B}(M_j) = \{B \in \mathcal{B}(M) : |B \cap E_1| \ge a_1, \ldots, |B \cap \bigcup_{i=1}^{j-1} E_i| \ge \sum_{i=1}^{j-1} a_i, |B \cap \bigcup_{i=1}^{j} E_i| \le \sum_{i=1}^{j} a_i \}.
$$

Then $\mathcal{B}(M_i)$ is the collection of bases of a matroid for each $i = 1, \ldots, t$.

Proof. By properties $(P1)$ and $(P2)$ we have that

if
$$
X \in \mathcal{I}(M|_{E_1})
$$
 with $|X| \le a_1$ and $Y \in \mathcal{I}(M|_{E_2 \cup \dots \cup E_t})$ with $|Y| \le \sum_{i=2}^t a_i$,

then $X \cup Y \in \mathcal{I}(M)$. So, by Lemma 1, $\mathcal{B}(M_1)$ is the collection of bases of a matroid. Now, notice that $\mathcal{B}(\overline{M_1}) = \{B \in \mathcal{B}(M) : |B \cap E_1| \ge a_1\}$ is also the collection of bases of a matroid on E. We claim that $P(\overline{M_1}) = P(M_2) \cup P(\overline{M_2})$ is a hyperplane split where

$$
\mathcal{B}(M_2) = \{ B \in \mathcal{B}(M) : |B \cap E_1| \ge a_1 \text{ and } |B \cap (E_1 \cup E_2)| \le a_1 + a_2 \}
$$

and

$$
\mathcal{B}(\overline{M_2}) = \{ B \in \mathcal{B}(M) : |B \cap E_1| \ge a_1 \text{ and } |B \cap (E_1 \cup E_2)| \ge a_1 + a_2 \}.
$$

Indeed, since $\mathcal{B}(\overline{M_1})$ is the collection of bases of a matroid on E, then, by properties $(P1)$ and $(P2)$ (a) ,

if
$$
X \in \mathcal{I}(\overline{M}|_{E_1 \cup E_2})
$$
 with $|X| \le a_1 + a_2$ and $Y \in \mathcal{I}(\overline{M}|_{E_3 \cup \dots \cup E_t})$ with $|Y| \le \sum_{i=3}^t a_i$,

then $X \cup Y \in \mathcal{I}(\overline{M})$. So, by Lemma 1, $\mathcal{B}(M_2)$ is the collection of bases of a matroid (and thus $\mathcal{B}(\overline{M_2})$ also is). Inductively applying the above argument to \overline{M}_j , it can be easily checked that for all $j \mathcal{B}(M_i)$ is the collection of bases of a matroid. **Theorem 2.** Let $t \geq 2$ be an integer and let $M = (E, \mathcal{B})$ be a matroid of rank r. Let $E = \bigcup^{t}$ $\bigcup_{i=1} E_i$ be a good t-partition with integers $0 < a_i < r(M|_{E_i})$, $i = 1, ..., t$. Then $P(M)$ has a sequence of t hyperplane splits yielding the decomposition

$$
P(M) = \bigcup_{i=1}^{t} P(M_i),
$$

where M_i , $1 \leq i \leq t$, are the matroids defined in Lemma 2.

Proof. By Theorem 1, the result holds for $t = 2$. Moreover, by the inductive construction of Lemma 2, we clearly have that $P(M) = \bigcup_{k=1}^{t} S_k$ $i=1$ $P(M_i)$ with $\mathcal{B}(M) = \bigcup^t$ $i=1$ $\mathcal{B}(M_i)$. We only need to show that $\mathcal{B}(M_i) \cap \mathcal{B}(M_k)$ is the collection of bases of a matroid for any $1 \leq j < k \leq t$. For, by definition of $\mathcal{B}(M_i)$, we have

 $\mathcal{B}(M_i) \cap \mathcal{B}(M_k) = \{B \in \mathcal{B}(M) : \text{the condition } C_h(B) \text{ is satisfied for all } 1 \leq h \leq k\}$

where for $A \subseteq E$:

• $C_h(A)$ is satisfied if $|A \cap \bigcup^h$ $i=1$ $|E_i| \geq \sum^h$ $i=1$ a_i and $1 \leq h \leq k, h \neq j, k,$ • $C_j(A)$ is satisfied if $|A \cap \bigcup$ j $i=1$ $|E_i| = \sum$ j $i=1$ $a_i,$ and

•
$$
C_k(A)
$$
 is satisfied if $|A \cap \bigcup_{i=1}^k E_i| \leq \sum_{i=1}^k a_i$

We will check the exchange axiom for any $X, Y \in \mathcal{B}(M_i) \cap \mathcal{B}(M_k)$. Since $X, Y \in \mathcal{B}(M)$ for any $e \in X \setminus Y$ there exists $f \in Y \setminus X$ such that $X - e + f \in \mathcal{B}(M)$. We will verify that $X - e + f \in \mathcal{B}(M_i) \cap \mathcal{B}(M_k)$. We distinguish three cases (depending which of the conditions $C_i(X - e)$ is satisfied).

