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A little bit of convexity

Theorem (Helly) Let A be a finite family of at least d + 1 convexes
sets in IRd . If every d + 1 members of A have a common point
then there is a common point to all members of A.

Question (Vincensini 1935) Is there a Helly-type theorem for
transversal lines in IR2 ?

That is, does there exist an integer m such that if all membres of a
finite family A of sets in IR2 are intersected by a line then there is
a line intersecting all members of A ?
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Counterexample : avec m = 5, any subfamily fo 4 convexes have
a transversal line but there is not a transversal line to all 5.

Theorem (Hadwiger) Let A be a finite family of convexe sets in
IR2 pairwise disjoints. If there exists a linear order of A such that
any 3 membres of A are intersected by a line in the given induced
order, then A admit a transversal line.
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Let 8 points in IR3 in general position.

Question : Is there any transversal line to all the tetrahedra ?
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NEVER

Transversal line

H

J. L. Raḿırez Alfonśın On Kneser transversals and matroids



Question : Let A be a set of 6 points in IR3 in general position. Is
there a transversal line to all the tetrahedra in A ?

ALWAYS

Let x ∈ A and let
T1 = the set of terahedra containing x ,
T2 = the set of tetrahedra not containing x .

T2 has the Helly property, and therefore, all tetrahedra in T2 have
a commun point, say y .

The line gong through x and y is the desired transversal.

Question : Let A be a set of 7 points in IR3 in general position. Is
there a transversal line to all the tetrahedra in A ?
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Some times YES and Some times NO
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Definitions

Let k, d , λ ≥ 1 be integers with d ≥ λ.

m(k , d , λ)
def
= the largest integer n such that for any set of n points

(no necessarely in general position) in Rd , there is a (d − λ)-plane
transversal to the convex hulls of all the k-set points.

M(k , d , λ)
def
= the smallest integer n such that for any set of

npoints in Rd , do not admit a (d − λ)-plane transversal to the
convex hulls of all the k-set points.
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• m(k, d , λ) < M(k, d , λ).

• m(4, 3, 2) = 6 and M(4, 3, 2) = 8

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

M(k , d , λ) =

{
d + 2(k − λ) + 1 if k ≥ λ,
k + (d − λ) + 1 if k ≤ λ.
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Kneser hypergraphs

An hypergraph H is a couple (V ,H) where V (vertices) is a finite
set and H (hyperedges) is a collection of subsets of V .

The Kneser hypergraph Kλ+1(n, k) is the hypergraph (V ,H)
where V is the collection of all k-sets of n and
H = {(S1, . . . ,Sρ)| 2 ≤ ρ ≤ λ+ 1, S1 ∩ · · · ∩ Sρ = ∅}.

Remark : Kneser graphs are obtained when λ = 1.
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Kneser graph with n = 5, k = 2 and λ = 1 (the well-known
Petersen graph)

{1,2}

{4,5}{3,4}

{2,3}

{1,3}

{1,5}
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A coloring of an hypergraph H is a mapping that assigns colours to
the vertices such that each hyperedge of H is not monochromatic.

A collection of vertices {S1, . . . ,Sρ} of Kλ+1(n, k) is in the same
colour class if and only if either

a) ρ ≤ λ+ 1 and S1 ∩ · · · ∩ Sρ 6= ∅ or

b) ρ > λ+ 1 and any (λ+ 1)-sub-family {Si1 , . . . ,Siλ+1
} of

{S1, . . . ,Sρ} is such that Si1 ∩ · · · ∩ Siλ+1
6= ∅

(that is, they verify the λ-Helly property).
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Theorem (Arocha, Bracho, Montejano, R.A., 2011)

• If χ(Kλ+1(n, k)) ≤ d − λ+ 1 then n ≤ m(k , d , λ).

• χ(Kλ+1(n, k)) ≤ n − k − d kλe+ 2.

• d − λ+ k + d kλe − 1 ≤ m(k , d , λ).

• χ(Kλ+1(n, k)) >

{
n − 2k + λ si k ≥ λ,
n − 2k si k ≤ λ.

Theorem (Lovász) χ(K 2(n, k)) = n − 2k + 2.
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System of lines

A system of lines in IR2 is a continuous selection of one line in
each direction.

Fact : Two systems of lines in IR2 coincide in one direction.
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System of planes

A system of planes in IR3 is a continuous selection of one plane in
each direction.

Fact : Three systems of planes in IR3 coincide in one direction.
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System of hyperplanes

A system of hyperplanes χ consist of a continuously selection of an
hyperplane in each direction.

χ is completely determined by a function

φ : Sd−1 → IR

such that for each x ∈ Sd−1 we have φ(−x) = −φ(x).

Indeed, given φ it is enough to choose an hyperplane orthogonal to
x going through φ(x)x .
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System of hyperplanes

Theorem (Borsuk-Ulam) If f : Sd → IRd is continuos function then
there exists x ∈ Sd such that f (x) = f (−x).

Other version (BU) For any antipodal function f : Sd → IRd

(f (−x) = −f (x)) there exists a point x ∈ Sd such that f (x) = 0.

Lemma Let χ1, . . . , χd be d systems of hyperplanes in IRd . Then,
there is a direction in which they coincide.

Proof For each χi , let φi the corresponding function. We consider

Φ : Sd−1 → IRd−1

Φ(x) = (φ1(x)− φd(x), . . . , φd−1(x)− φd(x))

By (BU) there exists x0 ∈ Sd−1 such that Φ(x0) = 0 ∈ IRd−1.

