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Abstract. Let P (M) be the matroid base polytope of a matroid M . A matroid base

polytope decomposition of P (M) is a decomposition of the form P (M) =
tS

i=1

P (Mi)

where each P (Mi) is also a matroid base polytope for some matroid Mi, and for each

1 ≤ i 6= j ≤ t, the intersection P (Mi)∩P (Mj) is a face of both P (Mi) and P (Mj). In this

paper, we investigate hyperplane splits, that is, polytope decompositions when t = 2. We

give sufficient conditions for M so P (M) has a hyperplane split and characterize when

P (M1 ⊕M2) has a hyperplane split where M1 ⊕M2 denote the direct sum of matroids

M1 and M2. We also prove that P (M) has not a hyperplane split if M is binary. Finally,

we show that P (M) has not a decomposition if its 1-skeleton is the hypercube.
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1. Introduction

For general background in matroid theory we refer the reader to [21, 24]. A matroid
M = (E,B) of rank r is a finite set E = {1, . . . , n} (called the ground set of M) together
with a nonempty collection B = B(M) of r-subsets of E (called the bases of M) satisfying
the following basis exchange axiom:

if B1, B2 ∈ B and e ∈ B1 \B2 then there exists f ∈ B2 \B1 such that (B1 − e) + f ∈ B.

The family of independent sets of M , denoted by I(M) consists of all subsets of bases
of M . For a matroid M = (E,B), let P (M) be the matroid base polytope of M defined as
the convex hull of the incidence vectors of bases of M , that is,

P (M) := conv

{∑
i∈B

ei : B a base of M

}
,

where ei denotes the ith standard basis vector in Rn. P (M) is a polytope of dimension
at most n− 1. Notice that P (M) is a face of the independent set polytope I(M) which is
obtained as the convex hull of the incidence vectors of the independent sets of M . These
polytopes were first studied by Edmonds [5, 6].
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A matroid base polytope decomposition of P (M) is a decomposition

P (M) =
t⋃

i=1

P (Mi)

where each P (Mi) is also a matroid base polytope for some matroid Mi, and for each
1 ≤ i 6= j ≤ t, the intersection P (Mi) ∩ P (Mj) is a face of both P (Mi) and P (Mj).

P (M) is said to be decomposable if it has a matroid base polytope decomposition with
t ≥ 2, and indecomposable otherwise. A decomposition is called hyperplane split if t = 2.

Matroid base polytope decomposition have appeared in many different contexts. For
instance, they are treated in the work by Hacking, Keel and Tevelev [10, Section 3.3] in
relation with the compactification of the moduli space of hyperplane arrangements (see
also [12] and [13, Section 2.6]), in Speyer’s work [22, 23] concerning tropical linear spaces,
and in Lafforgue’s work [15, 16] while studying the compactifications of the fine Schubert
cell of the Grassmannian. In particular, Lafforgue’s work implies that for a matroid M

represented by vectors in Fr, if P (M) is indecomposable, then M will be rigid, that is, M
will have only finitely many realizations, up to scaling and the action of GL(r,F). Recently,
Billera, Jia and Reiner [3] (see also the closely related results due to Luoto [17]), Speyer
[22, 23], Derksen [4] and Ardila, Fink and Rincon [1] have showed that different interesting
matroids functions (as quasisymmetric functions and Tutte’s polynomials) behave like
valuations on the the associated matroid base polytope decomposition.

It is therefore of interest to know whether a given matroid base polytope is decomposable
or not. Unfortunately, there is not much known about the existence or nonexistence of
such decompositions (even for the case t = 2). Kapranov [12, Section 1.3] showed that
all decompositions of a (appropriately parametrizied) rank two matroid can be achieved
by a sequence of hyperplane splits. In [3], Billera, Jia and Reiner found five rank three
matroids on 6 elements for which the corresponding polytope is indecomposable. They
also showed that P (M) can be split into three indecomposable pieces where M is the
rank three matroid on {1, . . . , 6} having every triple but {1, 2, 3}, {1, 4, 5} and {3, 5, 6} as
bases. Moreover, they showed that this decomposition cannot be obtained via hyperplane
splits. In this paper, we show the existence and nonexistence of hyperplane splits for some
infinite classes of matroids. We also give a special family of matroid base polytopes that
are indecomposable.

It is known that nonempty faces of matroid base polytope are matroid base polytopes [9,
Theorem 2]. So, the common face P (Mi)∩P (Mj) (whose vertices correspond to elements
of B(Mi)∩B(Mj)) must also be a matroid base polytope. Thus, in order to investigate the
nonexistence of base polytope decomposition, one may consider the following combinatorial
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decomposition version. A matroid base decomposition of a matroid M is a decomposition

B(M) =
t⋃

i=1

B(Mi)

where B(Mk), 1 ≤ k ≤ t and B(Mi) ∩ B(Mj), 1 ≤ i 6= j ≤ t are collections of bases of
matroids.

M is said to be combinatorial decomposable if it has a matroid base decomposition.
We say that the decomposition is nontrivial if B(Mi) 6= B(M) for all i. If P (M) is
decomposable then M is clearly combinatorial decomposable. However, a matroid base
decomposition do not necessarily induce a matroid base polytope decomposition. For
instance, the rank 2 matroid M∗ where B(M∗) = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}} has
a combinatorial decomposition given by B(M1) = {{1, 2}, {2, 3}, {2, 4}} and B(M2) =
{{1, 3}, {2, 3}, {3, 4}} since B(M1),B(M2) and B(M1) ∩ B(M2) = {2, 3} are collections
of bases of matroids. However the corresponding polytopes P (M1) and P (M2) do not
decompose P (M∗), see Figure 1.

{3,4}

2P(M  )1

{2,4}

{1,2}

{2,3}

{1,3}

P(M  )

Figure 1. P (M∗), P (M1) and P (M2)

In order to prove the existence of nontrivial hyperplane splits, we always first show the
existence of matroid base decompositions and then prove that this induces a hyperplane
split since some geometric conditions (see Proposition 1) are satisfied.

In next section, we shall give sufficient conditions for a matroid M so that P (M) has
a nontrivial hyperplane split. Our constructive method allows us to show the existence of
at least bn2 c different hyperplane splits of P (Un,r) with n ≥ r + 2 ≥ 3 where Un,r denotes
the uniform matroid on n elements of rank r (recall that B(Un,r) consist of all r-subsets
of {1, . . . , n}). In Section 3, we present a complete characterization for matroid M1 ⊕M2

so P (M1 ⊕M2) has a nontrivial hyperplane split where M1 ⊕M2 denotes the direct sum
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of matroids M1 and M2. In Section 4, we will show that P (M) has not a nontrivial
hyperplane split if M is a binary matroid, that is, if M is representable over F2. We finally
prove that if the 1-skeleton of P (M) is the hypercube then P (M) is indecomposable.