.

Case 1. There exists $1 \leq l \leq j$ such that $C_l(X - e)$ is not satisfied. We suppose that l is minimal with this property. Since, by definition of $\mathcal{B}(M_i) \cap \mathcal{B}(M_k), l \leq j \leq k, C_l(X)$ is satisfied, and $C_l(X - e)$ is not satisfied, we obtain

(a)
$$
\left| X \cap \bigcup_{i=1}^{l} E_i \right| = \sum_{i=1}^{l} a_i,
$$

\n(b) $e \in \bigcup_{i=1}^{l} E_i,$
\n(c)
$$
\left| \underbrace{(X - e) \cap \bigcup_{i=1}^{l} E_i}_{I_1} \right| = \sum_{i=1}^{l} a_i - 1.
$$

Since $Y \in \mathcal{B}(M_j) \cap \mathcal{B}(M_k)$, then $|Y \cap \Box$ l $\frac{i=1}{i}$ E_i ${Y_2}$ $|\geq \sum_{i=1}^{l}$ $i=1$ a_i .

Therefore, by using (c), $I_1, I_2 \in \mathcal{I}(M|_{E_1 \cup \dots \cup E_l}) \subseteq \mathcal{I}(M)$ with $|I_1| < |I_2|$. So, there exists $f \in I_2 \setminus I_1 \subset Y \setminus X$ with $I_1 \cup f \in \mathcal{I}(M|_{E_1 \cup \cdots \cup E_l})$. Thus, $f \in \bigcup_{i=1}^l$ $i=1$ E_i and

$$
|I_1 \cup f \cap \bigcup_{i=1}^l E_i| = \sum_{i=1}^l a_i - 1.
$$
 (1)

Moreover, since X is a base, $|X| = r = \sum_{r=1}^{t}$ $i=1$ a_i and, by (a), we have

$$
|(X - e + f) \cap \bigcup_{i=l+1}^{t} E_i | \stackrel{(b)}{=} |X \cap \bigcup_{i=l+1}^{t} E_i | = \sum_{i=1}^{t} a_i - \sum_{i=1}^{l} a_i = \sum_{i=l+1}^{t} a_i.
$$

We also have $I_3 \in \mathcal{I}(M|_{E_{l+1}\cup \cdots \cup E_t})$, thus, by $(P2)$ (b) ,

$$
I_1 \cup f \cup I_3 \in \mathcal{I}(M) \text{ with } |I_1 \cup f \cup I_3| = \sum_{i=1}^l a_i - 1 + 1 + \sum_{i=l+1}^t a_i = r
$$

and so $I_1 \cup f \cup I_3 = X - e + f \in \mathcal{B}(M)$.

Finally we need to show that $X - e + f \in \mathcal{B}_j \cap \mathcal{B}_k$, that is $C_h(X - e + f)$ holds for each $1 \leq h \leq k$.

(i) $h < l$: Since l is the minimum for which $C_l(X - e)$ is not verified, $C_h(X - e)$ is satisfied for each $1 \leq h < l$ and thus $C_h(X - e + f)$ is also satisfied (we just added a new element).

(*ii*)
$$
h = l
$$
: By equation (1), $C_l(X - e + f)$ is satisfied.
\n(*iii*) $h > l$: Since $e, f \in \bigcup_{i=1}^l E_i$,
\n
$$
|X - e + f \cap \bigcup_{i=1}^h E_i| = |X \cap \bigcup_{i=1}^h E_i|,
$$

thus $C_h(X - e + f)$ is satisfied if and only if $C_h(X)$ is satisfied, which is the case since $h > l$.

Case 2. $C_{l'}(X-e)$ is satisfied for all $1 \leq l' \leq j$ and there exists $j+1 \leq l \leq k-1$ such that $C_l(X - e)$ is not satisfied. We suppose that l is minimal with this property. Since $C_l(X)$ is satisfied and $C_l(X - e)$ is not,

(a)
$$
\left| X \cap \bigcup_{i=1}^{l} E_i \right| = \sum_{i=1}^{l} a_i,
$$

(b) $e \in \bigcup_{i=j+1}^{l} E_i$ (since $C_j(X - e)$ is satisfied),

(c)
$$
|(X - e) \cap \bigcup_{i=1}^{l} E_i| = \sum_{i=1}^{l} a_i - 1.
$$

Since $C_j(X - e)$ is satisfied,

$$
|(X - e) \cap \bigcup_{i=j+1}^{l} E_i| = |(X - e) \cap \bigcup_{i=1}^{l} E_i| - |(X - e) \cap \bigcup_{i=1}^{j} E_i|
$$

$$
\stackrel{(c)}{=} \sum_{i=1}^{l} a_i - 1 - \sum_{i=1}^{j} a_i = \sum_{i=j+1}^{l} a_i - 1.
$$
 (2)