That is, φi (x0) = φd(x0) for all i .
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J. L. Raḿırez Alfonśın On Kneser transversals and matroids



Proof of Kneser conjecture

Theorem (Lovász) χ(KG (n, k)) = n − 2k + 2.

Proof (Meunier, Montejano, R.A. 2018). By contradiction.

• Suppose that χ(KG (n, k)) = n − 2k + 1.

• We identify {1, . . . , n} with a set of points
V = {x1, . . . , xn} ⊂ IRn−2k+1 in general position.

• A k-gon is the convex hull of a k-set of V .

• The (n − 2k + 1)-coloring of χ(KG (n, k)) induces a
(n − 2k + 1)-coloring of all k-gons such that two k-gons with the
same color they always intersect.

• Let L be a line passing through the origin.

• The projection of any red k-gon is a compact interval contained
in L and any two of them intersect. Then, (by Helly) there is a
point x common to all of them.
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(n − 2k + 1)-coloring of all k-gons such that two k-gons with the
same color they always intersect.

• Let L be a line passing through the origin.

• The projection of any red k-gon is a compact interval contained
in L and any two of them intersect. Then, (by Helly) there is a
point x common to all of them.
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Proof of Kneser conjecture

• Take hyperplan HL perpendicular to L going through x . HL varies
continuously with respect to L, forming a red system of hyperplans
in Rn−2k+1.

• Similarly, we obtain a system of hyperplanes for each color. We
have thus (by lemma) that there is an hyperplane Γ intersecting all
k-gons de V .

• To each of the sides of Γ we have fewer than k points of V
(otherwise Γ wouldn’t intersect all k-gons).

• Therefore, there are at least n − 2(k − 1) = n − 2k + 2 points in
Γ, contradicting the fact that V ⊂ IRn−2k+1 is a set of points in
general position.
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Matroid : independents

A matroid M is an ordered pair (E , I) where E is a finite set
(E = {1, . . . , n}) and I is a family of subsets of E verifying the
following conditions :

(I1) ∅ ∈ I,

(I2) If I ∈ I and I ′ ⊂ I then I ′ ∈ I,

(I3) If I1, I2 ∈ I and |I1| < |I2| then there exists e ∈ I2\I1 such that
I1 ∪ e ∈ I.

The members in I are called the independents of M. A subset in E
not belonging to I is called dependent.
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Circuits

A subset X ⊆ E is said to be minimal dependent if any proper
subset of X is independent. A minimal dependent set of matroid
M is called circuit of M.

We denote by C the set of circuits of a matroid.

Theorem The set of cycles in a graph G = (V ,E ) is the set of
circuits of a matroid on E .

A subset of edges I ⊂ {e1, . . . , en} of G is independent if the
graph induced by I does not contain a cycle.
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Bases

A base of a matroid is a maximal independent set. We denote by B
the set of all bases of a matroid.

Theorem The family B is the set of basis of a matroid if and only if
it verifies the following conditions :

(B1) B 6= ∅,
(B2) (exchange propety) B1,B2 ∈ B and x ∈ B1\B2 then there

exist y ∈ B2\B1 such that (B1\x) ∪ y ∈ B.

If I is the family of subsets contained in a set of B then (E , I) is a
matroid.
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Matroid Kneser graph

The rank of a matroid M is de cardinality of one of its bases.

The uniform matroid on n elements of rank r , denoted by Ur ,n, has
as bases all r -subsets of {1, . . . , n}.
The matroid Kneser graph associated to a matroid M, denoted by
KG (M), has as vertices the set of bases of M and two vertices are
joined by an edge if the intersection of the corresponding bases is
empty.

The classical Kneser graph is given by KG (Ur ,n).
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J. L. Raḿırez Alfonśın On Kneser transversals and matroids



Matroid Kneser graph

The rank of a matroid M is de cardinality of one of its bases.

The uniform matroid on n elements of rank r , denoted by Ur ,n, has
as bases all r -subsets of {1, . . . , n}.
The matroid Kneser graph associated to a matroid M, denoted by
KG (M), has as vertices the set of bases of M and two vertices are
joined by an edge if the intersection of the corresponding bases is
empty.

The classical Kneser graph is given by KG (Ur ,n).
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Matroid Kneser graph

A cocircuit C ∗ of a matroid M on E is a circuit of its dual matroid
M∗, that is, B(M∗) = {E \ B : B ∈ B(M)}.

Theorem (Meunier, Montejano, R.A., 2018) Let M be a loopless
matroid of rank r ≥ 1 on n ≥ 2r elements. Then,

χ(KG (M)) ≤ min

{
min

C∗∈C∗
{|C ∗|}, n − 2r + 2

}
where C∗ denotes the set of cocircuits of M.
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Matroid Kneser graph

Let MG be the graphic matroid associated to the graph G

11111
2

3

4

5

{4,5}

{3,5} {1,4}

{3,4} {1,5}

{2,5} {2,4}
KG(M    )G    G

1

2

3

4

5

We have
B(MG ) = {{1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}} and
C∗(MG ) = {{4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}}.
Obtaining χ(KG (MG )) ≤ min{2, 5− 2 · 2 + 2} = min{2, 3} = 2.
We clearly have that χ(KG (MG )) = 2.
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