2. Decomposition

The matroid base graph G(M) of a matroid M is the graph having as its set of vertices
the bases of M and there is an edge between two vertices (bases) B1, B2 if and only if
there exist a pair of elements e ∈ B1 and f ∈ B2 such that B2 = (B1 \ e) + f , that is, the
symmetric difference of B1 and B2, denoted by ∆(B1, B2), has cardinality two. It is known
[8] that G(M) is the 1-skeleton of P (M) (in other words, the edges of P (M) represent the
basis exchange axiom) and that G(M) is connected. We present the following geometric
result used throughout the rest of the paper.

Proposition 1. Let P be a d-polytope with set of vertices X. Let H be a hyperplane such
that H ∩ P 6= ∅ with H not supporting P . So, H splits P into polytopes P1 and P2, that
is, H ∩P = P1∩P2 = F 6= ∅. H also partition X into sets X1 and X2 with X1∩X2 = W .
Then, for each edge [u, v] of P we have that {u, v} ⊂ Xi with either i = 1 or 2 if and only
if F = conv(W ).

Proof. We notice that X1, X2 6= ∅ (since H is not supporting). and let [u, v] be an edge
of P .

(Necessity) We shall proceed by contradiction. Suppose that {u, v} ⊂ Xi with i = 1
or 2 and that F 6= conv(W ). Since conv(W ) ⊂ F then there exists a vertex x in F such
that x 6∈W (and thus x 6∈ X). So, x is the intersection of H with an edge [u, v] of P with
u ∈ X1 \X2 and v ∈ X2 \X1 which is a contradiction.

(Sufficiency) We shall proceed by contradiction. Suppose that F = conv(W ) and that
u ∈ X1 \X2 and v ∈ X2 \X1. So, u ∈ P1 \P2 and v ∈ P2 \P1 and therefore [u, v]∩F = s

with s a vertex of F different from u and v. Then, conv(W ) does not contain s (since s is
not a vertex of W ) and so F 6= conv(W ), which is a contradiction. �

We have the following easy consequence of this proposition.

Corollary 1. Let P, P1 and P2 be the polytopes as in Proposition 1. Then, F = conv(W )
if and only if Pi = conv(Xi), i = 1, 2 (and thus P = P1 ∪ P2 with P1 and P2 polytopes of
the same dimension as P sharing a facet).

Let M = (E,B) be a matroid of rank r and let A ⊆ E. We recall that the independent
sets of the restriction matroid of M to A, denoted by M |A, are given by I(M |A) = {I ⊆
A : I ∈ I(M)}.
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Let (E1, E2) be a partition of E, that is, E = E1 ∪ E2 and E1 ∩ E2 = ∅. Let ri > 1,
i = 1, 2 be the rank of M |Ei . We say that (E1, E2) is a good partition if there exist integers
0 < a1 < r1 and 0 < a2 < r2 with the following properties:

(P1) r1 + r2 = r + a1 + a2 and

(P2) for all X ∈ I(M |E1) with |X| ≤ r1 − a1 and all Y ∈ I(M |E2) with |Y | ≤ r2 − a2

we have X ∪ Y ∈ I(M).

Lemma 1. Let M = (E,B) be a matroid of rank r and let (E1, E2) be a good partition of
E. Let

B(M1) = {B ∈ B(M) : |B ∩ E1| ≤ r1 − a1}

and

B(M2) = {B ∈ B(M) : |B ∩ E2| ≤ r2 − a2}.

where ri is the rank of matroid M |Ei, i = 1, 2 and a1, a2 are integers satisfying Properties
(P1) and (P2). Then, B(M1) and B(M2) are the collections of bases of matroids M1 and
M2 respectively.

Proof. We shall prove that B(M1) is the collection of bases of a matroid (this can be done
similarly for B(M2)). We show that the elements in B(M1) satisfy the basis exchange
axiom. Let X,Y ∈ B(M1) ⊂ B(M) and suppose that e ∈ X \ Y . Since M is a matroid
then there exists f ∈ Y \X such that X − e+ f ∈ B(M). We have two cases.

Case 1) Suppose that either |X∩E1| < r1−a1 or e ∈ E1. Then, |(X−e+f)∩E1| ≤ r1−a1

and thus X − e+ f ∈ B(M1).
Case 2) Suppose that |X ∩ E1| = r1 − a1 and e ∈ E2. On one hand, we have that

|(X−e)∩E2| = r−1−(r1−a1) = r−r1+a1−1. On the other hand, we have that |Y ∩E1| ≤
r1−a1 and thus |Y ∩E2| ≥ r−(r1−a1). So, there exists g ∈ Y \(X−e) = Y \X with g ∈ E2

such that (X−e+g)∩E2 ∈ I(M |E2) and also, since g 6∈ E1, then (X−e+g)∩E1 ∈ I(M |E1).
Moreover, |(X−e+g)∩E1| = r1−a1 and |(X−e+g)∩E2| = r− r1 +a−1 = r2−a2 and
thus, by Property (P1), |X− e+ g| = r1 + r2−a1−a2 = r. So, by Property (P2), we have
((X − e+ g) ∩ E1) ∪ ((X − e+ g) ∩ E2) = X − e+ g ∈ I(M). But since, |X − e+ g| = r

then X− e+g ∈ B(M) and since |(X− e+g)∩E1| = r1−a1 then X− e+g ∈ B(M1). �

Notice that property (P2), needed for the proof of Lemma 1, can be replaced by the
following weaker condition.

(P2’) for all B1 ∈ B(M1) and all Y ∈ I(M |E2) with |Y | ≤ r2 − a2 we have (B1 ∩ E1) ∪
Y ∈ I(M) and for all B2 ∈ B(M2) and all Y ∈ I(M |E1) with |Y | ≤ r1 − a1 we have
(B2 ∩ E2) ∪ Y ∈ I(M).

(P2) is a stronger condition that (P2’) since
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{B1 ∩ E1 : B1 ∈ B(M1)} ⊂ {X : |X| ≤ r1 − a1, X ∈ I(M |E1)}

and
{B2 ∩ E2 : B2 ∈ B(M2)} ⊂ {X : |X| ≤ r2 − a2, X ∈ I(M |E2)}.

For instance, let us consider the rank 3 matroid M on E = {1, . . . , 5} where B(M) =
{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}} (an Euclidean representation of M
is given by representing element 1 as an isolated point and elements 2,3,4,5 on a line). We
take E1 = {1, 2, 3}, E2 = {4, 5} and a1 = 1, a2 = 1. It can be checked that (P2’) holds
while (P2) does not.