Let $Y \in \mathcal{B}(M_j) \cap \mathcal{B}(M_k)$. Since $C_j(Y)$ and $C_l(Y)$ are satisfied,

$$
|Y \cap \bigcup_{i=j+1}^{l} E_i| = |Y \cap \bigcup_{i=1}^{l} E_i| - |Y \cap \bigcup_{i=1}^{j} E_i|
$$

$$
\geq \sum_{i=1}^{l} a_i - \sum_{i=1}^{j} a_i = \sum_{i=j+1}^{l} a_i.
$$

Since $|I_1|$ < $|I_2|$, there exists $f \in I_2 \setminus I_1$ such that $I_1 + f \in \mathcal{I}(M|_{E_{j+1} \cup \cdots \cup E_l})$. So, $f \in \bigcup^{l}$ $i=j+1$ E_i and, by (b), we have

$$
(X - e + f) \cap \bigcup_{i=1}^j E_i = X \cap \bigcup_{i=1}^j E_i.
$$

Since X is a base, $X - e + f \cap \bigcup$ j $\bigcup_{i=1} E_i \in \mathcal{I}(M|_{E_1 \cup \dots \cup E_j})$ (also notice that $(X - e + f) \cap$ \bigcup^t $\bigcup_{i=l+1} E_i \in \mathcal{I}(M|_{E_{l+1}\cup \cdots \cup E_t})$. Moreover, since $X \in \mathcal{B}_j \cap \mathcal{B}_k$, $C_j(X)$ is satisfied and thus

$$
|(X - e + f) \cap \bigcup_{i=1}^{j} E_i| = \sum_{i=1}^{j} a_i
$$
 (3)

and, by equation (2), we have

$$
|(X - e + f) \cap \bigcup_{i=j+1}^{l} E_i| = \sum_{i=j+1}^{l} a_i
$$
 (4)

obtaining that

$$
|(X - e + f) \cap \bigcup_{i=l+1}^{t} E_i| = r - \sum_{i=1}^{j} a_i - \sum_{i=j+1}^{l} a_i = \sum_{i=l+1}^{t} a_i.
$$

Now, by $(P2)$ (b), we have

$$
\left((X - e + f) \cap \bigcup_{i=1}^{j} E_i \right) \cup \left((X - e + f) \cap \bigcup_{i=j+1}^{l} E_i \right) \cup \left((X - e + f) \cap \bigcup_{i=l+1}^{t} E_i \right) = X - e + f \in \mathcal{I}(M).
$$

Since $|X - e + f| = r$, $X - e + f \in \mathcal{B}(M)$

Since $|X - e + f| = r, X - e + f \in \mathcal{B}(M)$.

Finally we need to show that $X - e + f \in \mathcal{B}_j \cap \mathcal{B}_k$, that is, that $C_h(X - e + f)$ is verified for each $1 \leq h \leq k$.

(i) $h < l$ and $h \neq j$: Since $C_h(X - e)$ is satisfied, by the minimality of l, $C_h(X - e + f)$ is also satisfied.

- (ii) $h = j$: By equation (3), $C_j(X e + f)$ is satisfied.
- (*iii*) $h = l$: By equations (3) and (4), $C_l(X e + f)$ is satisfied.

(*iv*)
$$
h > l
$$
: Since $e, f \in \bigcup_{i=j+1}^{l} E_i$, $|X - e + f \cap \bigcup_{i=1}^{h} E_i| = |X \cap \bigcup_{i=1}^{h} E_i|$, thus $C_h(X - e + f)$ is satisfied if and only if $C_h(X)$ is satisfied, which is the case because $h > l$.

Case 3. $C_i(X - e)$ is satisfied for every $1 \leq i \leq k$.

Subcase (a)
$$
|(X - e) \cap \bigcup_{i=1}^{k} E_i| = \sum_{i=1}^{k} a_i.
$$
 We first notice that $e \in \bigcup_{i=k+1}^{t} E_i$ (otherwise $|X - e \cap \bigcup_{i=1}^{k} E_i| < |X \cap \bigcup_{i=1}^{k} E_i|$ which is impossible since $C_k(X)$ holds). Now,
$$
|(X - e) \cap \bigcup_{i=k+1}^{t} E_i| = r - 1 - \sum_{i=1}^{k} a_i = \sum_{i=k+1}^{t} a_i - 1.
$$
 (5)

Let $Y \in \mathcal{B}(M_j) \cap \mathcal{B}(M_k)$. Since $C_j(Y)$ and $C_l(Y)$ are satisfied, $|Y \cap \bigcup_k^k$ $i=1$ $|E_i| \leq \sum^k$ $i=1$ a_i , and so $|Y \cap \)$ t $\scriptstyle i=k+1$ E_i $\overline{I_2}$ $|\geq \sum_{i=1}^{t}$ $\frac{i=k+1}{k+1}$ a_i .

