Ramsey for complete graphs with a dropped edge or a triangle

Luis Pedro Montejano¹

Centro de Investigación en Matemáticas CIMAT Guanajuato, México

Jonathan Chappelon and Jorge Luis Ramírez Alfonsín^{2,3}

Institut de Mathématiques et de Modélisation de Montpellier Université de Montpellier Montpellier, France

Abstract

Let $K_{[k,t]}$ be the complete graph on k vertices from which a set of edges, induced by a clique of order t, has been dropped (note that $K_{[k,1]}$ is just K_k). In this paper we study $R(K_{[k_1,t_1]},\ldots,K_{[k_r,t_r]})$ (the smallest integer *n* such that for any *r*-edge coloring of K_n there always occurs a monochromatic $K_{[k_i,t_i]}$ for some *i*).

We first present a general upper bound (containing the well-known Graham-Rödl upper bound for complete graphs in the particular case when $t_i = 1$ for all i). We then focus our attention when $r = 2$ and dropped cliques of order 2 and 3 (edges and triangles). We give the exact value for $R(K_{[n,2]}, K_{[4,3]})$ and $R(K_{[n,3]}, K_{[4,3]})$ for all $n \geq 2$.

Keywords: Ramsey number, recursive formula.

1 Introduction

Let K_n be a complete graph and let $r \geq 2$ be an integer. A r-edge coloring of a graph is a surjection from $E(G)$ to $\{0, \ldots, r-1\}$ (and thus each color class is not empty). Let $k \ge t \ge 1$ be positive integers. We denote by $K_{[k,t]}$ the complete graph on k vertices from which a set of edges, induced by a clique of order t, has been dropped, see Figure [1.](#page-1-0)

Fig. 1. (a) $K_{[5,3]}$ and (b) $K_{[4,2]}$

Let k_1, \ldots, k_r and t_1, \ldots, t_r be positive integers with $k_i \geq t_i$ for all $i \in$ $\{1,\ldots,r\}$. Let $R([k_1,t_1],\ldots,[k_r,t_r])$ be the smallest integer n such that for any r-edge coloring of K_n there always occurs a monochromatic $K_{[k_i,t_i]}$ for some *i*. In the case when $k_i = t_i$ for some *i*, we set

$$
R([k_1, t_1], \ldots, [k_{i-1}, t_{i-1}], [t_i, t_i], [k_{i+1}, t_{i+1}], \ldots, [k_r, t_r]) \leq t_i.
$$

We note that equality is reached at $\min_{1 \leq i \leq r} \{t_i | t_i = k_i\}$. Since the set of all the edges of $K_{[t_i,t_i]}$ (which is empty) can always be colored with color i. We also notice that the case $R([k_1, 1], \ldots, [k_r, 1])$ is exactly the classical Ramsey number $r(k_1, \ldots, k_r)$ (the smallest integer n such that for any r-edge coloring of K_n there always occurs a monochromatic K_{k_i} for some *i*). We refer the reader to the excellent survey [\[6\]](#page-4-0) on Ramsey numbers for small values. In this paper, we investigate $R([k_1, t_1], \ldots, [k_r, t_r]).$

2 General upper bound

In this section we present a recursive formula (Lemma [2.1\)](#page-2-0) that yields to an explicit general upper bound (Theorem [2.2\)](#page-2-1). The latter contains the wellknown explicit general upper bound for $R([k_1, 1], \ldots, [k_r, 1])$ due to Graham and Rödl $[3]$ (see Equation (4)).

¹ Email: lmontejano@cimat.mx

² Email: jramirez@um2.fr

³ Email: jonathan.chappelon@um2.fr

The following recursive inequality is classical in Ramsey theory

$$
(1) \quad r(k_1, k_2, \ldots, k_r) \le r(k_1 - 1, k_2, \ldots, k_r) + r(k_1, k_2 - 1, \ldots, k_r) + \cdots +
$$

$$
+ r(k_1, k_2, \ldots, k_r - 1) - (r - 2)
$$

In the same spirit, we have the following.

Lemma 2.1 Let $r \geq 2$ and let k_1, \ldots, k_r and t_1, \ldots, t_r be positive integers with $k_i \geq t_i + 1 \geq 2$ for all i. Then,

$$
R([k_1, t_1], \dots, [k_r, t_r]) \leq R([k_1 - 1, t_1], [k_2, t_2], \dots, [k_r, t_r])
$$

+
$$
R([k_1, t_1], [k_2 - 1, t_2], \dots, [k_r, t_r])
$$

$$
\vdots
$$

+
$$
R([k_1, t_1], [k_2, t_2], \dots, [k_r - 1, t_r]) - (r - 2).
$$

A similar recursive inequality has been treated in [\[7\]](#page-4-2) in a much more general setting in which a family of graphs are intrinsically constructed via two operations *disjoin unions* and *joins* (see also [\[4\]](#page-4-3) for the case $r = 2$). However, it is not clear how the latter could be used to obtain Lemma [2.1](#page-2-0) that allows us to give the following general upper bound for $R([k_1, t_1], \ldots, [k_r, t_r])$ (which was not considered in [\[7\]](#page-4-2)).