Theorem 1. Let M = (E,B) be a matroid of rank r and let (E1, E2) be a good partition
of E. Let M1 and M2 be matroids given in Lemma 1. Then, P (M) = P (M1) ∪ P (M2) is
a nontrivial hyperplane split.

Proof. We will first show that B(M1) and B(M2) give a nontrivial matroid base decompo-
sition of M . For this, we show

(i) B(M) = B(M1) ∪ B(M2),

(ii) B(M1),B(M2) ⊂ B(M),

(iii) B(M1),B(M2) 6⊆ B(M1) ∩ B(M2),

(iv) B(M1) ∩ B(M2) 6= ∅ and

(v) B(M1) ∩ B(M2) is the collection of bases of a matroid.

We then show that this matroid base decomposition induces a nontrivial hyperplane
split. For this, we show

(vi) there exists an hyperplane containing the vertices corresponding to B(M1)∩B(M2),
and not supporting P (M),

(vii) any edge of P (M) is also an edge of either P (M1) or P (M2).

So, by Corollary 1, B(M1)∩B(M2) is the set of vertices of a facet of P (M1) and P (M2)
and thus P (M) = P (M1) ∪ P (M2).

We may now prove the above claims.

(i) We claim that B(M) = ∅. Indeed, let B ∈ B(M) = {B ∈ B(M) : |B ∩ E1| >
r1− a1 and |B ∩E2| > r2− a2}. Since E1 ∩E2 = ∅ then |B| > r1 + r2− a1− a2 = r which
is not possible. So, B(M) = B(M1) ∪ B(M2).

(ii) We show that B(M1) ⊂ B(M) (it can also be proved that B(M2) ⊂ B(M) by using
similar arguments). Let B be a base of M |E1 (and so |B| = r1). We have two cases.

Case 1) If r1 = r then B ∈ B(M) but B 6∈ B(M1) since |B ∩ E1| = r > r1 − a1.
Case 2) If r1 < r then there exists a base B′ ∈ B(M) with B ⊂ B′ since B ∈ I(M).

Moreover, |B′ ∩ E1| ≥ r1 > r1 − a1 and thus B′ ∈ B(M) but B′ 6∈ B(M1).
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(iii) If B(M1) ⊆ B(M1) ∩ B(M2) then B(M1) ⊆ B(M2) and thus B(M2) = B(M1) ∪
B(M2) = B(M) contradicting (ii).

(iv) Let X,Y ∈ B(M) such that |X ∩ E1| = r1 and |Y ∩ E2| = r2 (we have seen in
(ii) that such bases always exist). Since G(M) is connected then there exists a path
X = B1, . . . , Bm = Y connecting X and Y where Bi ∈ B(M) for each i = 1, . . . ,m. Since
|Bi∆Bi+1| = 2 then |Bi ∩ E1| = |Bi+1 ∩ E1| + k with either k = −1, 0,+1,. Moreover,
|B1 ∩ E1| = r1 and |Bm ∩ E1| = r − r2 = r1 − a1 − a2. So, there must exist an index
k such that |Bk ∩ E1| = r1 − a1. Moreover |Bk ∩ E2| = r − r1 + a1 = r2 − a2. So,
Bk ∈ B(M1) ∩ B(M2).

(v) This can be done by using similar arguments as those used in Lemma 1.

(vi) We first notice that if B ∈ B(M1) ∩ B(M2) then B ∈ B(M) (so |B| = r) and
|B ∩ E1| ≤ r1 − a1, |B ∩ E2| ≤ r2 − a2 = r − r1 + a1. So, if B ∈ B(M1) ∩ B(M2) then
|B ∩ E1| = r1 − a1 and |B ∩ E2| = r2 − a2. Let H be the hyperplane defined by

H(x) =

x ∈ Rn : 〈e,x〉 = r1 − a1 where e =
∑
i∈E1

ei

 .

If B ∈ B(M1) then |B ∩ E1| ≤ r1 − a1 and thus H(xB) ≤ r1 − a1. If B ∈ B(M2) then
|B∩E2| ≤ r2−a2 and so |B∩E1| ≥ r−r2+a2 = r1−a1. Then, H(xB) ≥ r1−a1. Therefore,
H contains only elements in B(M1) ∩ B(M2). Notice that dim(P (M) ∩H) = d− 1 where
d = dim(P (M)). Indeed, dim(P (M)∩H) ≤ d and if dim(P (M)∩H) ≤ d− 2 then P (M)
would be contained in the closed-half space H+ or in H− which is impossible by (iii). So,
the affine space H ′ containing P (M) ∩H is a hyperplane in Rd not supporting P (M).

(vii) Suppose that there exists an edge in P (M) belonging to neither P (M1) nor P (M2).
So, there exist B1 ∈ B(M1) \ B(M2) and B2 ∈ B(M2) \ B(M1) with ∆(B1, B2) = 2. Then,
|B1 ∩ E1| < r1 − a1 and |B2 ∩ E1| > r1 − a1. Combining the latter with the fact that
∆(B1, B2) = 2, then we must have |B1 ∩ E1| = r1 − a1 which is a contradiction.

�

Remark 1. It is not necessary to have a good partition in the hypothesis of Theorem 1
but only the existence of a partition (E1, E2) of E satisfying property (P1) and such that
the sets B(M1), B(M2) and B(M1) ∩ B(M2) be collections of bases of matroids. Indeed,
this is the case if the partition satisfies either (P2) or (P2’).

Example 1: Let us consider U4,2 and the good partition E1 = {1, 2} and E2 = {3, 4}
(and so r1 = r2 = 2) with a1 = a2 = 1. Then B(M1) = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}},
B(M2) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}} and B(M1)∩B(M2) = {{1, 3}, {1, 4}, {2, 3}, {2, 4}},
see Figure 2.
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M2

{2,4}

{1,2}

{1,3} {1,4}

{2,3}

M1
{2,3}

{1,4}{1,3}

{3,4}

{2,4}

{1,4}{1,3}

{2,3}

{2,4}

M1 M2

Figure 2. Hyperplane split of P (U4,2)

We remark that there exist matroids with ground set E not having a good partition.
For instance, let M(K4) be the matroid associated to the complete graph on four vertices.
We leave this as an exercise to the reader.

It turns out that P (M(K4)) has not a nontrivial hyperplane split (this is justified at
the end of Section 4).

Let M = (E,B) be a matroid of rank r and let X ⊂ E be both a circuit and a hyperplane
of M (recall that a hyperplane is a flat, that is X = cl(X), of rank r − 1). It is known
[21, Proposition 1.5.13] that B(M ′) = B(M) ∪ X is the collection of bases of a matroid
M ′ (called, relaxation of M).