 I_2 Since $|I_1|$ < $|I_2|$, there exists $f \in I_2 \setminus I_1$ such that $I_1 + f \in \mathcal{I}(M|_{E_{k+1} \cup \cdots \cup E_t})$. So, $f \in \bigcup_{i=1}^t$ $\scriptstyle i=k+1$ E_i and since $e \in \bigcup^t$ $_{i=k+1}$ E_i $(X-e+f)\cap$ | k $i=1$ $E_i = X \cap \bigcup$ k $i=1$ $E_i \in \mathcal{I}(M|_{E_1 \cup \cdots \cup E_k}).$ Also, since $(X - e + f) \cap \bigcup_{i=1}^{t}$ $\bigcup_{i=k+1} E_i \in \mathcal{I}(M|_{E_{k+1}\cup \cdots \cup E_t}),$ by $(P2)(b)$ we have

$$
X - e + f = \left(X - e + f \cap \bigcup_{i=1}^k E_i\right) \cup \left(X - e + f \cap \bigcup_{i=k+1}^t E_i\right) \in \mathcal{I}(M).
$$

Moreover, by using equation (5) and the fact that $f \in \bigcup_{k=1}^{t}$ $i = k + 1$ E_i we obtain that

$$
|(X - e + f) \cap \bigcup_{i=k+1}^{t} E_i| = \sum_{i=k+1}^{t} a_i.
$$

$$
E_i| = \sum_{i=1}^{k} a_i,
$$

$$
|(X - e + f) \cap \bigcup_{i=1}^{k} E_i| = \sum_{i=1}^{k} a_i.
$$

Therefore,

$$
|(X - e + f) \cap \bigcup_{i=1}^{t} E_i| = |(X - e + f) \cap \bigcup_{i=1}^{k} E_i| + |(X - e + f) \cap \bigcup_{i=k+1}^{t} E_i| = \sum_{i=1}^{t} a_i = r
$$

and so $X - e + f \in \mathcal{B}(M)$.

Since $|(X-e) \cap \bigcup^k$

 $\frac{i=1}{i}$

Finally we need to show that $X - e + f \in \mathcal{B}_j \cap \mathcal{B}_k$, that is, that $C_h(X - e + f)$ is verified for each $1 \leq h \leq k$. Since $e, f \in \bigcup_{k=1}^{k} h_k$ $_{i=k+1}$ $E_i, C_h(X - e + f)$ becomes $C_h(X)$ for all $1 \leq h \leq k$, which is satisfied.

Subcase (b) If
$$
|(X-e)\cap \bigcup_{i=1}^k E_i| < \sum_{i=1}^k a_i
$$
, then $e \in \bigcup_{i=j+1}^t E_i$ (otherwise $|(X-e)\cap \bigcup_{i=1}^j E_i| <$

 $|X \cap \bigcup$ $\frac{i=1}{i}$ E_i which is impossible since $C_j(X)$ holds). Now, since $C_j(X - e)$ is satisfied,

$$
|(X - e) \cap \bigcup_{i=1}^{j} E_i| = \sum_{i=1}^{j} a_i,
$$

and thus

$$
|(X - e) \cap \bigcup_{i=j+1}^{t} E_i| = \sum_{i=j+1}^{t} a_i - 1.
$$

Let $Y \in \mathcal{B}(M_j) \cap \mathcal{B}(M_k)$. Since $C_j(Y)$ and $C_l(Y)$ are satisfied, $|Y \cap \bigcup$ j $i=1$ $|E_i| = \sum$ j $i=1$ $a_i,$

and thus

$$
|Y \cap \bigcup_{i=j+1}^{t} E_i| = \sum_{i=j+1}^{t} a_i.
$$

Since $|I_1|$ < $|I_2|$, there exists $f \in I_2 \setminus I_1$ such that $I_1 + f \in \mathcal{I}(M|_{E_{j+1} \cup \cdots \cup E_t})$. So, $f \in \bigcup_{i=1}^{t}$ $i=j+1$ E_i . Since $e \in \bigcup^t$ $i=j+1$ E_i $(X-e+f)\cap$ | j $i=1$ $E_i = X \cap \Box$ j $i=1$ $E_i \in \mathcal{I}(M|_{E_1 \cup \cdots \cup E_j})$) (6) and, by $(P2)$ (b), we have

$$
\left(X - e + f \cap \bigcup_{i=1}^{j} E_i\right) \cup \left(X - e + f \cap \bigcup_{i=j+1}^{t} E_i\right) \in \mathcal{I}(M)
$$

Therefore, $X - e + f \in \mathcal{B}(M)$.