Theorem 2.2 Let $r \geq 2$ be a positive integer and let k_1, \ldots, k_r and t_1, \ldots, t_r be positive integers such that $k_i \geq t_i$ for all $i \in \{1, \ldots, r\}$. Then,

$$
R([k_1, t_1], \ldots, [k_r, t_r]) \leq \max_{1 \leq i \leq r} \{t_i\} {k_1 + \cdots + k_r - (t_1 + \cdots + t_r) \choose k_1 - t_1, k_2 - t_2, \ldots, k_r - t_r}
$$

where $\binom{n_1+n_2+\cdots+n_r}{n_1+n_2+\cdots+n_r}$ $\binom{n_1+n_2+\cdots+n_r}{n_1,n_2,\ldots,n_r}$ is the multinomial coefficient defined by $\binom{n_1+n_2+\cdots+n_r}{n_1,n_2,\ldots,n_r}$ $\binom{n_1+n_2+\cdots+n_r}{n_1,n_2,\ldots,n_r} =$ $(n_1 + \cdots + n_r)!$ $\frac{n_1 + \cdots + n_r)!}{n_1! n_2! \cdots n_r!}$, for all nonnegative integers n_1, \ldots, n_r .

Theorem [2.2](#page-2-1) is a natural generalization of the well-known explicit upper bound for classical Ramsey numbers. Indeed, an immediate consequence of Theorem [2.2](#page-2-1) (by taking $t_i = 1$ for all i) is the following classical upper bound due to Graham and Rödl $[3, (2.48)]$

(2)
$$
R([k_1, 1], \ldots, [k_r, 1]) \leq {k_1 + \cdots + k_r - r \choose k_1 - 1, \ldots, k_r - 1}.
$$

Let $k \ge t \ge 2$ and $r \ge 2$ be integers and let $R_r([k, t]) = R([k, t], \ldots, [k, t])$ \overbrace{r}). An immediate consequence of Theorem [2.2](#page-2-1) (by taking $k = k_1 = \cdots = k_n$ and

 $t = t_1 = \cdots = t_n$ is the following inequality

(3)
$$
R_r([k,t]) \leq t {r(k-t) \choose k-t,\ldots,k-t}
$$

Moreover, if $t = 1$ then

(4)
$$
R_r([k, 1]) \leq \frac{(rk - r)!}{((k - 1)!)^r}.
$$

3 Exact values

By the so-called Chvátal's result $[2]$, we know that the exact value of the Ramsey number of $K_{[4,3]}$ (a star) versus cliques is given by $R([n,1],[4,3]) = 3n-2$ for all $n \geq 1$. We then naturally focus our attention to the Ramsey number of $K_{[4,3]}$ versus cliques with either a dropped edge or a dropped triangle, see [\[1\]](#page-4-5) where $R([m, 1], [n, 2])$ has been computed for numerous cases. We provide the new following exact values of Ramsey numbers.

Theorem 3.1 Let $n \geq 2$ be an integer. Then,

- $R([n, 2], [4, 3]) = 2$ for $n = 2$,
- $R([n, 2], [4, 3]) = 5$ for $n = 3$,
- $R([n, 2], [4, 3]) = 3n 5$ for $n > 4$.

Theorem 3.2 Let $n \geq 2$ be an integer. Then,

- $R([n, 3], [4, 3]) = 3$ for $n = 3$,
- $R([n, 3], [4, 3]) = 6$ for $n = 4$,
- $R([n, 3], [4, 3]) = 8$ for $n = 5$,
- $R([n, 3], [4, 3]) = 11$ for $n = 6$,
- $R([n, 3], [4, 3]) = 3n 8$ for $n \ge 7$.

3.1 An estimation for $R([n, 2], [5, 3])$

By considering $K_{[5,3]}$ as the book graph B_3 , it was proved in [\[5](#page-4-6)[,8\]](#page-4-7) that

$$
R([n, 1], [5, 3]) \le \frac{3n^2}{\log(n/e)},
$$

for all positive integers n .

The following result is a first estimation for the value $R([n, 2], [5, 3])$.

Theorem 3.3 Let $n \geq 2$ be an integer. Then,

- $R([n, 2], [5, 3]) = 2$ for $n = 2$,
- $R([n, 2], [5, 3]) = 7$ for $n = 3$,
- $R([n, 2], [5, 3]) \leq 3{n+1 \choose 2}$ j_2^{+1}) – 5n + 4 for $n \geq 4$.

References

- [1] J. Chappelon, L.P. Montejano and J.L. Ramírez Alfonsín, On Ramsey numbers of complete graphs with dropped stars, Discrete Applied Math. 210 (2016), 200– 206.
- [2] V. Chv´atal, Tree-complete Ramsey numbers, J. Graph Theory 1 (1977), 93.
- [3] R. Graham and V. Rödl, *Numbers in Ramsey theory*, Surveys in Combinatorics 1987, 123, London Mathematics Society Lecture Note Series (1987) 111–153.
- [4] Y.R. Huang, K. Zhang, New upper bounds for Ramsey numbers, European J. Combin. 19(3) (1998), 391-394.
- [5] Y. Li, C.C. Rousseau, On Book-Complete Graph Ramsey Numbers, J. Combin. Theory Ser. B 68 (1996), 36–44.
- [6] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. 1 (1994), Dynamic Survey 1, 30 pp (electronic) (revision #14 January 12, 2014).
- [7] L. Shi, K. Zhang, A bound for multicolor Ramsey numbers, Discrete Math. 226(1-3) (2001), 419-421.
- [8] B. Sudakov, Large K_r -Free Subgraphs in K_s -Free Graphs abd Some Other Ramsey-Type Problems, Random Structures and Algorithm 26 (2005), 253–265.