Corollary 2. Let M = (E,B) be a matroid and let (E1, E2) be a good partition of E.
Then, P (M ′) has a nontrivial hyperplane split where M ′ is a relaxation of M .

Proof. It can be checked that the desired hyperplane split of P (M ′) can be obtained by
using the same given good partition (E1, E2) of E. �

Although P (M(K4)) has not a nontrivial hyperplane split, base polytopes of relaxations
of M(K4) may have one.

Example 2: Let W 3 be the matroid of rank 3 on E = {1, . . . , 6} having as set of bases
all 3-subsets of E except the triples {1, 2, 5}, {1, 4, 6} and {2, 3, 6}. Notice that W 3 is a
relaxation of M(K4) (by relaxing circuit {3, 4, 5}) but it is not graphic. It can be checked
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that E1 = {1, 2, 6} and E2 = {3, 4, 5} (and so r1 = r2 = 3) with a1 = 2 and a2 = 1 is a
good partition.

2.1. Uniform matroids. We say that two hyperplane splits P (M1)∪P (M2) and P (M ′1)∪
P (M ′2) of P (M) are equivalent if P (Mi) is combinatorial equivalent to P (M ′i) for each
i = 1, 2 (that is, the corresponding face lattices are isomorphic). They are different
otherwise.

Corollary 3. Let n ≥ r + 2 ≥ 4 be integers. Let h(Un,r) be the number of different
hyperplane splits of P (Un,r). Then,

h(Un,r) ≥
⌊n

2

⌋
− 1.

Proof. For each k = 2, . . . , bn2 c, we let E1(k) = {1, . . . , k} and E2(k) = {k+ 1, . . . , n}. So,
M |E1(k) is isomorphic to Uk,min{k,r} and M |E2(k) is isomorphic to Un−k,min{n−k,r}. Let r1

and r2 be the ranks of M |E1(k) and M |E2(k) respectively. Then, an easy analysis shows
that

r1 + r2 = min{n, k + r, n− k + r, 2r} ≥ r + 2.

So, we can find integers a1, a2 ≥ 1 such that r1 +r2 = r+a1 +a2 and thus (E1(k), E2(k))
is a good partition. �

Notice that there might be several choices for the values of a1 and a2 (each of which
arises from a good partition). However, it is not clear if these partitions give different
hyperplane splits.

Example 3: Let us consider Un,3 with n ≥ 6. We take the good partition E1(k) =
{1, . . . , k} and E2(k) = {k + 1, . . . , n} for any 2 ≤ k ≤ bn

2 c (and thus r1 = 2, r2 = 3). If
we set a2 = 1 and a1 such that r1 − a1 = 1 then B(M1) = {B ∈ B(Un,3) : |B ∩ E1| ≤ 1}
and B(M2) = {B ∈ B(Un,3) : |B ∩ E2| ≤ 2}.

2.2. Lattice path matroids. Let A = (Aj : j ∈ J) be a set system, that is, multiset of
subsets of a finite set E. A transversal of A is a set {xj : j ∈ J} of |J | distinct elements
such that xj ∈ Aj for all j. A partial transversal of A is a transversal of a set system of the
form (Ak : k ∈ K) with K ⊆ J . A fundamental result due to Edmonds and Fulkerson [7]
states that the partial transversals of a set of system A = (Aj : j ∈ J) are the independent
sets of a matroid on E. We say that A is a presentation of the transversal matroid. The
bases of a transversal matroid are the maximal partial transversals.

A lattice path starts at point (0, 0) and uses steps (1, 0) and (0, 1), called East and North.
Let P = p1, . . . , pr+m and Q = q1, . . . , qr+m be two lattice paths from (0, 0) to (m, r) with
P never going above Q. Let {ps1 , . . . , psr} be the set of North steps of P with s1 < · · · < sr;
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similarly, let {qt1 , . . . , qtr} be the set of North steps of Q with t1 < · · · < tr. We clearly
have that ti ≤ si for all 1 ≤ i ≤ r. Let M [P,Q] be the transversal matroid that has ground
set {1, . . . ,m + r} and presentation (Ni : i ∈ {1, . . . , r}) where Ni denotes the interval
[ti, si] of integers. Transversal matroids arising as above are called lattice path matroids.
Given a subset X of {1, . . . ,m+r}, we define the lattice path P (X) = u1, . . . , um+r where
ui is a North step if i ∈ X, an East step otherwise.

In [2] it was proved that a subset B of {1, . . . ,m+ r} with |B| = r is a base of M [P,Q]
if and only if the associated path P (B) stays in the region bounded by P and Q.

Corollary 4. Let M [P,Q] be the transversal matroid on {1, . . . ,m+ r} and presentation
(Ni : i ∈ {1, . . . , r}) where Ni denotes the interval [ti, si] of integers. Suppose that there
exists integer x such that tj < x < sj and tj+1 < x + 1 < sj+1 for some 1 ≤ j ≤ r − 1.
Then, P (M [P,Q]) has a nontrivial hyperplane split.

Proof. Let E1 = {1, . . . , x} and E2 = {x+ 1, . . . ,m+ r}. Then, M |E1 (resp. M |E2) is the
transversal matroid with representation (N1

i : i ∈ {1, . . . , r}) where N1
i = Ni ∩ E1 (resp.

with representation (N2
i : i ∈ {1, . . . , r}) where N2

i = Ni ∩ E2). Let r1 and r2 be the
ranks of M |E1 and M |E2 respectively. We have that N1

i 6= ∅ for all i ≤ j + 1 (since the
smallest element in Ni is strictly smaller than x + 1). Therefore, r1 ≥ j + 1. Similarly,
we have that N2

i 6= ∅ for all i ≥ r − j + 1 (since the smallest element in Ni is larger than
x + 1). Therefore, r2 ≥ r − j + 1. So, the partition (E1, E2) satisfies property (P1) by
taking integers a1 and a2 such that r1 − a1 = j and r2 − a2 = r − j. Moreover, the sets
B(M1) = {B ∈ B(M) : |B ∩ E1| ≤ r1 − a1} and B(M2) = {B ∈ B(M) : |B ∩ E2| ≤
r2 − a2} are the collections of bases of matroids M1 and M2 respectively. Indeed, M1 is
the transversal matroid with representation (N1

i : i ∈ {1, . . . , r}) where N1
i = Ni for each

i = 1, . . . , j and N1
i = Ni∩E2 for each i = j+1, . . . , r. M2 is the transversal matroid with

representation (N2
i : i ∈ {1, . . . , r}) where N2

i = Ni∩E1 for each i = 1, . . . , j and N1
i = Ni

for each i = j + 1, . . . , r. Finally, M1 ∩M2 is the transversal matroid with representation
(N i : i ∈ {1, . . . , r}) where N i = N

1
i ∩ N

2
i for each i = 1, . . . , r. The result follows by

Remark 1. �

Notice that there might be several choices for the values of x, j, a1 and a2 (each of which
gives rise to a good partition). However, it is not clear if these partitions give different
hyperplane splits. Also notice that the partition proposed in the above proof may satisfy
neither (P2) nor (P2’). We shall see this, for instance, in the following example.