Finally, we need to show that $X - e + f \in \mathcal{B}_i \cap \mathcal{B}_k$, that is, $C_h(X - e + f)$ is verified for each $1 \leq h \leq k$.

- (i) $h < j$: Since $C_h(X e)$ is satisfied, $C_h(X e + f)$ is also satisfied.
- (ii) $h = j$: $C_j(X e + f)$ is satisfied by equation (6).

(iii) $j+1 \leq h \leq k-1$: Since $C_h(X-e)$ is satisfied then $C_h(X-e+f)$ is also satisfied. (iv) $h = k$: Since $|X - e \cap \bigcup_{k=1}^{k} k$ $i=1$ $|E_i| < \sum^k$ $i=1$ a_i then $|X - e + f \cap \bigcup^k$ $i=1$ $|E_i| \leq \sum^k$ $i=1$ a_i and thus $C_h(X - e + f)$ is satisfied.

2.1. Uniform matroids.

Corollary 1. Let $n, r, t \geq 2$ be integers with $n \geq r + t$ and $r \geq t$. Let $p_t(n)$ be the number of different decompositions of the integer n of the form $n = \sum_{i=1}^{t}$ $i=1$ $p_i \text{ with } p_i \geq 2 \text{ and let}$ $h_t(U_{n,r})$ be the number of decompositions of $P(U_{n,r})$ into t pieces. Then,

 $h_t(U_{n,r}) \geq p_t(n).$

Proof. We consider the partition $E = \{1, \ldots, n\} = \bigcup_{k=1}^{t}$ $i=1$ E_i , where

$$
E_1 = \{1, ..., p_1\},
$$

\n
$$
E_2 = \{p_1 + 1, ..., p_1 + p_2\},
$$

\n
$$
\vdots
$$

\n
$$
E_t = \{\sum_{i=1}^{t-1} p_i + 1, ..., \sum_{i=1}^{t} p_i\}.
$$

We claim that \bigcup^t $i=1$ E_i is a good *t*-partition. For, we first notice that $M|_{E_i}$ is isomorphic to $U_{p_i, \min\{p_i, r\}}$ for each $i = 1, \ldots, t$. Let $r_i = r(M|_{E_i}) = \min\{p_i, r\}$. We now show that

$$
\sum_{i=1}^{t} r_i \ge r + t. \tag{7}
$$

For, we note that

$$
\sum_{i=1}^{t} r_i = \sum_{i=1}^{t} r(M|_{E_i}) = \sum_{i \in T \subseteq \{1, \dots, t\}} p_i + (t - |T|)r.
$$

We distinguish three cases.
\n1) If
$$
t = |T|
$$
, then $\sum_{i=1}^{t} r_i = \sum_{i=1}^{t} p_i = n \ge r + t$.
\n2) If $t = |T| + 1$, then $\sum_{i=1}^{t} r_i = \sum_{i=1}^{t} p_i + r \ge 2(t - 1) + r \ge t + t - 2 + r \ge t + r$.
\n3) If $t = |T| + k$, with $k \ge 2$, then $\sum_{i=1}^{t} r_i \ge kr \ge 2r \ge r + t$.
\nSo, by equation (7), we can find integers $a'_i \ge 1$ such that $\sum_{i=1}^{t} r_i = r + \sum_{i=1}^{t} a'_i$. Therefore,
\nthere exist integers $a_i = r(M|_{E_i}) - a'_i$ with $0 < a_i < r(M|_{E_i})$ such that $r = \sum_{i=1}^{t} a_i$. Moreover,
\nif $X \in \mathcal{I}(M|_{E_1 \cup \dots \cup E_j})$ with $|X| \le \sum_{i=1}^{j} a_i$, $Y \in \mathcal{I}(M|_{E_{j+1} \cup \dots \cup E_k})$ with $|Y| \le \sum_{i=j+1}^{k} a_i$, and
\n $Z \in \mathcal{I}(M|_{E_{k+1} \cup \dots \cup E_t})$ with $|Z| \le \sum_{i=k+1}^{t} a_i$ for $1 \le j < k \le t-1$, then $|X \cup Y \cup Z| \le \sum_{i=1}^{t} a_i = r$
\nand so $X \cup Y \cup Z$ is always a subset of one of the bases of $U_{n,r}$. Thus, $X \cup Y \cup Z \in \mathcal{I}(U_{n,r})$
\nand $(P2)$ is also verified.

Notice that there might be several choices for the values of a_i (each providing a good t -partition). However, it is not clear if these choices give different sequences of t hyperplane splits.

