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Abstract

Let K[k,t] be the complete graph on k vertices from which a set of edges, induced
by a clique of order t, has been dropped (note that K[k,1] is just Kk). In this paper
we study R(K[k1,t1], . . . ,K[kr,tr ]) (the smallest integer n such that for any r-edge
coloring of Kn there always occurs a monochromatic K[ki,ti] for some i).

We first present a general upper bound (containing the well-known Graham-Rödl
upper bound for complete graphs in the particular case when ti = 1 for all i). We
then focus our attention when r = 2 and dropped cliques of order 2 and 3 (edges
and triangles). We give the exact value for R(K[n,2],K[4,3]) and R(K[n,3],K[4,3]) for
all n ≥ 2.
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1 Introduction

Let Kn be a complete graph and let r ≥ 2 be an integer. A r-edge coloring of
a graph is a surjection from E(G) to {0, . . . , r− 1} (and thus each color class
is not empty). Let k ≥ t ≥ 1 be positive integers. We denote by K[k,t] the
complete graph on k vertices from which a set of edges, induced by a clique
of order t, has been dropped, see Figure 1.

(a) (b)

Fig. 1. (a) K[5,3] and (b) K[4,2]

Let k1, . . . , kr and t1, . . . , tr be positive integers with ki ≥ ti for all i ∈
{1, . . . , r}. Let R([k1, t1], . . . , [kr, tr]) be the smallest integer n such that for
any r-edge coloring of Kn there always occurs a monochromatic K[ki,ti] for
some i. In the case when ki = ti for some i, we set

R([k1, t1], . . . , [ki−1, ti−1], [ti, ti], [ki+1, ti+1], . . . , [kr, tr]) ≤ ti.

We note that equality is reached at min
1≤i≤r

{ti|ti = ki}. Since the set of all

the edges of K[ti,ti] (which is empty) can always be colored with color i. We
also notice that the case R([k1, 1], . . . , [kr, 1]) is exactly the classical Ramsey
number r(k1, . . . , kr) (the smallest integer n such that for any r-edge coloring
of Kn there always occurs a monochromatic Kki for some i). We refer the
reader to the excellent survey [6] on Ramsey numbers for small values. In this
paper, we investigate R([k1, t1], . . . , [kr, tr]).

2 General upper bound

In this section we present a recursive formula (Lemma 2.1) that yields to an
explicit general upper bound (Theorem 2.2). The latter contains the well-
known explicit general upper bound for R([k1, 1], . . . , [kr, 1]) due to Graham
and Rödl [3] (see Equation (4)).

1 Email: lmontejano@cimat.mx
2 Email: jramirez@um2.fr
3 Email: jonathan.chappelon@um2.fr



The following recursive inequality is classical in Ramsey theory

r(k1, k2, . . . , kr)≤ r(k1 − 1, k2, . . . , kr) + r(k1, k2 − 1, . . . , kr) + · · ·+(1)

+r(k1, k2, . . . , kr − 1)− (r − 2)

In the same spirit, we have the following.

Lemma 2.1 Let r ≥ 2 and let k1, . . . , kr and t1, . . . , tr be positive integers

with ki ≥ ti + 1 ≥ 2 for all i. Then,

R([k1, t1], . . . , [kr, tr]) ≤ R([k1 − 1, t1], [k2, t2], . . . , [kr, tr])

+R([k1, t1], [k2 − 1, t2], . . . , [kr, tr])
...

+R([k1, t1], [k2, t2], . . . , [kr − 1, tr])− (r − 2).

A similar recursive inequality has been treated in [7] in a much more gen-
eral setting in which a family of graphs are intrinsically constructed via two
operations disjoin unions and joins (see also [4] for the case r = 2). However,
it is not clear how the latter could be used to obtain Lemma 2.1 that allows
us to give the following general upper bound for R([k1, t1], . . . , [kr, tr]) (which
was not considered in [7]).

Theorem 2.2 Let r ≥ 2 be a positive integer and let k1, . . . , kr and t1, . . . , tr
be positive integers such that ki ≥ ti for all i ∈ {1, . . . , r}. Then,

R ([k1, t1], . . . , [kr, tr]) ≤ max
1≤i≤r

{ti}

(
k1 + · · ·+ kr − (t1 + · · ·+ tr)

k1 − t1, k2 − t2, . . . . . . , kr − tr

)

where
(
n1+n2+···+nr

n1,n2,......,nr

)
is the multinomial coefficient defined by

(
n1+n2+···+nr

n1,n2,......,nr

)
=

(n1+···+nr)!
n1!n2!···nr !

, for all nonnegative integers n1, . . . , nr.

Theorem 2.2 is a natural generalization of the well-known explicit upper
bound for classical Ramsey numbers. Indeed, an immediate consequence of
Theorem 2.2 (by taking ti = 1 for all i) is the following classical upper bound
due to Graham and Rödl [3, (2.48)]

R ([k1, 1], . . . , [kr, 1]) ≤

(
k1 + · · ·+ kr − r

k1 − 1, . . . , kr − 1

)

·(2)

Let k ≥ t ≥ 2 and r ≥ 2 be integers and let Rr([k, t]) = R([k, t], . . . , [k, t]
︸ ︷︷ ︸

r

).

An immediate consequence of Theorem 2.2 (by taking k = k1 = · · · = kn and



t = t1 = · · · = tn) is the following inequality

Rr([k, t]) ≤ t

(
r(k − t)

k − t, . . . , k − t

)

(3)

Moreover, if t = 1 then

Rr([k, 1]) ≤
(rk − r)!

((k − 1)!)r
·(4)

3 Exact values

By the so-called Chvátal’s result [2], we know that the exact value of the Ram-
sey number of K[4,3] (a star) versus cliques is given by R([n, 1], [4, 3]) = 3n−2
for all n ≥ 1. We then naturally focus our attention to the Ramsey number
of K[4,3] versus cliques with either a dropped edge or a dropped triangle, see
[1] where R([m, 1], [n, 2]) has been computed for numerous cases. We provide
the new following exact values of Ramsey numbers.

Theorem 3.1 Let n ≥ 2 be an integer. Then,

• R([n, 2], [4, 3]) = 2 for n = 2,

• R([n, 2], [4, 3]) = 5 for n = 3,

• R([n, 2], [4, 3]) = 3n− 5 for n ≥ 4.

Theorem 3.2 Let n ≥ 2 be an integer. Then,

• R([n, 3], [4, 3]) = 3 for n = 3,

• R([n, 3], [4, 3]) = 6 for n = 4,

• R([n, 3], [4, 3]) = 8 for n = 5,

• R([n, 3], [4, 3]) = 11 for n = 6,

• R([n, 3], [4, 3]) = 3n− 8 for n ≥ 7.

3.1 An estimation for R([n, 2], [5, 3])

By considering K[5,3] as the book graph B3, it was proved in [5,8] that

R([n, 1], [5, 3]) ≤
3n2

log(n/e)
,

for all positive integers n.

The following result is a first estimation for the value R([n, 2], [5, 3]).

Theorem 3.3 Let n ≥ 2 be an integer. Then,



• R([n, 2], [5, 3]) = 2 for n = 2,

• R([n, 2], [5, 3]) = 7 for n = 3,

• R([n, 2], [5, 3]) ≤ 3
(
n+1
2

)
− 5n+ 4 for n ≥ 4.
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