Example 4: Let m = 3 and r = 4. Let P = p1, . . . , p7 be the lattice path where
p1, p2, p3 are East steps and p4, p5, p6, p7 are North steps . Let Q = q1, . . . , q7 be the
lattice path where q2, q4, q6 are East steps and q1, q3, q5, q7 are North steps. Let M [P,Q]
be the transversal matroid on {1, . . . , 7} and presentation (Ni : i ∈ {1, . . . , 4}) where
N1 = [1, 2, 3, 4], N2 = [3, 4, 5], N3 = [5, 6] and N4 = [7], see Figure 3.
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Q

P

Figure 3. Lattice paths P and Q

Recall that a subset B of {1, . . . , 7} with |B| = 4 is a base of M [P,Q] if and only if the
associated path P (B) stays in the region bounded by P and Q.

Let us take x = 3 and j = 1, then E1 = {1, 2, 3} and E2 = {4, 5, 6, 7}. So, the
presentation of M |E1 (resp. M |E2) is given by N1

1 = [1, 2, 3] and N1
2 = [3] (resp. by

N2
1 = [4],N2

2 = [4, 5], N2
3 = [5, 6] and N2

4 = [7]) and thus, r1 = 1 and r2 = 4. By setting
a1 = a2 = 1, we obtain that M1 is the transversal matroid with representation (N1

i : i ∈
{1, . . . , 4}) where N1

1 = [1, 2, 3, 4], N1
2 = [4, 5], N1

3 = [5, 6] and N
1
4 = [7]. And, M2 is the

transversal matroid with representation (N2
i : i ∈ {1, . . . , 4}) where N2

1 = [1, 2, 3], N2
2 =

[3, 4, 5], N2
3 = [5, 6] and N2

4 = [7]. Finally, we have that M1∩M2 is the transversal matroid
with representation (N i : i ∈ {1, . . . , 4}) where N1 = [1, 2, 3], N2 = [4, 5], N3 = [5, 6] and
N4 = [7]. These matroids are illustrated in Figure 4.

(c)(a) (b)

Figure 4. Transversal matroids (a) M1 (b) M2 and (c) M1 ∩M2

So, by Corollary 4, M [P,Q] has a nontrivial hyerplane split. We notice that the above
partition do not satisfy either (P2) (for instance, {3} ∈ I(M |E1), {4, 5, 6} ∈ I(M |E2) but
{3, 4, 5, 6} 6∈ I(M [P,Q])) or (P2’) (for instance, B = {1, 4, 5, 7} ∈ B(M1), Y = {4, 5, 6} ∈
I(M |E2) but (B ∩ E1) ∪ Y = {1, 4, 5, 6} 6∈ I(M [P,Q])).
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Example 5: Let m ≥ r ≥ 2 be integers. Let P1 = p1, . . . , pm+r be the lattice
path where p1, . . . , pm are East steps and pm+1, . . . , pm+r are North steps. Let Q1 =
q1, . . . , qm+r be the lattice path where q1, . . . qr are North steps and qr+1, . . . , qr+m are
East steps. Let M1[P1, Q1] be the transversal matroid on {1, . . . ,m+ r} and presentation
(Ni : i ∈ {1, . . . , r}) where Ni denotes the interval [si = i,m + i = ti]. So, integer x = 2
is such that s1 < x < t1 and s2 < x + 1 < t2 and thus, by Corollary 4, P (M1) has a
nontrivial hyperplane split. Notice that any r-subset of {1, . . . ,m+ r} is a base of M1, in
other words, M1 is isomorphic to Um+r,r (and thus, we found a particular case of Corollary
3).

3. Direct sum

Let M1 = (E1,B) and M2 = (E2,B) be matroids of rank r1 and r2 respectively where
E1∩E2 = ∅. The direct sum, denoted by M1⊕M2, of matroids M1 and M2 has as ground
set the disjoint union E(M1 ⊕M2) = E(M1) ∪E(M2) and as set of bases B(M1 ⊕M2) =
{B1 ∪B2|B1 ∈ B(M1), B2 ∈ B(M2)}. Further, the rank of M1 ⊕M2 is r1 + r2. Our main
result in this section is the following.

Theorem 2. Let M1 = (E1,B) and M2 = (E2,B) be matroids of rank r1 and r2 respec-
tively where E1 ∩E2 = ∅. Then, P (M1⊕M2) has a nontrivial hyperplane split if and only
if either P (M1) or P (M2) has a nontrivial hyperplane split.

We first prove the following lemma needed for the proof of Theorem 2.

Lemma 2. Let M1 = (E1,B) and M2 = (E2,B) be matroids of rank r1 and r2 respectively
where E1 ∩ E2 = ∅. Then, A ⊂ B(M1 ⊕M2) is the collection of bases of a matroid if and
only if A = {X ∪ Y : X ∈ A1, Y ∈ A2} where Ai ⊆ B(Mi) is the collection of bases of a
matroid for each i = 1, 2.

Proof. (Sufficiency) We notice that A = B(M(A1)⊕M(A2)) where M(Ai) is the matroid
given by the collection of bases Ai on Ei, i = 1, 2. Thus, A ⊂ B(M1 ⊕ M2) and, by
definition of the direct sum, A is indeed the collection of bases of a matroid.

(Necessity) We suppose that A ⊂ B(M1 ⊕M2) is the collection of bases of a matroid,
say M(A). We set

A1 = {B ∩ E1 : B ∈ A} and A2 = {B ∩ E2 : B ∈ A}.

We first show that A1 is the collection of bases of a matroid (it can also be shown that
A2 is the collection of bases of a matroid by using similar arguments). We thus show that
the basis exchange axiom is satisfied. The case when |A1| = 1 is clear. Let us suppose
that |A1| ≥ 2. Let D1, D2 ∈ A1. So, there exist B1, B2 ∈ A such that Bi ∩ E1 = Di,
i = 1, 2. Since M(A) is a matroid if e ∈ (B1 \ B2) ∩ E1 = D1 \ D2 then there exists
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f ∈ B2 \ B1 such that B1 − e + f ∈ A. Since e ∈ E1 then |(B1 − e) ∩ E2| = r2 implying
that f 6∈ E2 (otherwise, |(B1 − e+ f) ∩ E2| = r2 + 1, which is impossible). Thus, f ∈ E1

and so f ∈ D2 \D1. Therefore, (B1 − e + f) ∩ E1 = D1 − e + f ∈ A1. We observe that
the latter implies the following:

Remark 2. For all e ∈ D1 \ D2 there exists f ∈ D2 such that if D1 ∪ Y ∈ A then
(D1 − e+ f) ∪ Y ∈ A for any Y ∈ B(M2).