Example 1: Let us consider the uniform matroid $U_{8,4}$. We take the partition $E_1 =$ $\{1,2\}, E_2 = \{3,4\}, E_3 = \{5,6\}, \text{ and } E_4 = \{7,8\}. \text{ Then } r(M|_{E_i}) = 2, i = 1,\ldots, 4. \text{ It is}$ easy to check that if we set $a_i = 1$ for each i then $E_1 \cup E_2 \cup E_3 \cup E_4$ is a good 4-partition and thus $P(U_{8,3}) = P(M_1) \cup P(M_2) \cup P(M_3) \cup P(M_4)$ is a decomposition where

 $\mathcal{B}(M_1) = \{B \in \mathcal{B}(U_{8,4}) : |B \cap \{1,2\}| \leq 1\},\$ $\mathcal{B}(M_2) = \{B \in \mathcal{B}(U_{8,4}): |B \cap \{1,2\}| \geq 1, |B \cap \{3,4\}| \leq 1\},\$ $\mathcal{B}(M_3) = \{B \in \mathcal{B}(U_{8,4}): |B \cap \{1,2\}| \geq 1, |B \cap \{3,4\}| \geq 1, |B \cap \{5,6\}| \leq 1\},\$ $\mathcal{B}(M_4) = \{B \in \mathcal{B}(U_{8,4}): |B \cap \{1,2\}| \geq 1, |B \cap \{3,4\}| \geq 1, |B \cap \{5,6\}| \geq 1\}.$

2.2. Relaxations. Let $M = (E, \mathcal{B})$ be a matroid of rank r and let $X \subset E$ be both a circuit and a hyperplane of M (recall that a hyperplane is a flat, that is $X = cl(X) =$ ${e \in E|r(X \cup e) = r(X)}$, of rank $r-1$). It is known [12, Proposition 1.5.13] that $\mathcal{B}(M') = \mathcal{B}(M) \cup \{X\}$ is the collection of bases of a matroid M' (called, relaxation of M).

Corollary 2. Let $M = (E, \mathcal{B})$ be a matroid and let $E = \bigcup_{i=1}^{t}$ $i=1$ E_i be a good t-partition. Then, $P(M')$ has a sequence of t hyperplane splits where M' is a relaxation of M.

Proof. It can be checked that the desired sequence of t hyperplane splits of $P(M')$ can be obtained by using the same given good t partition $E = \bigcup_{i=1}^{t}$ $i=1$ E_i .

We notice that the above result is not the only way to define a sequence of hyperplane splits for relaxations. Indeed it is proved in [3] that binary matroids (and thus graphic matroids) do not have hyperplane splits, however there is a sequence of hyperplane splits for relaxations of graphic matroids as it is shown in Example 3 below.

3. Rank-three matroids: geometric point of view

We recall that a matroid of rank three on n elements can be represented geometrically by placing n points on the plane such that if three elements form a circuit, then the corresponding points are collinear (in such diagram the lines need not be straight). Then the bases of M are all subsets of points of cardinal 3 which are not collinear in this diagram. Conversely, any diagram of points and lines in the plane in which a pair of lines meet in at most one point represents a unique matroid whose bases are those 3-subsets of points which are not collinear in this diagram.

The combinatorial conditions $(P1)$ and $(P2)$ can be translated into geometric conditions when M is of rank three. The latter is given by the following two corollaries.

Corollary 3. Let M be a matroid of rank 3 on E and let $E = E_1 \cup E_2$ be a partition of the points of the geometric representation of M such that

1) $r(M|_{E_1}) \geq 2$ and $r(M|_{E_2}) = 3$;

2) for each line l of M, if $|l \cap E_1| \neq \emptyset$, then $|l \cap E_2| \leq 1$.

Then, $E = E_1 \cup E_2$ is a 2-good partition.

Proof. $(P2)(a)$ can be easily checked with $a_1 = 1$ and $a_2 = 2$.

Example 2. Let M be the rank-3 matroid arising from the configuration of points given in Figure 1. It can be easily checked that $E_1 = \{1, 2\}$ and $E_2 = \{3, 4, 5, 6\}$ verify the conditions of Corollary 3. Thus, $E_1 \cup E_2$ is a 2-good partition.

Corollary 4. Let M be a matroid of rank 3 on E and let $E = E_1 \cup E_2 \cup E_3$ be a partition of the points of the geometric representation of M such that

1) $r(M|_{E_i}) \geq 2$ for each $i = 1, 2, 3$,

2) for each line l with at least 3 points of M,

a) if $|l \cap E_1| \neq \emptyset$ then $|l \cap (E_2 \cup E_3)| \leq 1$,

b) if $|l \cap E_3| \neq \emptyset$ then $|l \cap (E_1 \cup E_2)| \leq 1$.

Then, $E = E_1 \cup E_2 \cup E_3$ is a 3-good partition.

Proof. (P2) can be easily checked with $a_1 = a_2 = a_3 = 1$.