We now show that A = {X ∪ Y : X ∈ A1, Y ∈ A2}. It is clear that A ⊆ {X ∪ Y :
X ∈ A1, Y ∈ A2}. Let X ′ ∈ A1 and Y ′ ∈ A2, we shall show that X ′ ∪ Y ′ ∈ A and so
{X ∪ Y : X ∈ A1, Y ∈ A2} ⊆ A. We first observe that for any X ′ ∈ A1 and any Y ′ ∈ A2

there exist Y ′′ ∈ A2 and X ′′ ∈ A1 such that

X ′ ∪ Y ′′ ∈ A and X ′′ ∪ Y ′ ∈ A.

If X ′ = X ′′ then we clearly have X ′ ∪ Y ′ ∈ A. Let us suppose then that X ′ 6= X ′′. By
Remark 2, for all e ∈ X ′′ \X ′ there exists f ∈ X ′ such (X ′′ − e + f) ∪ Y ′ ∈ A. We can
then construct a path X ′′ = D1, . . . , Dm = X ′ connecting X ′′ to X ′ such that Di∪Y ′ ∈ A
for each i = 1, . . . ,m − 1. Since, D1 ∪ Y ′ = X ′′ ∪ Y ′ ∈ A then we may conclude that
Dm ∪ Y ′ = X ′ ∪ Y ′ ∈ A. �

We may now prove Theorem 2.

Proof of Theorem 2. (Necessity) We suppose that P (M1 ⊕M2) = P (A) ∪ P (C) is a
nontrivial hyperplane split for some matroids A and C. Since B(A),B(C) ⊂ B(M1 ⊕M2)
then, by Lemma 2, we have

B(A) = {X ∪ Y : X ∈ A1, Y ∈ A2} and B(C) = {X ∪ Y : X ∈ C1, Y ∈ C2}

where A1, C1 ⊆ B(M1) and A2, C2 ⊆ B(M2) are the collection of bases of matroids.
We know that B(A) ∪ B(C) = B(M1 ⊕M2). We claim that A2 = C2 = B(M2) and

A1, C1 ⊂ B(M1) (or, symmetrically, A1 = C1 = B(M1) and A2, C2 ⊂ B(M2)). Indeed, if
A1 6= B(M1) then there exists X ′ ∈ B(M1) with X ′ 6∈ A1 such that for all Y ∈ B(M2)
we have X ′ ∪ Y ∈ B(A) ∪ B(C). Moreover, since X ′ ∪ Y 6∈ B(A) then X ′ ∪ Y ∈ B(C).
Therefore, {X ′ ∪ Y : Y ∈ B(M2)} ⊆ B(C) and so C2 = B(M2) implying that C1 6= B(M1)
(since B(C) ⊂ B(M1 ⊕M2)). Similarly, we may also obtain that A2 = B(M2). Now, if
A1 = B(M1) then A2 6= B(M2) (since B(A) ⊂ B(M1 ⊕M2)). We obtain, by using similar
arguments as above, that C1 = B(M1) and C2 6= B(M2).

So, suppose that A2 = C2 = B(M2) and A1, C1 ⊂ B(M1). We have that

B(A) ∪ B(C) = B(M1 ⊕M2) = {X ∪ Y : X ∈ A1 ∪ C1, Y ∈ B(M2)}
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and thus, A1 ∪ C1 = B(M1). Also,

B(A) ∩ B(C) = {X ∪ Y : X ∈ A1 ∩ C1, Y ∈ B(M2)} ⊂ B(M1 ⊕M2)

so, since B(A) ∩ B(C) is a collection of bases of a matroid then, by Lemma 2, A1 ∩ C1

is a collection of bases of a matroid. Therefore, A1 and C1 is a nontrivial matroid base
decomposition of M1.

We now show that this matroid base decomposition induces a nontrivial hyperplane
split. To this end, we first show that there exists a hyperplane containing the elements
corresponding to A1 ∩C1 not supporting P (M1). Let H be the hyperplane corresponding
to the nontrivial hyperplane split P (M1 ⊕M2) = P (A) ∪ P (C). Notice that dim(H) ≤
|E1|+ |E2| − 2 since dim(P (M1 ⊕M2)) ≤ |E1|+ |E2|. Without loss of generality, we may
suppose that dim(H) = |E1|+ |E2| − 2, otherwise we consider P (M1 ⊕M2) embedded in
R|E1|+|E2| and properly extend the equation of H. Thus, H can be written as

H(x) =

x ∈ R|E1|+|E2| : 〈e1,x〉+ 〈e2,x〉 = p where ei =
∑
j∈Ei

αi
jej with αi

j ∈ R and p ∈ N


where eij denotes the jth standard basis vector in R|Ei| for each i = 1, 2.
H contains the common facet of P (A) and P (C) (that is, the elements in B(A)∩B(C)).

Now, there exists X ′ ∈ A1∩C1 such that for all Y ∈ B(M2) we have X ′∪Y ∈ B(A)∩B(C)
and 〈e1,x′〉+ 〈e2,y〉 = p. So, for all Y ∈ B(M2)

〈e2,y〉 = p− 〈e1,x′〉 = p− p′ (1)

where p′ ∈ N. Now, there exists Y ∈ B(M2) such that X ∪ Y ∈ B(A) ∩ B(C) for all
X ∈ A1 ∩ C1, so

〈e1,x〉+ 〈e2,y〉 = p

and thus, by (1),

〈e1,x〉 = p′. (2)

Since P (A)∪P (C) is a nontrivial hyperplane split then there exists B1 = X1∪Y1 ∈ B(A)
with X1 ∈ A1 and Y2 ∈ B(M2) such that 〈e1,x〉 + 〈e2,x′〉 > p. Then, by (2), we have
〈e1,x〉+ p− p′ > p and so,

〈e1,x〉 > p′. (3)

Similarly, there exists B2 = X2 ∪ Y2 ∈ B(C) with X1 ∈ C1 and Y2 ∈ B(M2) such that
〈e1,x〉+ 〈e2,x′〉 < p. Then, by (2), we have 〈e1,x〉+ p− p′ < p and so,
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〈e1,x〉 < p′. (4)

Therefore, by (2), the hyperplane

H ′(x) =

x ∈ R|E1|+|E2| : 〈e1,x〉 = p′ where e1 =
∑
j∈E1

α1
jej with α1

j ∈ R


contains the elements corresponding to A1∩C1. Moreover, H ′ does not support P (M1)

by (3) and (4).