FIGURE 1. Set of points in the plane

Example 3. Let W^3 be the 3-whirl on $E = \{1, \ldots, 6\}$ shown in Figure 2. W^3 is the example given by Billera *et al.* [2] that we mentioned by the end of the introduction. W^3 is a relaxation of $M(K_4)$ (by relaxing circuit $\{2, 4, 6\}$) and it is not graphic.

FIGURE 2. Euclidean representation of W^3

It can be checked that $E_1 = \{1, 6\}$, $E_2 = \{2, 5\}$, and $E_3 = \{1, 4\}$ verify the conditions of Corollary 4. Thus, $E_1 \cup E_2 \cup E_3$ is a good 3-partition.

We finally notice that given the 2-good partition $E_1 \cup E_2$ of the matroid M in Example 2, we can apply a hyperplane split to the matroid $M|_{E_2}$ induced by the set of points in $E_2 = \{3, 4, 5, 6\}$. Indeed, it can be checked that $E_2^1 = \{3, 4\}$ and $E_2^2 = \{5, 6\}$ verify conditions in Corollary 3 and thus it is a good 2-partition of $M|_{E_2}$. Moreover, it can be checked that $E_1 = \{1, 2\}, E_2^1 = \{3, 4\}, \text{ and } E_2^2 = \{5, 6\}$ verify the conditions of Corollary 4. and thus $E_1 \cup E_2 \cup E_3$ is a good 3-partition for M.

4. DIRECT SUM

Let $M_1 = (E_1, \mathcal{B})$ and $M_2 = (E_2, \mathcal{B})$ be matroids of rank r_1 and r_2 respectively where $E_1 \cap E_2 = \emptyset$. The direct sum, denoted by $M_1 \oplus M_2$, of matroids M_1 and M_2 has as ground set the disjoint union $E(M_1 \oplus M_2) = E(M_1) \cup E(M_2)$ and as set of bases $\mathcal{B}(M_1 \oplus M_2) =$ ${B_1 \cup B_2 | B_1 \in \mathcal{B}(M_1), B_2 \in \mathcal{B}(M_2)}$. Further, the rank of $M_1 \oplus M_2$ is $r_1 + r_2$.

In [3], we proved the following result.

Theorem 3. [3] Let $M_1 = (E_1, \mathcal{B})$ and $M_2 = (E_2, \mathcal{B})$ be matroids of rank r_1 and r_2 respectively where $E_1 \cap E_2 = \emptyset$. Then, $P(M_1 \oplus M_2)$ has a hyperplane split if and only if either $P(M_1)$ or $P(M_2)$ has a hyperplane split.

Our main result in this section is the following.

Theorem 4. Let $M_1 = (E_1, \mathcal{B})$ and $M_2 = (E_2, \mathcal{B})$ be matroids of rank r_1 and r_2 respectively where $E_1 \cap E_2 = \emptyset$. Then, $P(M_1 \oplus M_2)$ admits a sequence of hyperplane splits if either $P(M_1)$ or $P(M_2)$ admits a sequence of hyperplane splits.

Proof. Without loss of generality, we suppose that $P(M_1)$ has a sequence of hyperplane splits yielding to the decomposition $P(M_1) = \bigcup_{i=1}^{t}$ $i=1$ $P(N_i)$. For each $i = 1, \ldots, t$, we let $L_i = \{ X \cup Y : X \in \mathcal{B}(N_i), Y \in \mathcal{B}(M_2) \}.$

Since N_i and M_2 are matroids, L_i is also the matroid given by $N_i \oplus M_2$.

Now for all $1 \leq i, j \leq t, i \neq j$ we have

 $L_i \cap L_j = \{ X \cup Y : X \in \mathcal{B}(N_i) \cap \mathcal{B}(N_j), Y \in \mathcal{B}(M_2) \}$

Since $\mathcal{B}(N_i) \cap \mathcal{B}(N_j) = \mathcal{B}(N_i \cap N_j)$ and M_2 are matroids, $L_i \cap L_j$ is also a matroid given by $(N_i \cap N_j) \oplus M_2$. Moreover, $P(M_1) = \bigcup_{i=1}^t$ $i=1$ $P(N_i)$ so $\mathcal{B}(M_1) = \bigcup_{i=1}^t$ $i=1$ $\mathcal{B}(N_i)$ and thus

$$
\bigcup_{i=1}^{t} L_i = \{ X \cup Y : X \in \bigcup_{i=1}^{t} \mathcal{B}(N_i), Y \in \mathcal{B}(M_2) \} \n= \{ X \cup Y : X \in \mathcal{B}(M_1), Y \in \mathcal{B}(M_2) \} \n= \mathcal{B}(M_1 \oplus M_2).
$$