We now show that any edge of P (M1) is also an edge of either P (A1) or P (C1). We do
this by contradiction, let BA ∈ A1 \ C1 and BC ∈ C1 \ A1 with ∆(BA, BC) = 2. There
exists Y ∈ B(M2) such that BA ∪ Y ∈ B(A) \ B(C) and BC ∪ Y ∈ B(C) \ B(A). Since
∆(BA ∪ Y,BC ∪ Y ) = ∆(BA, BC) = 2 then the edge in P (M1 ⊕M2) joining BA ∪ Y to
BC ∪ Y is an edge of neither P (A) nor P (C), which is a contradiction since P (A)∪ P (C)
is a nontrivial hyperplane split.

Therefore, by Proposition 1, A1 ∩C1 are the set of vertices of a common facet of P (A1)
and P (C1) and, by Corollary 1, P (M1) = P (A1) ∪ P (C1).

(Sufficiency) Without loss of generality, we suppose that P (M1) = P (N1) ∪ P (N2) is a
nontrivial hyperplane split for some matroids Ni, i = 1, 2. Let

L1 = N1 ⊕M2, L2 = N2 ⊕M2 and L1 ∩ L2 = (N1 ∩N2)⊕M2,

Since N1, N2 and N1 ∩ N2 are matroids then L1 and L2 and L1 ∩ L2 are also matroids
where the collection of bases of L1 and L2 are

B(L1) = {X∪Y : X ∈ B(N1), Y ∈ B(M2)} and B(L2) = {X∪Y : X ∈ B(N2), Y ∈ B(M2)}

Moreover, B(L1) ∪ B(L2) = B(M1 ⊕M2) (since B(N1) ∪ B(N2) = B(M1)), B(Li) ⊂
B(M1 ⊕ M2) (since B(Ni) ⊂ B(M1) for each i = 1, 2) and B(L1) ∩ B(L2) 6= ∅ (since
B(N1)∩B(N2) 6= ∅). Thus, the matroids given by the collection of bases B(L1) and B(L2)
is a nontrivial matroid base decomposition of B(M1 ⊕M2).

We now show that this matroid base decomposition induces a nontrivial hyperplane
split. To this end, we first show that there exists an hyperplane containing the elements in
B(L1)∩B(L2) not supporting P (M1⊕M2). Let H be the hyperplane in Rd where d is the
dimension of P (M1) containing a common facet of P (N1) and P (N2). We suppose that
P (N1) lies in the closed half-space H+ and that P (N2) lies in the other closed half-space
H
− (H exists since P (N1) ∪ P (N2) is a nontrivial hyperplane split). Moreover, there

exist B1 ∈ B(N1) and B2 ∈ B(N2) such that B1 lies in the open half-space H+ while B2

lies in the open half-space H−. Let H1 be the hyperplane defined by the same equation
as H in Rd′

where d′ is the dimension of P (M1 ⊕M2) (notice that d′ > d). Then, H1
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contains the elements in B(L1)∩B(L2). Moreover, H1 does not support P (M1⊕M2) since
B1 ∪Y ∈ B(L1) lies in open half-space H+

1 and B2 ∪Y ∈ B(L2) lies in the open half-space
H−1 for some Y ∈ B(M2).

We now show that any edge of P (M1⊕M2) is also and edge of either P (L1) or P (L2). We
do this by contradiction, let B1 ∈ B(L1)\B(L2) and B2 ∈ B(L2)\B(L1) with ∆(B1, B2) =
2. Since B1 = X1 ∪ X2 with X1 ∈ B(N1), X1 6∈ B(N2) and B2 = Y1 ∪ Y2 with Y1 6∈
B(N1), Y1 ∈ B(N2) then X1 6= Y1. So, X2 = Y2 (since ∆(B1, B2) = 2).

Therefore, by Corollary 1, B(L1)∩B(L2) are the set of vertices of a facet of P (L1) and
P (L2) and P (M1 ⊕M2) = P (L1) ∪ P (L2). ut

It is known [2] that lattice path matroids are closed under direct sums. Let M [P1, Q1]
and M [P2, Q2] be two lattice path matroids. Then, by Corollary 4, P (M [P1, Q1]) (or
P (M [P2, Q2])) has a nontrivial hyperplane split and so, by Theorem 2, P (M [P1, Q1] ⊕
M [P2, Q2]) also does.

4. Binary matroids

Maurer [18, Theorem 2.1] gave a complete characterization of those graphs that are
matroid base graphs. Let X,Y be two vertices and let δ(X,Y ) be the distance between X
and Y in G(M). If δ(X,Y ) = 2 (that is, X and Y are not adjacent but they are joined by
a path of length two) then their common neighbor is defined as the set of vertices adjacent
to both X and Y . Maurer showed that each common neighbor is a square, pyramid or
octahedron, see Figure 5.

In [19, Theorem 4.1] Maurer proved that a matroid M is binary if and only if G(M)
contains no induced octahedra. Notice that G(U4,2) is given by an octahedron (see Figure
2) and that induced octahedra in G(M) correspond to minors of M isomorphic to U4,2.

Corollary 5. Let M = (E,B) be a binary matroid and let X,Y ∈ B with δ(X,Y ) = 2.
Then, there exists a unique couple U, V ∈ B such that X,U, V, Y form an empty square in
G(M), that is, X,U, V, Y form a cycle of length four without diagonals.

Proof. The existence of an empty square follows from Maurer’s characterization. Indeed,
for each pair of vertices X,Y with δ(X,Y ) = 2 we have that their common neighbor is
either a square or a pyramid. In both cases we can find the desired empty square. For
uniqueness, suppose that there are two empty squares, say X,U, V, Y and X,U ′, V ′, Y

with {U, V } 6= {U ′, V ′}. If exactly one of U, V is in {U ′, V ′}, say V = V ′, see Figure 6
(a) (respectively, if none of U, V belongs to {U ′, V ′), see Figure 6 (b)) then, by the basis
exchange axiom {X,V = V ′, U, U ′, Y } must induce a pyramid, and thus neither X,U, V, Y
nor X,U ′, V ′, Y form an empty square (respectively, {X,V = V ′, U, U ′, Y } induce an
octahedron which is not possible since M is binary).