We now show that this matroid base decomposition induces a t-decomposition of $P(M_1 \oplus$ (M_2) . Indeed, we claim that $P(M_1 \oplus M_2) = \bigcup_{i=1}^t$ $i=1$ $P(L_i)$. For, we proceed by induction on t. The case $t = 2$ is true since, in the proof of Theorem 3, was showed that $P(M_1 \oplus M_2)$ = $P(L_1) \cup P(L_2)$. We suppose that the result is true for t and let

$$
P(M_1) = \bigcup_{i=1}^{t-1} P(N_i) \cup P(N_t^1) \cup P(N_t^2), \tag{8}
$$

where N_i , $i = 1, \ldots t-1$, N_t^1, N_t^2 are matroids. Moreover, we suppose that throughout the sequence of hyperplane splits of $P(M_1)$ we had $P(M_1) = \bigcup_{k=1}^{t} S_k$ hyperplane split was applied to $P(N_t)$ (obtaining $P(N_t) = P(N_t^1) \cup P(N_t^2)$) and yielding $P(N_i)$ and that the last to equation (8).

Now, by the inductive hypothesis, the decomposition $P(M_1) = \bigcup_{k=1}^{t} S_k$ $i=1$ $P(N_i)$ implies the decomposition $P(M_1 \oplus M_2) = \bigcup_{k=1}^{t}$ $i=1$ $P(L_i)$. But, by the case $t = 2$, $P(N_t) = P(N_t^1) \cup P(N_t^2)$ implying the decomposition $P(N_t \oplus M_2) = P(L_t^1) \cup P(L_t^2)$ where

$$
L_t^1 = \{ X \cup Y : X \in \mathcal{B}(N_t^1), Y \in \mathcal{B}(M_2) \} \text{ and } L_t^2 = \{ X \cup Y : X \in \mathcal{B}(N_t^2), Y \in \mathcal{B}(M_2) \}
$$

'Therefore.

$$
P(M_1 \oplus M_2) = \bigcup_{i=1}^t P(L_i) = \bigcup_{i=1}^{t-1} P(L_i) \cup P(L_i^1) \cup P(L_i^2).
$$

 \Box

Acknowledgement

We would like to thank the referee for many valuable remarks.

REFERENCES

- [1] F. Ardila, A. Fink, F. Rincon, Valuations for matroid polytope subdivisions, Canad. J. Math. 62 (2010), 1228-1245.
- [2] L.J. Billera, N. Jia, V. Reiner, A quasisymmetric function for matroids, European J. Combin. 30 (2009) 1727–1757.
- [3] V. Chatelain, J.L. Ramírez Alfonsín, Matroid base polytope decomposition, Adv. Appl. Math. 47(2011), 158-172.
- [4] H. Derksen, Symmetric and quasi-symmetric functions associated to polymatroids, J. Algebraic Combin. 30 (2010), 29-33 pp.
- [5] I.M. Gel'fand, V.V. Serganova, Combinatorial geometries and torus strata on homogeneous compact manifolds, Russian Math. Surveys 42 (1987) 133-168.
- [6] P. Hacking, S. Keel, J. Tevelev, Compactification of the moduli space of hyperplane arrangements, J. Algebraic Geom. 15 (2006) 657-680.
- [7] M. Kapranov, Chow quotients of Grassmannians I, Soviet Math. 16 (1993) 29-110.
- [8] S. Keel, J. Tevelev, Chow quotients of Grassmannians II, ArXiv:math/0401159 (2004).
- [9] L. Lafforgue, Pavages des simplexes, schémas de graphes recollés et compactification des $PGL_r^{n+1}/\mathrm{PGL}_r$, Invent. Math. 136 (1999) 233-271.
- [10] L. Lafforgue, Chirurgie des grassmanniennes, CRM Monograph Series 19 American Mathematical Society, Providence, RI 2003.
- [11] K.W. Luoto, A matroid-friendly basis for the quasisymmetric functions, J. Combin. Theory Ser. A 115 (2008) 777-798.
- [12] J.G. Oxley, Matroid theory, Oxford University Press, New York, 1992.
- [13] D.E. Speyer, Tropical linear spaces, SIAM J. Disc. Math. 22 (2008) 1527-1558.

16 VANESSA CHATELAIN AND JORGE LUIS RAMÍREZ ALFONSÍN

[14] D.E. Speyer, A matroid invariant via K-theory of the Grassmannian, Adv. Math., 221 (2009) 882-913. [15] D.J.A. Welsh, Matroid Theory, Academic Press, London-New York, 1976.

Institut Galilée, Université Villetaneuse (Paris XIII) E-mail address: vanessa_chatelain@hotmail.fr

Institut de Mathématiques et de Modélisation de Montpellier, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier E-mail address: jramirez@math.univ-montp2.fr $URL: \text{http://www.math.univ-month2.fr/~ramirez/}$