�
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X Y

X Y

YX

Figure 5. A square, a pyramid and an octahedron
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XX Y

Figure 6. Possible empty squares

Lemma 3. Let M = (E,B) be a binary matroid and let B1 ⊂ B such that B1 are the set
of bases of a matroid, say M1. If X ∈ B1 and the neighborhood of X (that is, the set of
vertices in G(M) adjacent to X) are elements of B1 then B1 = B.

Proof. We first notice that M1 is binary. Indeed, since M is binary, we consider the
columns of the matrix representation of M corresponding to those elements used in B1.
Let X ∈ B1 and let δi(X) = {Y ∈ B(M)|δ(X,Y ) = i}. We shall use induction on
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i. The cases i = 0, 1 are true by hypothesis. Suppose that
k⋃

i=1
δi(X) ⊂ B1 and let

Y ∈ δk+1(X). Since G(M) is connected then there exists a path joining X to Y and thus
there is Z ∈ δk−1(X) such that δ(Z, Y ) = 2. By Corollary 5, there exists a unique couple
U, V ∈ B such that Z,U, V, Y form an empty square in G(M). So, δ(X,U) = δ(X,V ) = k

implying that U, V ∈ δk(X). Thus, since δk(X) ∈ B1 and M1 is binary then, by Corollary
5, there exists a unique couple Z ′, Y ′ ∈ B1 such that Z ′, U, V, Y ′ form an empty square in
G(M1). Since Z ′, U, V, Y ′ is also an empty square in G(M) then (by uniqueness) we must
have that Z ′ = Z and Y ′ = Y . Therefore, Y ∈ B1. �

Theorem 3. Let M be a binary matroid. Then, P (M) has not a nontrivial hyperplane
split.

Proof. By contradiction, let us suppose that P (M) = P (M1) ∪ P (M2) is a nontrivial
hyperplane split for some matroids M1,M2 (and thus P (M1), P (M2) 6= P (M)). The
latter induces the matroid base decomposition of B(M) = B(M1) ∪ B(M2). By Corollary
1, P (M1) contains a vertex of P (M) together with all its neighbors. But then, by Lemma
3, M1 = M which is a contradiction since the hyperplane split is nontrivial. �

Corollary 6. Let M be a binary matroid. If G(M) contains a vertex X having exactly d
neighbours (that is, with |δ1(X)| = d) where d = dim(P (M)) then P (M) is indecompos-
able.

Proof. By contradiction, let P (M) =
t⋃

i=1
P (Mi), t ≥ 2 be a decomposition. Notice that

d = dim(P (M)) = dim(P (Mi)) for all i. We claim that if vertex X belongs to P (Mi)
for some i then δ1(X) also does. Indeed, any vertex in P (Mi) (and in a general in a
d-polytope) must have at least d neighbours since dim(P (Mi)) = d. So if X belongs to
P (Mi) then all its d neigbours must also belong to P (Mi). Thus, since M is binary and
by using Lemma 3, we have that Mi = M which is a contradiction since t ≥ 2. �

Maurer [20] has proved that the d-dimensional hypercube is the base matroid graph of
a binary matroid. We have the following immediate consequence.

Corollary 7. Let P (M) be the base matroid polytope having as 1-skeleton the hypercube.
Then, P (M) is indecomposable.

Proof. It follows by Corollary 6 since any vertex in the d-dimensional hypercube has
precisely d neighbours. �

The following corollary is an immediate consequence of Theorem 3 since any graphic
matroid is binary.

Corollary 8. P (M) has not a nontrivial hyperplane split if M is a graphic matroid.
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In particular, the matroid M(K4) has not a nontrivial hyperplane split.

Note: One of the referees informed us that a complete characterization for the existence
of hyperplane splits is given by Kim [14]. However, our necessary conditions (Theorem
1) are easier to satisfy than those given by Kim and allow us to construct families of
matroid base polytopes having a hyperplane split (Corollary 2), to give examples without
such splits (P (M(K4))) and to give different hyperplane splits for the same base matroid
polytope (Corollary 3). None of the latter is discussed in [14]. Also, our arguments
used to prove Theorem 1 are different from those given in [14]. We finally mention that
our results in Sections 3 and 4 are not discussed in [14] at all. We were also informed
that Hermann and Joswig [11] studied the splits of general polytopes. They rediscovered
Kim’s characterization in the special case when the matroid base polytope is the entire
hypersimplex.

Acknowledgement
We would like to thank an anonymous referee for many valuable remarks.

References

[1] F. Ardila, A. Fink, F. Rincon, Valuations for matroid polytope subdivisions, Canadian Math. Bulletin,

to appear.

[2] J. Bonin, A. de Mier, M. Noy, Lattice path matroids: enumerative aspects and Tutte polynomials, J.

Combin. Theory Ser. A 104 (2003) 63–94.

[3] L.J. Billera, N. Jia, V. Reiner, A quasisymmetric function for matroids, European J. Combin. 30

(2009) 1727–1757.

[4] H. Derksen, Symmetric and-quasi-symmetric functions associated to polymatroids, J. Algebraic Com-

bin. 30 (2010), 29–33 pp.

[5] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in: Combinatorial Structures

and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), Gordon and Breach,

New York 1970 69–87 (reprinted in Combinatorial optimization—Eureka, you shrink!, 11–26, Lecture

Notes in Comput. Sci. 2570 Springer, Berlin, 2003).

[6] J. Edmonds, Matroids and the greedy algorithm, Math. Programming 1 (1979) 127–136.

[7] J. Edmonds, D.R.Fulkerson, Transversals and matroid partition, J. Res. Nat. Bur. Standards Sect. B

69B (1965) 147–153.

[8] I.M. Gel’fand, M. Goresky, R. MacPherson, V.V. Serganova, Combinatorial geometries convex poly-

hedra, and Schubert cells, Adv. in Math. 63 (1987) 301–316.

[9] I.M. Gel’fand, V.V. Serganova, Combinatorial geometries and torus strata on homogeneous compact

manifolds, Russian Math. Surveys 42 (1987) 133–168.

[10] P. Hacking, S. Keel, J. Tevelev, Compactification of the moduli space of hyperplane arrangements, J.

Algebraic Geom. 15 (2006) 657–680.

[11] S. Herrmann, M. Joswig, Splitting polytopes, Munster J. Math. 1 (2008) 109–141.

[12] M. Kaprano, Chow quotients of Grassmannians I, Soviet Math. 16 (1993) 29–110.

[13] S. Keel, J. Tevelev, Chow quotients of Grassmannians II, ArXiv:math/0401159 (2004).

[14] S. Kim, Flag enumerations of matroid base polytopes, ArXiv:0901.3534v2 (2009), 20 pp.



20 VANESSA CHATELAIN AND JORGE LUIS RAMÍREZ ALFONSÍN
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